Mitigation of Sugar Industry Wastewater Pollution: Efficiency of Lab-Scale Horizontal Subsurface Flow Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. System Design
Experimental Set-up
2.3. System Operation
2.4. Sampling and Water Quality Analysis
2.5. Phytotoxicity Analysis on Seed (Wheat) Germination
2.5.1. In Petri Dishes
2.5.2. In Pots
2.6. Fish Toxicity Analysis
2.7. HPLC for Sucrose Quantification
2.8. Statistical Analysis
3. Results
3.1. Overall Performance of the Wetland Reactors
3.2. Organics Degradation, Pre-Treatment, Dilution, the Shading Effect, and Seasonal Variation
3.3. Toxicity Testing Results
3.3.1. Phytotoxicity against Wheat Seed Germination
3.3.2. Fish Toxicity
3.4. HPLC Results
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- US Department of Agriculture. Pakistan: Sugar Annual. Available online: https://fas.usda.gov/data/pakistan-sugar-annual-6 (accessed on 24 April 2024).
- Saranraj, P.; Stella, D. Impact of Sugar Mill Effluent to Environment and Bioremediation: A Review. World Appl. Sci. J. 2014, 30, 299–316. [Google Scholar] [CrossRef]
- Profit by Pakistan Today. Right Bank Outfall Drain-II Delays Increase Cost of Project to Rs62b. Available online: https://profit.pakistantoday.com.pk/2017/06/16/right-bank-outfall-drain-ii-delays-increase-cost-of-project-to-rs62b/ (accessed on 24 May 2024).
- Azizullah, A.; Khattak, M.N.; Richter, P.; Häder, D.P. Water Pollution in Pakistan and Its Impact on Public Health—A Review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, Z.; Zhao, W.; Liu, C.; Qian, X.; Zhang, M.; Wei, G.; Khan, E.; Ng, Y.H.; Ok, Y.S. Recent Advances in Photodegradation of Antibiotic Residues in Water. Chem. Eng. J. 2021, 405, 126806. [Google Scholar] [CrossRef] [PubMed]
- Zafar, U.; Hare, C.; Hassanpour, A.; Ghadiri, M. Ball Indentation on Powder Beds for Assessing Powder Flowability: Analysis of Operation Window. Powder Technol. 2017, 310, 300–306. [Google Scholar] [CrossRef]
- Jia, S.; Yang, Z.; Ren, K.; Tian, Z.; Dong, C.; Ma, R.; Yu, G.; Yang, W. Removal of Antibiotics from Water in the Coexistence of Suspended Particles and Natural Organic Matters Using Amino-Acid-Modified-Chitosan Flocculants: A Combined. J. Hazard. Mater. 2016, 317, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Naveed, M.; Afzal, M.; Ashraf, S.; Ahmad, S.R.; Rehman, K.; Zahir, Z.A.; Núñez-Delgado, A. Evaluation of Toxicity on Ctenopharyngodon Idella Due to Tannery Effluent Remediated by Constructed Wetland Technology. Processes 2020, 8, 612. [Google Scholar] [CrossRef]
- Jaramillo, M.F.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Ayyasamy, P.M.; Yasodha, R.; Rajakumar, S.; Lakshmanaperumalsamy, P.; Rahman, P.K.S.M.; Lee, S. Impact of Sugar Factory Effluent on the Growth and Biochemical Characteristics of Terrestrial and Aquatic Plants. Bull. Environ. Contam. Toxicol. 2008, 81, 449–454. [Google Scholar] [CrossRef]
- Dalzell, B.J.; Mulla, D.J.; Gowda, P.H. undefined Modeling and Evaluation of Alternative Agricultural Management Practices in Sand Creek Watershed. In Soil Erosion; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001. [Google Scholar]
- Sotero-Santos, R.B.; Rocha, O.; Povinelli, J. Evaluation of Water Treatment Sludges Toxicity Using the Daphnia Bioassay. Water Res. 2005, 39, 3909–3917. [Google Scholar] [CrossRef]
- Wang, W.C.; Freemark, K. The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicol. Environ. Saf. 1995, 30, 289–301. [Google Scholar] [CrossRef]
- Gibson, M.A.; Bruck, J. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels. J. Phys. Chem. A 2000, 104, 1876–1889. [Google Scholar] [CrossRef]
