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Abstract: A longstanding concern in plant essential oil extraction is how to optimize extraction
efficiency with limited materials. Supercritical CO2 extraction has been proven effective in enhancing
the yield and efficiency of extracting plant essential oils. However, the impact of temperature,
pressure, and co-solvent content on extracting Hetian rose essential oil remains unclear. There is
a lack of research on the influence of pretreatment methods. This study focuses on investigating
supercritical CO2 extraction of rose essential oils from Xinjiang Hetian. The research analyzes the
effects of pressure and temperature on the extraction rate and validates the efficiency by calculating
the solubility of essential oils in supercritical fluid. Under conditions of 35 MPa, 40 ◦C, 10 L/h,
and a particle size of 0.8 mm, this study evaluates the extraction efficiency using Xinjiang Hetian
rose materials pretreated with salt solutions at concentrations of 5%, 10%, and 20%, as well as
enzyme solutions at concentrations of 2%, 5%, and 10%. Results indicate that appropriate solution
concentration can enhance the extraction effect and mass transfer process, but excessively low or high
concentrations do not contribute to improved extraction reactions. The highest extraction rate (8.99%)
is achieved using a salt solution concentration of 10%, while the lowest (4.21%) is obtained with a salt
solution concentration of 20%.

Keywords: supercritical CO2 extraction; rose essential oils; preprocessing method; extraction
influencing factors; extraction pressure; extraction temperature

1. Introduction

Xinjiang Hetian roses, cultivated on the edge of the desert, serve as a significant
economic crop in Xinjiang. The distinctive regional conditions give rise to variations in
oil content between Hetian roses and other rose varieties [1]. The essential oils (EOs)
extracted from Hetian roses possess potential broad-spectrum antibacterial and antioxidant
properties. They demonstrate remarkable capabilities in terms of both antioxidation and
antibacterial effects even at low concentrations, while also offering benefits such as pro-
moting blood circulation and resolving stasis. They are precious concentrated fragrances
that serve as crucial raw materials in fragrance manufacturing. There is a high demand
for Hetian rose essential oil in the perfume, cosmetics, and medical industries due to its
unique scent profile. With the increasing demand for rose essential oils (REOs) within the
light industry sector, their applications and societal development continue to expand.

Various methods are utilized for EO extraction, including mechanical pressing, steam
distillation, and supercritical CO2 extraction. Mechanical pressing involves physically

Processes 2024, 12, 1396. https://doi.org/10.3390/pr12071396 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12071396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-3621-329X
https://doi.org/10.3390/pr12071396
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12071396?type=check_update&version=1


Processes 2024, 12, 1396 2 of 15

squeezing plant tissues to extract EOs, which exhibits a lower extraction efficiency and is
primarily applicable to citrus fruit peels [2]. Steam distillation utilizes the differing boiling
points of components for separation through distillation. This method involves mixing
the material with water at a multiple of its volume, heating it for distillation, and then
filtering it for separation. While widely applied in extracting EOs from aromatic plants,
steam distillation still faces challenges such as low oil quality and extraction efficiency [3].

This makes the optimization of extraction methods for this particular oil of significant
commercial value. Supercritical CO2 is a fluid that exhibits characteristics resembling those
of a high-density liquid and a low-viscosity gas. It possesses a diffusion coefficient 10
to 100 times higher than that of liquid, resulting in exceptional efficiency in supercritical
CO2 extraction [3]. This method yields extracts with remarkable biological activity, effec-
tively addressing the limitations associated with mechanical pressing and steam distillation
techniques [4]. It finds extensive application in the extraction of oily substances, making
it particularly suitable for REO extraction. Da Porto C et al. [5] conducted experiments
on polyphenolic compounds found in roses, confirming the efficacy of supercritical CO2
extraction. The gas-like diffusion and liquid-like solubility properties enable the dissolu-
tion of EO components by adjusting the temperature and pressure of supercritical CO2.
Subsequently, these compounds can be separated by releasing pressure at the end of the
system [3]. In experiments involving lemon EO extraction, Gilani F et al. [6] compared
hydrodistillation with supercritical CO2 extraction methods. The results demonstrated
superior effectiveness in supercritical CO2 extraction, yielding an extraction rate of 7.6%
along with higher content of active ingredients and antioxidant activity when compared
to hydrodistillation.

