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Abstract: Microplastics, primarily derived from plastic waste, are pervasive environmental pollutants
found across aquatic and terrestrial ecosystems. This review investigates microplastics’ presence,
distribution, and impacts in marine ecosystems, with a particular focus on fish species. Research
indicates that microplastics are present in various anatomical parts of fish, including the gastrointesti-
nal tracts and gills, with significant implications for marine biodiversity and human health through
seafood consumption. The review also highlights the sources of microplastics, such as synthetic tex-
tiles, packaging, and personal care products, and explores the pathways through which these particles
enter marine environments. Advanced detection techniques have identified microplastics in human
tissues, underscoring the urgency of addressing this environmental threat. Comprehensive strategies
are essential to mitigate microplastic pollution and protect both marine life and human health.
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1. Introduction

Microplastics infiltrate water, air, and soil worldwide. Scientists have provided various
insights into their harmful impacts, yet a clear understanding of the extent of their damage
to human and animal health remains elusive [1,2]. Nonetheless, there is a consensus that
microplastics significantly harm marine ecosystems and are recognised as hazardous pollu-
tants [3]. The primary contributor to microplastic pollution in oceans is the fragmentation
of plastic debris originating from waste that enters the ocean from various sources [4].

1.1. Sources of Microplastics

The world is full of plastics, which generate microplastics and nanoplates that are
available everywhere, such as water, air, and soil. They have become significant environ-
mental pollutants, posing risks to wildlife and human health. In the following, we will
discuss the sources of microplastics and nanoplastics.

The release of tiny synthetic particles or fibres from clothing, textiles, or other synthetic
materials into the environment is often very small and can easily become airborne or wash
into water systems [5,6]. Similarly, plastic packaging in modern consumer goods con-
tributes to microplastic pollution during both opening and disposal processes [7]. Personal
care and cosmetic products, especially prevalent in densely populated urban areas, are
also implicated as sources of environmental contamination by microplastics [8,9]. Also, the
wear and tear of tyres release microplastics into the environment, a factor often overlooked
but significant in exacerbating contamination [10]. Commercial fishing activities inad-
vertently generate microplastics through processes like netting and gear abrasion [11,12].
Even seemingly harmless items like toy building bricks can be unsuspected reservoirs
of microplastics and nanoplastics, posing risks to children who are more susceptible to
exposure [13]. Furthermore, industrial activities such as the deterioration of building
materials [14] and the transformation of plastic furniture by fire contribute to microplastic
and nanoplastic pollution [15]. Advancements in technology, such as Raman imaging,
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have facilitated the detection and characterisation of these tiny particles across various
matrices, such as kitchen blenders [16], smartphones [17], printed toner powders [18],
chopping boards [19], cut Polyvinyl Chloride (PVC) pipes [20], non-stick cookware [21],
kitchen sponges [22], burned disposable gloves [23], PPE masks [24], rubber bands [25],
and haemodialysis waters [26]. Recently, microplastics have also been found in bottled
drinking water [27,28] as well as cookware [29]. Details are given in Figure 1.
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1.2. Microplastics in Fish Species

Over the years, researchers have shown that microplastics are found in different fish
species, and the details of this literature are discussed below.

In 2016, it was seen that Mussels from China’s coastline contained microplastics, with
higher levels in wild mussels and those from areas with intensive human activities, primar-
ily fibres and fragments, with a significant proportion smaller than 250 µm, suggesting that
mussels could be used as a bio-indicator of microplastic pollution [30]. Also, microplastics
were found in 77% of Japanese anchovy in Tokyo Bay, with an average of 2.3 pieces per
fish, mostly polyethylene and polypropylene fragments, with some microbeads and a size
range of 150 µm to 1000 µm, indicating that microplastics have penetrated the marine
ecosystem [31].