- Quan, Q.; Shen, B.; Zhang, Q.; Ashraf, M.A. Research on Phosphorus Removal in Artificial Wetlands by Plants and Their Photosynthesis. Braz. Arch. Biol. Technol. 2016, 59, e16160506. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive Evaluation of Substrate Materials for Contaminants Removal in Constructed Wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed Wetlands for Pollution Control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-Conventional Water Resources and Opportunities for Water Augmentation to Achieve Food Security in Water Scarce Countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Ali, M.; Rousseau, D.P.L.; Ahmed, S. A Full-Scale Comparison of Two Hybrid Constructed Wetlands Treating Domestic Wastewater in Pakistan. J. Environ. Manag. 2018, 210, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Waseem, H.; Jameel, S.; Ali, J.; Jamal, A.; Ali, M.I. Recent Advances in Treatment Technologies for Antibiotics and Antimicrobial Resistance Genes. In Antibiotics and Antimicrobial Resistance Genes. Emerging Contaminants and Associated Treatment Technologies; Springer: Cham, Switzerland, 2020; pp. 395–413. [Google Scholar] [CrossRef]
- Kadlec, R.; Knight, R.; Vymazal, J.; Brix, H.; Cooper, P.; Haberl, R. Constructed Wetlands for Pollution Control; IWA Publisher: London, UK, 2000. [Google Scholar]
- Pakistan Environmental Protection Agency. Available online: https://environment.gov.pk/ (accessed on 24 March 2024).
- Paul, M.; Shroti, G.K.; Mohapatra, S.; DasMohapatra, P.K.; Thatoi, H. A Comparative Study on Pretreatment of Rice Straw and Saccharification by Commercial and Isolated Cellulase–Xylanase Cocktails towards Enhanced Bioethanol Production. Syst. Microbiol. Biomanuf. 2024, 4, 731–749. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A Lab-Scale Study of Constructed Wetlands with Sugarcane Bagasse and Sand Media for the Treatment of Textile Wastewater. Bioresour. Technol. 2013, 128, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Arienzo, M.; Christen, E.W.; Quayle, W.C. Phytotoxicity Testing of Winery Wastewater for Constructed Wetland Treatment. J. Hazard. Mater. 2009, 169, 94–99. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Mbuligwe, S.E. Comparative Treatment of Dye-Rich Wastewater in Engineered Wetland Systems (EWSs) Vegetated with Different Plants. Water Res. 2005, 39, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.F.; Diaz, C.A.; Zapata, A.M.; Higuita, J.C. BOD and COD Removal in Vinasses from Sugarcane Alcoholic Distillation by Chlorella Vulgaris: Environmental Evaluation. Biochem. Eng. J. 2021, 176, 108191. [Google Scholar] [CrossRef]
- Salinity Tolerant Crops. A Technique Package for the Regional Training Course on. In Proceedings of the Mutation Breeding Approaches to Improving Tolerance to Salinity, Drought and Heat Stress in Crop Plants, RAS/5/045, Beijing, China, 13–22 October 2008. [Google Scholar]
- Marmorek, D.R.; Bernard, D.P.; Wedeles, C.H.R.; Sutherland, G.; Malanchuk, J.A.; Fallon, W.E. A Protocol for Determining Lake Acidification Pathways. Water Air Soil Pollut. 1989, 44, 235–257. [Google Scholar] [CrossRef]
- Blodgett, R.J. Serial Dilution with a Confirmation Step. Food Microbiol. 2005, 22, 547–552. [Google Scholar] [CrossRef]
- Al-Sulaiman, A.M.; Khudair, B.H. Correlation between BOD5 and COD for Al-Diwaniyah Wastewater Treatment Plants to Obtain the Biodigrability Indices. Pak. J. Biotechnol. 2018, 15, 423–427. [Google Scholar]