The primary focus of research on the supercritical CO2 extraction of the aforemen-
tioned EOs has been to determine optimal extraction conditions for different materials
and analyze a limited number of extraction influencing factors. However, there is a lack
of experimental studies on EO extraction from Xinjiang Hetian rose materials, despite
significant variations in oil content among these materials due to different growth environ-
mental factors within the same plant species. Toluei Z et al. [7] investigated REO content in
the Iranian region, ranging from 0.0020% to 0.0190%. In comparison, Najem W et al. [8]
determined REO content in Nubari at 0.033–0.065%. Therefore, it is imperative to conduct
specific research on supercritical CO2 extraction of EOs from the unique Xinjiang Hetian
rose materials in order to ascertain their EO content, analyze factors influencing extraction,
and study the effects of different pretreatment methods.

Prior to supercritical CO2 extraction, preprocessing the materials can effectively en-
hance the efficiency of EO extraction. Common preprocessing methods include passive
techniques such as ultrasonic treatment [9] and immersion in high-concentration solutions,
as well as active methods like enzymatic solutions. Passive methods exploit the differential
osmotic pressure inside and outside the cell to cause cell rupture, thereby increasing the
extraction rate of EOs when carried by supercritical CO2 fluid. Wu Y et al. [10] investigated
the pretreatment of rose petals with a salt solution, which resulted in a doubled yield of
bitter EOs compared to direct extraction., Enzymes react with plant cell walls, exposing the
cell matrix [11]. Shende D et al. [11] utilized an enzymatic solution for oil extraction from
corn germ, demonstrating higher total phenol content compared to the control group using
solvent extraction. Polmann G et al. [12] also employed an enzymatic solution for walnut
oil extraction, achieving a 65.3% extraction rate with a peroxide value of 1.99.

The application of various preprocessing methods mentioned above has been lacking
in specific research focused on pretreating Xinjiang Hetian rose petals. This study utilizes
supercritical CO2 extraction to obtain EOs from Xinjiang Hetian roses, investigating and
analyzing the influencing factors of the extraction process. Building upon this foundation,
the study further determines the impact of different concentrations of salt and enzyme
solutions as preprocessing agents, analyzing the reasons behind these effects, that contribute
to extracting essential oils from plants with lower oil content poses. By focusing on
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Hetian rose petals, our study aims to optimize extraction techniques for plants with similar
characteristics, potentially benefiting a broader range of botanicals with low oil yields.

The primary objectives of this study are as follows: (1) Conducting single-factor com-
parative experiments to research and analyze the effects of factors such as temperature
and pressure on EO extraction from Xinjiang Hetian roses. (2) Optimizing experimental
parameters and selecting the optimal conditions for supercritical CO2 extraction of Xin-
jiang Hetian REOs. (3) After determining the optimal extraction conditions, conducting
preprocessing on Xinjiang Hetian rose petals using salt and enzyme solutions with different
concentrations, measuring the extraction rates, and analyzing the underlying reasons for
the variations.

2. Materials and Methods
2.1. Materials and Equipment

Hetian rose petals, sourced from the Hetian region in Xinjiang, were carefully selected,
cleaned, and dried. Dry materials are necessary for consistent and sustainable experimental
conditions, as well as for long-term storage and transportation. The standard inspection
sieve was obtained from Shaoxing Shangyu Huafeng Hardware Instrument Co., Ltd.
(Shaoxing, China). The supercritical CO2 extraction equipment was procured from Jiangsu
Nantong Maichuan Supercritical Co., Ltd. (Wuxi, China). The milling machine used in
the process was acquired from Yongkang Hongtaiyang Mechanical and Electrical Co., Ltd.
(Yongkang, China).

2.2. Chemical Reagents

CO2 gas with a purity of 99.9%, meeting food-grade standards, was supplied by
Chonghong Gas Co., Ltd. (Langfang, China). Cellulase (with a purity of 99.5%) was
stored in a dry powder state at low temperatures, while pectinase (with a purity of 99.0%)
was preserved in glycerol under activation conditions set at 40 ◦C [11]. Both enzymes
were obtained from Cangzhou Xiasheng Enzyme Biotechnology Co., Ltd. (Cangzhou,
China). Ethanol with a purity of 99.5% was used and distilled water was employed in
the experiments.