In 2017, it was observed that adult grass shrimp exposed to microplastics of various
sizes and shapes experienced acute toxicity, with mortality rates ranging from 0% to 55%,
and that the shape and size of the particles significantly influenced ingestion and residence
time in the gut and gills, with fibres causing significantly higher mortality [32]. Also,
only 1 out of 400 North Sea fish (0.25%) had ingested microplastics, with two particles
found in a single Sprat, and the particles were identified as polymethylmethacrylate [33].
Moreover, microplastics were found in the livers of the European anchovy, European
pilchard, and Atlantic herring, with 80% of anchovy livers containing large microplastics
(124–438 µm) [34].
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In 2018, it was found that the windward beaches along Trindade Island’s eastern coast
exhibited a notable concentration of debris, primarily consisting of small plastic fragments.
Furthermore, this debris already engaged with the island’s wildlife, including seabirds
and endangered land-dwelling crabs, adversely affecting these populations [35]. Later,
microplastics and other debris were found in all seawater and mussel samples from U.K.
coastal waters and supermarkets, with higher levels in pre-cooked supermarket mussels,
presenting a route for human exposure [36]. Also, microplastics were found in various
tissues of fish and a crustacean from five sites of the Musa Estuary and the Persian Gulf, with
a total of 828 microplastics detected, mainly fibrous fragments of various colour and sizes,
and some suspected to be paint fragments, raising concerns about the potential transfer
of synthetic materials into humans [37]. Moreover, fish from the Persian Gulf contained
microplastics and metals, with concentrations increasing with fish size [38]. In addition,
microplastics were found in 26 individual fish from 26 species along the Saudi Arabian
coast of the Red Sea. Most microplastics were films (61.5%) and fishing thread (38.5%),
made of polypropylene and polyethylene [39]. Also, only 2.1% of 292 planktivorous fish
(6 individuals) in the Southeastern Pacific coast had microplastics in their digestive tract. It
was found that the microplastics were degraded fragments and threads, 1.1–4.9 mm long,
and of various colours [40].

In 2019, it was observed that marine plastic litter posed a significant risk to the fin
whale in the Mediterranean, with the highest risk of plastic ingestion in the Central Ligurian
Sea, and all three sources of plastic litter contributing to impacting cetaceans in the Pelagos
Sanctuary [41]. Also, 9 out of 11 marine fish species found in Seri Kembangan, Malaysia,
contained plastic debris in their viscera and gills. Up to 76.8% of isolated particles were
plastic polymers, with sizes ranging from 200 to 34,900 µm [42]. Moreover, it was seen that
different fish species from Haizhou Bay, China, had microplastics in their tissues, where
the microplastics were mostly fibres, black or grey, and made of cellophane. It was also
observed that the skin and gills had more microplastics than the gut, and scaleless fish had
higher microplastic abundances in their skin [43].

In 2020, it was observed that sea anemones, abundant along the Amazon coast, ingest
meso- and microplastics, with 75.6% of the examined individuals containing plastic par-
ticles, primarily fibres (84%), followed by fragments and films, with a mean of 1.6 items
per individual, and a weak positive correlation between anemone weight and plastic par-
ticles [44]. Also, microplastics were found in 12 fish species from the Beibu Gulf, with
0.027–1 item per individual, mostly transparent fibres, polyester, and nylon, with demersal
fish having a higher microplastic abundance [45]. Additionally, microplastic contamina-
tion was found in the seawater and fish from Tuticorin, the southeastern coast of India,
with epipelagic fish having higher levels; most microplastics were small blue fibres, with
polyethylene being the most common type [46]. Moreover, microplastics were found in 49%
of 150 fish from the Northeast Atlantic Ocean, and the estimated human intake through
fish consumption ranged from 518 to 3078 microplastic items per year per capita [47].
Also, microplastic pollution was found in the Han River and its tributaries, with varying
concentrations and types. Polyethylene, silicone, and polystyrene were most common in
the river, while polytetrafluoroethylene, polyethylene, and polyester dominated in the
tributaries. Microplastics were found in fish intestines and gills, but not flesh, with frag-
ments being the most common form [48]. In addition, microplastics were found in brown
shrimp and tiger shrimp from the Northern Bay of Bengal, Bangladesh. A total of 33 and
39 microplastic items were found, respectively, with an average of 3.40 and 3.87 items per
gram of gastrointestinal tract. Filament and fibre shapes were most common, with black
being the dominant colour [49]. Also, microplastics were present in the guts of rabbitfish
(Siganus fuscescens) in coastal Philippines, with semi-synthetic microfibers (rayon) being
dominant in sediment samples from Silliman Beach but absent in the fish guts [50].