- Skrzypiecbcef, K.; Gajewskaad, M.H. The Use of Constructed Wetlands for the Treatment of Industrial Wastewater. J. Water Land Dev. 2017, 34, 233–240. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.; Gersberg, R.M.; Liu, Y.; Tan, S.K.; Ng, W.J. Application of Constructed Wetlands for Wastewater Treatment in Tropical and Subtropical Regions (2000–2013). J. Environ. Sci. 2015, 30, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Ali, M.; Khan, I.; Khan, A.; Rafique, Z.; Waseem, H. Advances in Biodegradation and Bioremediation of Emerging Contaminants in the Environment. In Biological Approaches to Controlling Pollutants; Woodhead Publishing: Sawston, UK, 2022; pp. 121–138. [Google Scholar] [CrossRef]
- Khan, N.A.; El Morabet, R.; Khan, R.A.; Ahmed, S.; Dhingra, A.; Alsubih, M.; Khan, A.R. Horizontal Sub Surface Flow Constructed Wetlands Coupled with Tubesettler for Hospital Wastewater Treatment. J. Environ. Manag. 2020, 267, 110627. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Zidan, A.R.A.; El-Gamal, M.M.; Rashed, A.A.; El-Hady Eid, M.A.A. Wastewater Treatment in Horizontal Subsurface Flow Constructed Wetlands Using Different Media (Setup Stage). Water Sci. 2015, 29, 26–35. [Google Scholar] [CrossRef]
- Saif, Y.; Ali, M.; Jones, I.M.; Ahmed, S. Performance Evaluation of a Field-Scale Anaerobic Baffled Reactor as an Economic and Sustainable Solution for Domestic Wastewater Treatment. Sustainability 2021, 13, 10461. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Keat, T.S. Constructed Wetlands in China. Ecol. Eng. 2009, 35, 1367–1378. [Google Scholar] [CrossRef]
- Bojcevska, H.; Tonderski, K. Impact of Loads, Season, and Plant Species on the Performance of a Tropical Constructed Wetland Polishing Effluent from Sugar Factory Stabilization Ponds. Ecol. Eng. 2007, 29, 66–76. [Google Scholar] [CrossRef]
- Saviozzi, A.; Biasci, A.; Riffaldi, R.; Levi-Minzi, R. Long-Term Effects of Farmyard Manure and Sewage Sludge on Some Soil Biochemical Characteristics. Biol. Fertil. Soils 1999, 30, 100–106. [Google Scholar] [CrossRef]
- Rana, S.; Kumar, K. Study of Phytotoxic Effect of Textile Wastewater on Seed Germination and Seedling Growth of Triticum aestivum. Int. J. Biosci. Technol. 2017, 10, 58–66. [Google Scholar]
- Kanwal, A.; Farhan, M.; Sharif, F.; Hayyat, M.U.; Shahzad, L.; Ghafoor, G.Z. Effect of Industrial Wastewater on Wheat Germination, Growth, Yield, Nutrients and Bioaccumulation of Lead. Sci. Rep. 2020, 10, 11361. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; He, Y.; Li, H. Aquatic Toxicity of Heavy Metal-Containing Wastewater Effluent Treated Using Vertical Flow Constructed Wetlands. Sci. Total Environ. 2020, 727, 138616. [Google Scholar] [CrossRef]
Parameter | Method Used | Model of Instruments | Reference |
---|---|---|---|
Total Sulfate | Specroquant cell test 1.14548.0001 | Spectroquant Pharo 100 | [19,28] |
Total Nitrogen | Specroquant cell test 1.14763.0001 | Spectroquant Pharo 100 | [19,28] |
COD | Specroquant cell test 1.14541.0001 | Spectroquant Pharo 100 | [19,28] |
BOD | Specroquant cell test 1.00687.0001 | Spectroquant Pharo 100 | [19,28] |
pH | pH meter | ELE 970 | [19,28] |
EC | EC meter | PCSTestr 35 | [29,30] |
DO | DO meter | CRISON OXI 45 + | [29,30] |
CFU | Serial dilution | _ | [31] |
Color | Absorption (spectrophotometer) | Perkin Elmer Lambda 365 | [24] |
Total solids | Oven and furnance | - | [23] |
Sampling Day | Dilution Level | DO | Ph | EC | CFU/mL (Log10) | TN | TS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inf. | Eff. | Inf. | Eff. | Inf. | Eff. | Inf. | Eff. | Inf. | Eff. | Inf. | Eff. | ||