2.3. Statistical Analysis Program

The design in this study was carried out using Design-Expert 13, employing the Central
Composite Design (CCD) method for optimization and performing variance analysis on the
experimental results. MATLAB12b software was used to code and calculate the empirical
models and derivative formulas.

2.4. Hetian Rose Essential Oil Supercritical CO2 Extraction

An orthogonal experiment was designed using Design-Expert 13 software. The in-
fluencing factors included extraction pressure (A), extraction temperature (B), CO2 flow
rate (C), particle size (D), and co-solvent content (E). The extraction pressure ranged from
30 MPa to 40 MPa, extraction temperature from 35 ◦C to 45 ◦C, flow rate from 5 L/h to
15 L/h, and particle size from 0.8 mm to 1.2 mm. The solution configuration used 99.8%
sodium chloride salt as raw material. The concentrations for salt solution pretreatment
were set at 5%, 10%, and 20%, while enzyme solution concentrations were set at 2%, 5%,
and 10%. To maintain the purity of the experimental results and avoid potential influences,
the salt and enzyme solutions were not used in combination. Table 1 presents the levels of
the design factors.

The working principle of supercritical CO2 extraction is illustrated in Figure 1. High-
pressure CO2 cylinders supply the CO2 through control valves, and low-pressure cylinders
receive the return gas. CO2 from the high-pressure gas cylinder is released at 6 MPa
pressure. It undergoes purification and filtration in the purifier and filter. Gaseous CO2 is
then cooled to 5 ◦C through a coil for liquefaction before entering the CO2 tank to ensure
the working state of the high-pressure pump. Liquid CO2 is pressurized by the three-phase
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plunger high-pressure pump to the preset pressure inside the extraction vessel. The outer
wall of the extraction vessel utilizes a wrapped water bath circulation heating method.
Both the external water tank and the CO2 outlet of the extraction vessel are equipped with
temperature controllers for monitoring. The CO2 flow rate is adjusted by varying the power
of the high-pressure pump.

Table 1. Orthogonal experimental factor design.

Factor Name Units Subtype Minimum Maximum Median Coded Low Coded High

A Pressure MPa Continuous 30.00 40.00 35 −1 +1
B Temperature ◦C Continuous 35.00 45.00 40 −1 +1
C CO2 flow L/h Continuous 5.00 15.00 10 −1 +1
D Particle size mm Continuous 0.80 1.20 1.0 −1 +1
E Co-solvent % Continuous 0.00 20.00 10 −1 +1
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Figure 1. Supercritical CO2 extraction process.

The supercritical fluid comes into contact with the material in the extraction vessel,
carrying EO components. Through a manually operated back-pressure valve (with an error
of ±0.01), the supercritical fluid undergoes depressurization separation within two-stage
separation vessels. For safety, when changing materials, only the inlet and outlet valves
of the extraction vessel are closed to release the gas, and the remaining majority of CO2 is
retained in the system or cylinders for future use.

The collected substance passes through a high-temperature rotary water bath at
70 ◦C [13], reducing the exposure time by taking advantage of ethanol’s volatile nature and
immediately cooled to minimize essential oil loss.

The EO is collected in a brown bottle. A co-solvent pump is added to the front end of
the extraction vessel to introduce a co-solvent. After pressurization, the co-solvent is mixed
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with CO2 in the mixer. The experiment lasts for 120 min, with collection occurring every
5 min.

The EO product is refrigerated at 0 ◦C for subsequent analysis and detection. Through-
out the extraction process, parameters such as EO mass, CO2 flow rate, extraction pressure,
and temperature are recorded through data collection (Figure 2).
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Figure 2. Physical image of extraction experimental platform.

The extraction rate of Xinjiang Hotan Rose EO is calculated as follows [14]:

y =
m1

m
× 100 (1)

y is the extraction rate of Hetian REOs, %; m1 is the mass of EOs, g; and m is the total mass
of the material before extraction, g.

Treating EOs as a single component [15], the formula for calculating the solubility of
EOs is

Y∗(H) =
M∗

Mco2

H (2)

Y∗ is the solubility of Hetian REOs; M* is the mass flow rate of the solute, kg/s; MCO2
is the mass flow rate of the solvent, kg/s; and H is the height of the extraction kettle, m.