In 2021, it was observed that Longnose stingrays in the Western Atlantic Ocean had
ingested microplastics, with almost a third of the examined specimens containing mi-
croplastics in their stomach contents, primarily fibres (82%), blue in colour (47%), and made
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of polyethylene terephthalate (PET) (35%) [51]. Also, microplastics were found in the water,
sediment, and marine organisms (shellfish and finfish) in the Sal Estuary, Goa, India, with
high concentrations in finfish, as well as small-sized microplastics dominant in biota [52].
Moreover, 85.4% of commercial fish from the Bohai Sea had ingested microplastics, with an
average of 2.14 items per individual, mostly fibrous and PET [53].

In 2022, it was observed that microplastic contamination was widespread in dolphin-
fish from the Eastern Pacific Ocean, averaging 9.3 pieces per individual, with the majority
being polyester (46.8%) and polyethylene terephthalate (38.1%) [54]. Also, microplastics
were found in 14 marine dried fish products from seven Asian countries, mostly fibres,
with polyethylene, polyethylene terephthalate, and polystyrene being the main polymers,
and the highest count was in Etrumeus micropus from Japan [55]. Moreover, microplastics
were found in dried Bombay duck and ribbon fish from the Bay of Bengal, with higher
levels in samples from Kuakata; fibres were the most common type, followed by fragments
and other types, with polyethylene, polystyrene, and polyamide polymers identified [56].
Furthermore, microplastics were found in the water, sediment, and fish samples from
Mumbai’s coastal waters, where fibres were the most common shape, and eleven types of
plastic polymers were identified [57]. In addition, microplastics were found in 47.8% of
180 fish specimens from the Northern Adriatic Sea, with a total of 233 fragments identified.
The mean concentration ranged from 1.75 to 4.11 items/individual across six species, and
polyethylene and polypropylene microplastics were found, ranging in size from 0.054 to
0.765 mm [58]. Also, microplastics were found in the gills and guts of 26 fish species in
Haizhou Bay and the adjacent waters, with blue fibre being the most common form [59].

In 2023, it was found that 30% of fish from 24 beaches in the Machado River, Western
Brazilian Amazon, had microplastics in their digestive tracts, with 617 microplastics found;
contamination was higher in fish from beaches closer to urban settlements, particularly
carnivorous fish [60]. Also, microplastics were found in three fish species from the Bay of
Bengal, with dried fish having significantly higher amounts than fresh fish; fibres were the
most common type found, followed by fragments and other types, with most being small
and red, and low-density polyethylene was the most common polymer [61]. Moreover,
35 freshwater fish species in India were analysed, and the highest abundance of microplastic
contamination was found in Channa punctatus. Fiber-type microplastics were the most
dominant, while polyethylene-type polymer microplastics were found mainly in edible
tissue [62]. In addition, microplastics were found in fish species from the Pasig and Marikina
Rivers in the Philippines, and polypropylene and polyethylene fragments were the most
common microplastics identified [63]. Also, a separate research study observed that the
Sundarbans mangrove forests in Bangladesh were highly contaminated with microplastics.
It was noted that nine fish species had microplastics in their gastrointestinal tract and
muscles, where most particles were smaller than 1 mm and black in colour, with polyamide
being the most abundant polymer type [64].

1.3. Microplastics Detected in Different Regions and Different Fish Species

The infiltration of microplastics into marine habitats is a pervasive issue affecting a
multitude of species. Research has identified their presence in the digestive systems of nu-
merous marine organisms, spanning from the majestic whales to the humble yellow crabs
and green turtles [35,41]. Among the affected species, the Longnose stingray, Cangicum
anemone, shrimp, mussels, dolphin, various molluscs, and even Japanese anchovies have
been found to ingest these harmful particles [30–32,36,44,51,52,54,65]. Notably, microplas-
tics have also been detected in fish populations from diverse regions, such as the Beibu
Gulf in the South China Sea, the Machado River in the Western Brazilian Amazon, and
the Bohai Sea in China [45,53,60]. Furthermore, the global scope of this issue is evident in
the presence of microplastics in dried marine fish sourced from different countries [55,56].
Table 1 provides a comprehensive overview of the fish species affected by microplastic
contamination, emphasising the widespread nature of this environmental concern. These
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findings collectively highlight microplastic pollution’s global distribution and their impact
on marine ecosystems.