07 days 14 days 07 days 14 days 07 days 14 days 07 days 14 days 07 days 14 days 07 days 07 days 07 days 07 days 07 days 07 days | 50%TW 50%SWW 50%TW 50%SWW 25%DWW 75%SWW 25%DWW 75%SWW 50%DWW 50%SWW 50%DWW 50%SWW 50%DWW 50%SWW 50%DWW 50%SWW 50%DWW 50%SWW 50%DWW 50%SWW 100%SWW 100%SWW 100%SWW 100%SWW 100%SWW 100%SWW | 3.15 4.6 2.57 4.6 4.15 4.7 4.15 4.5 4.15 4.6 1.3 5.7 1.3 2.4 1.3 2.1 | 4.6 9.8 4.6 7.2 4.7 9.7 4.5 9.4 4.6 9.7 5.7 2.4 2.4 2 2.1 2 | 4.53 5.7 2.92 5.2 4.28 5.3 4.28 5.5 4.28 6.4 1.57 6.7 1.57 7.4 1.57 7.0 | 5.7 5.4 5.2 5.1 5.3 5.2 5.5 5.5 6.4 7.0 6.7 7.3 7.4 7.19 7.0 6.7 | 615 680 650 517 572 523 572 502 572 440 730 610 730 639 730 666 | 680 535 517 569 523 544 502 456 440 574 610 629 639 666 660 661 | 6.3 7.95 6.5 5.95 8.3 5.59 8.3 4.69 8.3 4.51 8.5 6.97 8.5 6.65 8.5 6.06 | 7.95 6.08 5.95 5.70 5.59 4.67 4.69 4.82 4.51 4.51 6.97 6.04 6.65 6.08 6.06 6.06 | 52.8 6 68.8 6.7 88.8 6.7 88.8 6.7 88.8 6.7 48.8 6.7 48.8 6.7 48.8 6.7 | 6 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 | 75 35 86.2 38 74 19 74 22 74 18 98 15 98 18 98 25 | 35 10 38 4 19 5 22 6 18 4 15 20 18 22 25 21 |
Sample Type | Germination Time in Petri Dishes (In Days) | No. of Petri Dishes (Out of 3) | Germination Time in Clay Pods (In Days) | No. of Clay Pods (Out of 3) |
---|---|---|---|---|
Untreated | Not germinated | 10 | 2 | |
Tap water (control) | 4 | 3 | 4 | 3 |
Treated (after 1st week) | 5 | 2 | 4 | 3 |
Treated (after 2nd week) | 4 | 2 | 7 | 1 |
Treated (after 3rd week) | 5 | 2 | 6 | 2 |
Statistical Tests | Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Sulfate | pH | DO | EC | CFU | TN | COD | BOD | Total Solids | Color | |
One sample t test | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
p value summary Significant Alpha (0.05) | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Wilcoxon test | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
p value summary Significant Alpha (0.05) | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
One-way Anova | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
F value | F = 247 | F = 930 | F = 118 | F = 549 | F = 243 | F = 327 | F = 29 | F = 9.96 | F = 259 | F = 339 |
Unpaired t-test | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
p value summary Significant p ≤ 0.05 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |||
Paired t-test | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||
p value summary Significant p ≤ 0.05 | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ur Rehman, T.; Waseem, H.; Ali, B.; Haleem, A.; Abid, R.; Ahmed, S.; Gilbride, K.A.; Ali, M. Mitigation of Sugar Industry Wastewater Pollution: Efficiency of Lab-Scale Horizontal Subsurface Flow Wetlands. Processes 2024, 12, 1400. https://doi.org/10.3390/pr12071400
Ur Rehman T, Waseem H, Ali B, Haleem A, Abid R, Ahmed S, Gilbride KA, Ali M. Mitigation of Sugar Industry Wastewater Pollution: Efficiency of Lab-Scale Horizontal Subsurface Flow Wetlands. Processes. 2024; 12(7):1400. https://doi.org/10.3390/pr12071400
Chicago/Turabian StyleUr Rehman, Talmeez, Hassan Waseem, Babar Ali, Abdul Haleem, Rameesha Abid, Safia Ahmed, Kimberley A. Gilbride, and Mahwish Ali. 2024. "Mitigation of Sugar Industry Wastewater Pollution: Efficiency of Lab-Scale Horizontal Subsurface Flow Wetlands" Processes 12, no. 7: 1400. https://doi.org/10.3390/pr12071400
APA StyleUr Rehman, T., Waseem, H., Ali, B., Haleem, A., Abid, R., Ahmed, S., Gilbride, K. A., & Ali, M. (2024). Mitigation of Sugar Industry Wastewater Pollution: Efficiency of Lab-Scale Horizontal Subsurface Flow Wetlands. Processes, 12(7), 1400. https://doi.org/10.3390/pr12071400