3. Results and Discussion

Each experimental measurement was repeated three times. The experimental data
were extracted from Hetian REOs under corresponding conditions until the stable stage
with a change in EOs quality ≤ 0.1 g.

3.1. Extraction Pressure and Temperature Effects

From Figure 3, it is evident that the extraction pressure significantly influences the
extraction rate of Hetian REOs. Under the same conditions, the extraction rate at 35 MPa
is 5.95%, higher than that at 30 MPa and 40 MPa. The solubility of Hetian REOs in CO2
reaches its peak at a pressure of 35 MPa. This is because as the extraction pressure increases,
the density of CO2 fluid increases, leading to an elevation in solute solubility. At this
point, the influence of pressure and temperature exhibits a positive effect. However, as the
extraction pressure continues to rise to 40 MPa, the impact of pressure and temperature on
the density of CO2 fluid gradually turns negative, causing a reduction in solubility.
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Figure 3. The influence of pressure on the extraction rate of essential oils.

Although increasing pressure enhances the density of CO2, thereby increasing the
fluid’s solvency, excessively high pressure may induce local aggregation in some materials,
leading to a decrease in EO solubility and a subsequent reduction in extraction rate. It is
evident that excessively high extraction pressure does not necessarily further improve the
extraction efficiency. Similar conclusions were drawn in the experiment on the extraction
of pine terpenoids conducted by Rahimi-Nasrabadi M’s team [16], where the optimal
condition was found to be 10 MPa rather than 20 MPa or 30 MPa.

As shown in Figure 4, the EO extraction rate first rises and then declines with the
increase in extraction temperature. Under the conditions of 40 ◦C, the EO extraction rate
is relatively high, reaching 5.9%. The solubility of EOs is at its maximum at 40 ◦C. This is
because raising the temperature can enhance molecular movement rates and also has a
certain impact on the density of CO2 fluid. However, excessively high temperatures can
lead to the decomposition of some EO components, resulting in a decrease in the extraction
rate [17].
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The influence of temperature and pressure on the extraction rate is essentially the
change in vapor pressure and fluid density. The effect of increasing pressure on the density
of CO2 is greater than the effect of temperature on the density of CO2. As a result, the
extraction rate increases, and the solubility of essential oil increases. This trend aligns with
the findings of Edgar L et al. [18] in their soybean oil extraction experiment. When the
combined effect of temperature and pressure shows a negative effect, the extraction rate
decreases and the solubility of EOs decreases.

In summary, for supercritical CO2 extraction of Hetian REOs, the positive effect range
of pressure and temperature is observed at the conditions of 35 MPa and 40 ◦C. Under these
conditions, the extraction rate is relatively high, and the extraction rate tends to plateau
after 4 h of experimentation.

3.2. The Effect of Co-Solvents on Extraction Rate

As observed in Figure 5, the EO extraction rate at a 20% co-solvent content (15.54%)
is higher than that at a 10% co-solvent content (5.95%) and the solubility of EOs shows a
gradually increasing trend. The reason for this lies in the strong ability of CO2 to dissolve
non-polar components in the EOs under supercritical conditions. However, there is limited
solubility for some polar bond substances, such as sesquiterpenoids, which exhibit poor
solubility due to the presence of hydroxyl groups with strong polarity. Using ethanol as a
co-solvent can enhance the solubility of polar substances, thereby increasing the overall
EO extraction rate [18]. Similar conclusions were drawn by Yousefi M’s team [13] in their
experiments on supercritical CO2 extraction of EOs.
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Figure 5. The influence of co-solvent content on extraction rate.

However, there is a significant difference of 9.58% in the extraction rates between 10%
and 20% co-solvent contents. The reason for this difference is that, despite undergoing
high-temperature rotary water bath treatment, some alcohol remains in the extraction
product due to incomplete evaporation.