Table 1. List of regions and fish specifies where microplastics are detected.

Ref. Region Fish Species

[52] Goa, India Gray mullet, Catfish, Whipfin
silver-biddy, Pearlspot

[37] Persian Gulf Mackerel, Longfin lizardfish, Barramundi,
Tongue sole

[66] Tyrrhenian Sea, Italy Gray mullet, Annular seabream, Red mullet

[67] Western Pacific Ocean Highfin seabream, Flying gurnard

[61] Bay of Bengal Bombay duck, Ribbon fish, Hairfin anchovy

[46] Tuticorin, India
Bombay duck, Goldspot herring,
White sardine, Indian mackerel,

Skipjack tuna, Sailfish

[47] Northeast Atlantic Ocean European seabass, Atlantic horse mackerel,
Atlantic chub mackerel

[48] Han River, South Korea Carp, Crucian carp, Bluegill, Bass,
Catfish, Snakehead

[57] Mumbai coast, India White sardine, Shrimp, Belanger croaker,
Bombay duck, Malabar sole fish

[49] Northern Bay of Bengal,
Bangladesh Brown shrimp, Tiger shrimp

[68] South America Brown hoplo

[62] India Spotted snakehead, Rohu, Bata labeo,
Spotted mahseer, Amphibious barb

[63] Pasig and Marikina Rivers,
Philippines

Nile tilapia, Manila Sea catfish,
Armored catfish

[58] Adriatic Sea, Italy
European pilchard or sardine, European

anchovy, European hake, Spotted flounder,
Striped red mullet, Rock goby

[33] North Sea, Netherlands Atlantic herring, Sprat, Common dab, Whiting

[38] Persian Gulf Shrimp scad, Orange-spotted Grouper,
Pickhandle barracuda, Bartail flathead

[64] Mongla port, Bangladesh Ilish, Bhetki, Poa, Tengra, Payra, Loitta,
Chemo, Bele

[43,59] Haizhou Bay, China
Kamala River sprat, Red-finned mudskipper,

Half-smooth tongue sole, Blackbarred
sandperch, Chinese silver pomfret

[50] Central Philippines Rabbitfish

1.4. Microplastics Detected in Different Body Parts of Fishes

Table 2 illustrates the various research endeavours focusing on marine fish species,
detailing the anatomical regions examined for microplastic presence, the geographical
origins of the specimens, and the data analysis methodologies employed. The investigations
predominantly prioritise the gastrointestinal tracts and gills of fish, with statistical analysis
emerging as most commonly utilised approach by researchers.
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Table 2. List of observed parts of fish, region of collection of fish, data analysis techniques, and name
of the software used.

Ref. Observed Parts Region of Collection Microscope Data Analysis Approach
and Software

[36] Mussel tissues United Kingdom Olympus SZX10
(Tokyo, Japan) Statistical

[54]
Gills, stomachs,

intestinal tracts, and
muscles

Eastern Pacific Ocean Leica M205A, OPUS 7.8
(Wetzlar, Germany) Statistical

[52] Gastrointestinal tracts Goa, west coast of India AIM-3800, Olympus SX10 Statistical, PAST

[45] Gastrointestinal tracts,
and gills

Beibu Gulf, South
China Sea

Olympus SZX10, Nicolet
iN 10 Experimental

[53] Gastrointestinal tracts Bohai Sea, China Olympus, SZX10,
Nicolet™ iN10 Statistical, SPSS v. 20

[55] Gastrointestinal tracts,
muscles and gills

Taiwan, Thailand,
Japan, China,

South Korea, Vietnam,
Sri Lanka

Olympus SZX16, JobinYvon
LabRAM HR800 Statistical

[56] -
Cox’s Bazar and

Kuakata, Bay of Bengal,
Bangladesh

Daffodil MCX100 (Gurgaon,
India), Nicolet iS5 FT-IR

(Green Bay, WI, USA)
Statistical, SPSS v. 22

[66] Muscles and gills Tyrrhenian sea, Italy Nicolet™ iN10, Omnic™
Picta™ Statistical