3.3. Analysis of Variance

The E (co-solvent) content shows a significant value of p < 0.0001, indicating a higher
level of significance compared to A (pressure) and B (temperature). The significance value
for extraction temperature is p = 0.0344, which is higher than that of extraction pressure
(p = 0.0636). The quadratic term for temperature also demonstrates better significance
compared to the other two factors. Empirical modeling of the above three influencing
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factors resulted in an overall significant model with p < 0.0001 (Table 2). The specific
formula is as follows:

Yield = 6.14 − 0.8743A + 1.01B + 5.87E
−0.4267AB − 0.596AE + 0.4321BE−

0.1891A2 + 1.23B2 − 0.1882E2
(3)

Table 2. Analysis of variance.

Source Sum of Squares df Mean Square F-Value p-Value

Model 545.59 9 60.62 17.4 <0.0001
A (Pressure) 13.3 1 13.3 3.82 0.0636

B (Temperature) 17.73 1 17.73 5.09 0.0344
E (Co-solvent) 527.28 1 527.28 151.34 <0.0001

AB 2.8 1 2.8 0.8048 0.3794
AE 5.16 1 5.16 1.48 0.2365
BE 2.71 1 2.71 0.7785 0.3872
A2 0.0988 1 0.0988 0.0283 0.8678
B2 4.16 1 4.16 1.19 0.2862
E2 0.0904 1 0.0904 0.0259 0.8735
SD 4.41

3.4. Uncertainty Calculation

For the uncertainty analysis of the experiment, the square-root method was used to
calculate the uncertainty of A (pressure), B (temperature), and E (co-solvent) content as
σA ± 0.1 MPa, σB ± 0.5 ◦C, and σE 0.05%.

σYield = ±

√(
dY
dA

σA

)2
+

(
dY
dB

σB

)2
+

(
dY
dE

σE

)2
(4)

Some of the derivatives are as follows.

dY
dA

= −0.8743 − 0.4267B − 0.596E − 0.1891 × 2A (5)

dY
dB

= 1.01 − 0.4267A + 0.4321E + 1.23 × 2B (6)

dY
dE

= 5.87 − 0.596A + 0.4321B − 0.1882 × 2E (7)

The specific value σYield is calculated as ±1.15%.

3.5. The Effect of CO2 Flow Rate on Extraction Rate

The CO2 flow rate is also one of the factors influencing the extraction rate. As the fluid
passes through plant cells, it dissolves EO components, and the speed of the flow directly
affects the dissolution rate. A slow flow rate will prolong the extraction time, while a too-fast
flow rate will result in the fluid being in an undersaturated state, inadequately dissolving
the EOs, leading to poor extraction efficiency. Therefore, exploring an appropriate CO2
flow rate is an effective means of improving the extraction rate (Figure 6).

The highest EO extraction rate is observed at a flow rate of 10 L/h, reaching 3.55%.
With an increase in CO2 flow rate, the solubility of Hetian rose EOs initially rises and
then gradually decreases. This trend occurs because, with relatively stable extraction
temperature and pressure, a faster flow rate enhances the carrying effect on EOs. Within a
unit extraction time, a greater amount of EOs can be produced. However, the CO2 flow rate
indirectly affects the solubility of EOs. Excessive flow rates can prevent the supercritical
fluid from reaching a saturated state, causing some solutes to remain in the extraction
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vessel, leading to a decrease in EO solubility. Similar phenomena were observed in the
study conducted by Rodrigues V.M. [15] on cellulose solubility systems.
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3.6. The Effect of Particle Size on Extraction Rate

The extraction rate of Hetian rose EOs is higher under the condition of a particle size
of 0.8 mm compared to other particle sizes. The solubility at this particle size is 0.028 and
the overall solubility of EOs is basically stable. Theoretically, smaller particle sizes achieved
through pre-grinding of the material result in a larger contact surface area with the solvent,
promoted the dissolution of essential oils and improve extraction efficiency (Figure 7).
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Therefore, selecting an appropriate particle size is beneficial for enhancing the extrac-
tion rate. This finding is supported by the experiment conducted by Bozorgian A. et al. [18]
on sunflower seed oil extraction. However, for Hetian rose petals with lower oil content,
changes in solute solubility are not as pronounced. In cases of excessively high extraction
pressure and extremely small particle sizes, some agglomerated materials may enter the
pipeline, leading to blockages and a subsequent decrease in the extraction rate. Hence,
selecting an appropriate material particle size is crucial [19].
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4. Central Composite Design (CCD) Optimization

To reduce the number of repetitive experiments and simultaneously assess the impact
of relevant factors, optimization methods were introduced, including Central Composite
Design (CCD), Taguchi Design, and Box–Behnken Design (BBD). The Taguchi Design
only considers major influencing factors and their interactions, lacking an assessment of
interactions among higher-order factors. BBD requires input factors to be less than four;
exceeding this limit can result in decreased calculation accuracy. On the other hand, CCD
is suitable for three or more input factors, providing more precise results than BBD and
Taguchi Design, with a sample capacity of 2k factorial and 2k + 2k + 1. This allows for
better predictions from a smaller number of data points [13].

In this study, the CCD optimization method was employed with five influencing
factors (extraction pressure, extraction temperature, material particle size, CO2 flow rate,
and co-solvent content) as input values. The objective function was to maximize the
extraction rate within the parameter range. The optimal experimental conditions were
predicted and the specific experimental data are presented in Table 3. Combining the results
with single-factor comparative experiments, the optimum experimental conditions were
determined to be 35 MPa, 40 ◦C, 10 L/h, 0.8 mm, and 20% co-solvent.

Table 3. Extraction efficiency of Hetian rose EOs under different conditions.

Serial Number Pressure
(MPa)

Temperature
(◦C)

CO2 Flow
(L/h)

Particle Size
(mm)

Co-Solvent
(%)

Extraction Rate of
Essential Oil

(%)

1 35 45 10 1 10 8.31

2 40 35 5 1.2 20 9.57

3 30 35 15 1.2 20 11.59

4 30 35 15 0.8 0 1.54

5 30 45 5 0.8 0 0.982

6 40 35 15 0.8 20 11.69

7 30 40 10 1 10 5.82

8 35 40 10 1 10 6.37

9 30 45 15 0.8 10 13.87

10 30 45 15 1.2 0 1.287

11 40 35 5 0.8 0 0.398

12 35 40 10 1 10 5.73

13 40 45 15 0.8 0 1.078

14 35 40 10 1 10 5.91

15 35 40 10 1.2 10 7.15

16 40 45 5 1.2 0 2.206

17 40 45 5 0.8 20 9.576

18 35 40 10 0.8 10 5.85

19 35 40 5 1 10 2.18

20 30 35 5 1.2 0 1.017

21 35 40 10 1 10 7.5

22 35 40 15 1 10 6.74

23 35 40 10 1 10 4.98

24 35 40 10 1 20 15.54

25 30 45 5 1.2 20 14.72
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Table 3. Cont.

Serial Number Pressure
(MPa)

Temperature
(◦C)

CO2 Flow
(L/h)

Particle Size
(mm)

Co-Solvent
(%)

Extraction Rate of
Essential Oil

(%)

26 40 40 10 1 10 5.416

27 40 45 15 1.2 20 13.63

28 35 40 10 1 10 6.12

29 40 35 15 1.2 0 0.436

30 30 35 5 0.8 20 12.2

31 35 35 10 1 10 5.76

32 35 40 10 1 10 5.95

Figure 8 illustrates the comprehensive impact of extraction pressure and temperature
on the extraction of Hetian rose EOs. Clearly, the increase in extraction temperature has a
more significant effect on improving extraction efficiency compared to extraction pressure.
The combined effect of both factors primarily determines the extraction rate of Hetian
rose EOs. It is not necessarily the case that higher pressure and temperature always lead
to better results; rather, it depends on the inherent characteristics of the materials. This
phenomenon was also observed by Rajput S. [20] in their extraction experiments with
kinnow peels. They found that the extraction rate reached 1.55% at 225 bar and 43 ◦C, but
beyond these pressure and temperature conditions, the extraction rate decreased, providing
strong support for the conclusion mentioned above.
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Figure 8. The comprehensive effects of pressure and temperature and pressure and particle size on
the extraction rate of Hetian rose essential oil.

Increasing pressure has a noticeable effect on the extraction efficiency, especially
for smaller particle sizes. However, when the pressure is too high, some materials may
aggregate, causing blockages in the pipelines and leading to a decrease in extraction
efficiency. Therefore, choosing an appropriate particle size is of crucial importance for
improving extraction efficiency, as observed in the study by Putra, N.R. et al. [21], which
reported similar phenomena.