[61] Muscles and gills
Chattogram and

Kuakata, Bay of Bengal,
Bangladesh

Daffodil MCX100, Nicolet iS5
FT-IR Statistical

[46] Gastrointestinal tracts Tuticorin, Southeast
coast of India

Thermo Nicolet model iS5
(Waltham, MA, USA) Statistical

[47] Gastrointestinal tracts,
muscles and gills

Northeast Atlantic
Ocean LEICA S9i Statistical, SPSS v. 24

[48] Gastrointestinal tract,
gills, and fillets Han River, South Korea FTIR Microscope, NicoletTM

iN10TM MX Experimental

[57] Gastrointestinal tracts Mumbai coast, India SZX16 Model Statistical, SPSS v. 20

[49] Gastrointestinal tracts Northern Bay of
Bengal, Bangladesh

XSZ-107BN, IR Affinity-1,
Model-8900 Statistical, R software

[68] Gastrointestinal tracts,
and Stomachs

Pajeú river, Northeast
of Brazil dissecting microscope (45×) Statistical, R v. 3.2.1

[62] Gastrointestinal tracts,
muscles and gills

Lucknow, Uttar
Pradesh, India

Leica, EZ4, Witec Alpha
300RA

Statistical, GraphPad PRISM
v. 8.4.0

[63] - Pasig River, Marikina
River, Philippines

Olympus Microscope BX41,
Origin-Prov2021 Experimental

[58] - Adriatic Sea Nikon SMZ745T, LabSpec 6
(Tokyo, Japan ) Experimental

[42] Viscera and gills Malaysia
Motic SMZ-140 (Hong Kong),

Horiba LabRam HR
(Tokyo, Japan)

Statistical, SPSS v. 24

[33] Digestive tract

Coasts of the
Netherlands, Belgium,

France and
Great Britain

Scimitar 1000 FT-IR Experimental

[38] Muscles Northeast of Persian
Gulf, Iran

Inductively coupled plasma
mass spectrometry Statistical
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Table 2. Cont.

Ref. Observed Parts Region of Collection Microscope Data Analysis Approach
and Software

[34] Livers Mediterranean Sea,
Europe

Olympus Provis AX-70,
LabRam 300 Experimental

[64] Gastrointestinal tracts,
and muscles

Pasur river, Mongla,
Bangladesh Motic B410E, Stemi 508 Statistical

[43] Gut, skin and gills Haizhou Bay, China Nikon SMZ 1500N, Thermo
Nicolet iN10 MX Statistical, SPSS v. 23

[59] Gills and guts Haizhou Bay, China Olympus SZX2-FOF Statistical, SPSS v. 25

[39] - Saudi Arabian coast of
the Red Sea

Stemi 2000 Zeiss
(Oberkochen, Germany) Statistical, RStudio v. 1.1.419

[40] Digestive tract
Coasts of Panama,

Colombia, Ecuador,
Peru, and Chile

Agilent Handheld 4300 FTIR
(Santa Clara, CA, USA) Experimental

[69] - West coast of India Olympus DSX 110,
LUMOS II Statistical, SPSS v. 22

Different types of plastic polymers have been found in different fish species, and
their percentage presence in fish species is shown in Table 3. PE, PET, PS, PP, and PES are
observed to be the most detected polymers in fish species. Additionally, CP is not a plastic
polymer but a natural polymer, which is also highly found in fish species.

Table 3. Percentage of different types of polymers found in fish species.