Figure 9 illustrates the combined impact of particle size and CO2 flow rate. The EOs
are dissolved and entrained by the supercritical CO2 fluid. Under the condition of smaller
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particle size, increasing the CO2 flow rate can result in a higher yield of EOs. However,
excessively fast flow rates can shorten the contact time between the fluid and the EOs,
leading to a state where the supercritical fluid is not saturated, thus reducing the extraction
efficiency. R A de Almeida et al. [22], through CFD simulation, explained the relationship
between flow rate and average particle size. At the lowest flow rate, increasing the flow
rate can reduce the average particle size (MPD) by 11.2%. However, at the highest flow
rate, further increasing the flow rate leads to a 13.5% increase in the average particle size,
confirming the above conclusion.
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Figure 9. The comprehensive effects of CO2 flow rate and particle size, pressure, and flow rate on the
extraction rate of Hetian rose essential oil.

The combined effect of pressure and CO2 flow rate on the extraction efficiency of
Hetian rose EOs is shown in the central point of the surface. Increasing the extraction
pressure can enhance the dissolution characteristics of the EOs. Under this condition,
appropriately increasing the CO2 flow rate can improve the extraction efficiency and
increase the yield of Hetian rose EOs.

5. Effects of Salt Enzyme Pretreatment

Under the optimal conditions for supercritical CO2 extraction of Hetian rose EOs, the
study investigates the influence of different concentrations of salt and enzyme solutions
on the oil extraction rate. Experiments were conducted using 2%, 5%, and 10% enzyme
solutions and 5%, 10%, and 20% salt solutions.

To minimize the introduction of other mediums into the EOs, avoid influencing
enzyme activity, and maintain oil purity, the addition of a co-solvent was omitted. This
research focuses on the impact of different concentrations of salt and enzyme solutions on
the extraction of Hetian rose EOs [23] (Figure 10).

The results indicate that the extraction rate is highest with a 10% salt solution, reaching
8.99%, while the extraction rate is lowest with a 20% salt solution, at 4.21%. The use of a
10% salt solution for assisting extraction results in greater solute solubility compared to
5% and 20% salt solutions. This is due to the increased saturation of the solution, leading
to elevated osmotic pressure between cells. Consequently, plant cells swell and rupture,
releasing the cellular matrix. This aligns with the findings of the study conducted by
Yi Wua’s team [10], where a salt solution was used for rose EO distillation. However,
excessively high osmotic pressure might cause cell shrinkage without rupture, while too-
low osmotic pressure may only lead to cell expansion without rupture. Therefore, the
extraction rate with a 20% salt solution is lower than that with a 10% salt solution. Salt
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solutions exhibit excellent chemical stability and remain effective under supercritical CO2
extraction conditions without requiring specific conditions to maintain their activity. In
contrast, enzymes can deactivate or denature under certain specific conditions. Moreover,
the sensitivity of enzymes to CO2 under high-pressure conditions is not well-defined,
which could potentially lead to decreased enzyme activity.

Processes 2024, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 9. The comprehensive effects of CO2 flow rate and particle size, pressure, and flow 
rate on the extraction rate of Hetian rose essential oil. 

The combined effect of pressure and CO2 flow rate on the extraction efficiency of He-
tian rose EOs is shown in the central point of the surface. Increasing the extraction pres-
sure can enhance the dissolution characteristics of the EOs. Under this condition, appro-
priately increasing the CO2 flow rate can improve the extraction efficiency and increase 
the yield of Hetian rose EOs. 

5. Effects of Salt Enzyme Pretreatment 
Under the optimal conditions for supercritical CO2 extraction of Hetian rose EOs, the 

study investigates the influence of different concentrations of salt and enzyme solutions 
on the oil extraction rate. Experiments were conducted using 2%, 5%, and 10% enzyme 
solutions and 5%, 10%, and 20% salt solutions. 

To minimize the introduction of other mediums into the EOs, avoid influencing en-
zyme activity, and maintain oil purity, the addition of a co-solvent was omitted. This re-
search focuses on the impact of different concentrations of salt and enzyme solutions on 
the extraction of Hetian rose EOs [23] (Figure 10). 

 

2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

0.00

0.02

0.04

0.06

0.08

0.10

0.12

So
lu

bi
lit

y,
 k

g 
so

lu
te

/k
g 

so
lv

en
t×

10
−3

Ex
tr

ac
tio

n 
ra

te
, %

Solution concentration, %

 NaCl assisted extraction rate
 NaCl assisted  solubility
 Enzyme  assisted extraction rate
 Enzyme  assisted solubility

 
Figure 10. Extraction rate and solubility of different solution concentrations. 

Figure 10. Extraction rate and solubility of different solution concentrations.

In comparison, the extraction rate with a 5% enzyme solution (8.46%) is 0.77% higher
than with a 2% enzyme solution (7.96%). The solute solubility with a 5% enzyme solution
is also greater than with 2% and 10% enzyme solutions. This is because both cellulose
and pectin are fundamental substances forming the cell wall. The enzyme activation
facilitates the active dissolution of the cell wall, releasing the cellular matrix. Similar
results were observed in the experiment conducted by Lenucci M.S.’s team [24], where
enzymatic extraction of tomato lycopene resulted in approximately three times higher
yield compared to the control group. However, high-concentration solutions may cause
some materials to agglomerate, reducing the contact area between the enzyme and cells,
and leading to a decrease in extraction rate. Additionally, an enzyme solution may have
a degrading effect on lipid substances like plant wax, indirectly enhancing EO yield [25].
Xiaoman Z’s team [26] found in her research that the outer wall of plants has a cuticle layer,
which contains cutin, a polyester. Cutinase can be used for hydrolyzing this target. In
the research conducted by Sun R.’s team [27], cellulase was used to treat the outer wall
of cherry tomatoes. Observations from a microscopic perspective revealed changes in the
plant’s cuticle, proving that enzymes may have potential effects on lipid substances.

Utilizing the immiscibility of essential oil and water, separation can be achieved by
allowing the mixture to stand in a separatory funnel post-extraction. Subsequently, low-
temperature treatment can be employed to crystallize the salt based on the relationship
between solubility and temperature, followed by filtration. Due to the potential reactions
between enzymes and essential oils, which may produce hydrolysis products, using chemi-
cal reagents for treatment would introduce new impurities. Therefore, no treatment was
applied [28].

6. Conclusions

This experimental study investigated the supercritical CO2 extraction of rose EOs from
Hetian, Xinjiang. A comprehensive analysis was conducted to explore various factors influ-
encing the extraction process, including extraction pressure, temperature, and co-solvent
content. The optimal extraction conditions were determined through CCD optimization.
Additionally, the solubility theory was applied to validate the obtained results. The effi-
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ciency of extracting Hetian rose with pretreatment using salt (5%, 10%, 20%) and enzyme
solutions (2%, 5%, 10%) was measured. Specific conclusions are as follows:

(1) Temperature has a more significant impact compared to pressure, and co-solvent
content shows great significance. However, due to the relatively low oil content
in Hetian rose petals, reducing the particle size only provides limited assistance in
improving extraction efficiency. Through CCD optimization techniques, the optimal
conditions for extracting Hetian rose essential oil were determined as 35 MPa, 40 ◦C,
10 L/h, 0.8 mm particle size, and 20% co-solvent.

(2) Preprocessing Hetian rose materials is crucial for releasing essential oil components
from plant cells; particularly important is controlling the concentration of salt solution
used during this process. Although pectinase and cellulase have catalytic effects on
essential oil extraction processes; high concentrations of enzyme solutions can lead to
local micro-aggregation within materials, which hinders internal mass transfer pro-
cesses. The highest extraction rate achieved was observed when using a salt solution
concentration of 10%, resulting in an extract yield percentage of approximately 8.99%.
Conversely, the lowest yield percentage (4.21%) was obtained when employing a salt
solution concentration of 20%.
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Abbreviations

y [%] Extraction rate of Hetian rose essential oil
m1 [g] Quality of essential oils
m [g] Total mass
Y∗ [kg solute/kg solvent] Solubility
M* [kg/s] Mass flow rate of solutes
MCO2 [kg/s] Mass flow rate of solvent
H [m] Extraction kettle height
σYield [-] uncertainty
σA [-] Pressure uncertainty
σB [-] Temperature uncertainty
σE [-] Co-solvent uncertainty
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