References

Types of Polymers (Microplastics) [54] [45] [53] [55] [61] [46] [63] [43] [39] [69]

PE 0.7 6 0.5 36 38 54 30.95 13 42 33
PET 38.1 0 16.9 26 0 0 2.38 4.5 0 4
PS 5 0 0.4 18 22 7 2.38 0 4 14.5

PVC 0 0 0 12 16 0 0 0 8 11.5
PP 7.9 6 2.5 8 0 7 57.14 15 42 21.5

PES 46.8 44 0 0 0 14 0 0 0 0
PMMA 0 6 0 0 0 3 0 0 0 0

PA 0 38 0.4 0 13 15 0 8 0 0
EVA 0 0 0 0 9 0 0 0 0 0

Polyethylene-polypropylene
copolymer 1.4 0 0 0 0 0 7.14 0 0 0

PAN 0 0 0.9 0 0 0 0 0 4 0
PVAc 0 0 0.5 0 0 0 0 0 0 0

PB 0 0 0.2 0 0 0 0 0 0 0
PC 0 0 0.2 0 0 0 0 0 0 6.5

PMMA 0 0 0 0 0 0 0 0 0 4
PVA 0 0 0 0 0 0 0 0 0 5

Unidentified 0.1 0 0 0 2 0 0.01 19.5 0 0
Non-plastic particles 0 0 0 0 0 0 0 6.5 0 0

CP 0 0 77.5 0 0 0 0 33.5 0 0

1.5. Microplastics in Human Body

Humans are exposed to microplastics through various sources, including air, water,
food, and soil. In particular, fish is a significant component of the human diet, and the
presence of microplastics in fish means that humans are indirectly exposed to microplastic
pollution. In 2024, researchers have discovered that these microplastics are potentially
associated with cardiovascular diseases [70] and have identified microplastics in differ-
ent types of human arteries [71]. Researchers have also uncovered tiny plastic particles,
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including microplastics, within bodily fluids [72]. Laser direct infrared spectroscopy has
enabled scientists to detect and measure microplastics in tissues like the endometrium [73],
gallstones [74], placenta [75], and even in the amniotic fluid of preterm births [76]. Further-
more, microplastics have been found in human urine and kidney tissue [77,78], lower limb
joints [79], vitreous humor [80], and lung tissue [81]. Advanced detection methods have
revealed microplastics in the testes and semen [82,83], and even blood [84] itself. Even
samples of human stool [85], and from patients undergoing heart surgery [86], have shown
traces of microplastics. Details are presented in Table 4.

Table 4. Presence of microplastics in human organs, fluids, and waste products.

Ref. Sample Type Detection Method Type of Microplastics Average Concentrations

[71] Arteries
Pyrolysis–Gas

Chromatography–Mass
Spectrometry

PET (73.70%), PA-66 (15.54%), PVC
(9.69%), PE (1.07%) 118.66 ± 53.87 µg/g tissue

[72] Bodily fluids Raman Microspectroscopy

PP (13.04%), PS (43.48%), PTFE(4.35%),
PVB (8.70%), PA-6 (8.70%), LDPE

(8.70%), PEAA (4.35%), PSAN (4.35%),
PVA (4.35%)

-

[73] Endometrium Laser Direct Infrared
Spectroscopy

EAA (34.58%), FR (14.87%), CPE
(11.47%), PE (9.95%), ACR (7.76%), PET
(6.63%), PP (6.68%), PS (0.85%), PVC

(0.98%), EVA (0.41%), PU (2.09%),
BR (2.61%)

0 to 117 particles/100 mg

[74] Gallstones

Pyrolysis–Gas
Chromatography–Mass
Spectrometry and Laser

Direct Infrared
Spectroscopy

PS, PE, PP, PET, EVA -

[75] Placenta Laser Direct Infrared
Spectroscopy

PVC (43.27%), PP (14.55%),
PBS (10.90%), PET (7.27%), PC (6.91%),
PS (5.82%), PA (5.45%), polyester fibre

(2.91%), PE (1.45%), PAM (0.73%),
PSF (0.73%)

2.70 ± 2.65 particles/g

[78] Urine
Micro-Fourier Transform

Infrared
Spectroscopy

Healthy donors: PE (27%), PS (16%),
PP (12%), Endometriosis participants:

PTFE (59%), PE (16%)
-

[79] Lower limb joints
Micro-Fourier Transform

Infrared
Spectroscopy

PET (27.1%), PE (21.9%), RA (12.0%),
PES (11.1%), PP (9.3%), PA (8.5%), PVC

(4.7%), PS (4.4%), PC (2.0%)
5.24 ± 2.07 particles/g

[80] Vitreous humor

Pyrolysis–Gas
Chromatography–Mass
Spectrometry and Laser

Direct Infrared
Spectroscopy

PA (74.8%), PVC (7.3%) -

[81] Lung tissue
Micro-Fourier Transform

Infrared
Spectroscopy

PP (23%), PET (18%), RA (15%),
PE (10%), PTFE (10%), PS (8%), PAN

(2%), PES (2%), PMMA (3%), PUR (3%)
1.42 ± 1.50 MP/g of tissue

[82] Testes and semen
Pyrolysis–gas

Chromatography–Mass
Spectrometry

Semen: PVC (25%), PE (25%),
PA (17%), PS (13%), PP (13%), PET (7%)

Testis: PS (67.7%), PVC (12.9%),
PE (12.9%), PP (6.5%)

Semen:
0.23 ± 0.45 particles/mL,

Testis:
11.60 ± 15.52 particles/g

[84] Blood
Pyrolysis–gas

Chromatography–Mass
Spectrometry

PE, PS, PET, PMMA 1.6 µg/mL

[85] Stool
Fourier-Transform

Infrared
Microspectroscopy

PP (62.8%), PET (17.0%), PS (11.2%), PE
(4.8%), PVC (0.54%), PU (0.40%), PA

(0.54%), PC (0.67%)
-
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2. Conclusions and Future Outlook

Microplastic pollution in marine environments represents a significant and growing
environmental challenge with extensive implications for marine biodiversity, ecosystem
functionality, and human health. This review has underscored the ubiquity of microplastics
in marine ecosystems, tracing their origins to various sources such as synthetic textiles,
packaging, and personal care products. Once introduced into the environment, these
microplastics infiltrate marine food webs, impacting a wide array of marine organisms,
particularly fish.

The ingestion of microplastics by fish has been well documented, with particles being
found in their gastrointestinal tracts, gills, and other tissues. These ingested microplastics
can cause physical harm, such as blockages and injuries, as well as physiological stress,
including reduced feeding, impaired growth, and reproductive issues. Furthermore, mi-
croplastics can act as vectors for harmful chemicals and pathogens, exacerbating their
detrimental effects on marine life. Human exposure to microplastics primarily occurs
through the consumption of seafood. The detection of microplastics in human tissues and
their potential link to health issues such as inflammation, cellular damage, and endocrine
disruption raises significant concerns. Despite the advancements in detection techniques
and growing evidence of the adverse effects, the complete extent of microplastic pollution’s
impact on human health remains underexplored. Comprehensive and long-term studies
are essential to mitigate microplastic pollution’s impacts. Future research should focus on
the chronic effects of microplastic exposure on marine organisms and the subsequent impli-
cations for human health. Such studies should consider various species, developmental
stages, and environmental conditions to provide a holistic understanding.

Furthermore, identifying and quantifying the primary sources and pathways through
which microplastics enter marine environments is crucial for developing targeted mitigation
strategies. Enhanced detection methods and data collection and analysis standardisation
are necessary to accurately assess microplastic concentrations across different matrices
and studies. Innovation in material science to develop biodegradable alternatives to
conventional plastics can offer a sustainable solution to reducing plastic pollution. However,
understanding these alternatives’ degradation process and environmental impact is vital
for ensuring their effectiveness. The development of effective policies and regulations
is critical to addressing the issue of microplastic pollution. Interdisciplinary research
that integrates environmental science, public health, and policy studies can inform the
creation of regulations to reduce plastic production and improve waste management
practices. Evaluating the effectiveness of existing policies will also be beneficial in shaping
future interventions.

Public awareness and education play a pivotal role in combating microplastic pol-
lution. Educating communities about the sources, impacts, and mitigation strategies can
foster behavioural changes that reduce plastic waste. Innovative and effective educational
campaigns can engage the public in environmental stewardship. Therefore, addressing
the complex issue of microplastic pollution requires a multifaceted approach involving
comprehensive research, innovative solutions, effective policies, and public engagement.
By advancing our understanding and implementing targeted actions, we can protect marine
ecosystems and safeguard human health from the pervasive threat of microplastics.
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