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Abstract: Principal Component Analysis (PCA) serves as a valuable tool for analyzing membrane
processes, offering insights into complex datasets, identifying crucial factors influencing membrane
performance, aiding in design and optimization, and facilitating monitoring and fault diagnosis. In
this study, PCA is applied to understand operational features affecting pervaporation desalination
performance of PVA-based TFC membranes. PCA-biplot representation reveals that the first two
principal components (PCs) accounted for 62.34% of the total variance, with normalized permeation
with selective layer thickness (Pnorm), water permeation flux (P), and operational temperature (T)
contributing significantly to PC1, while salt rejection dominates PC2. Membrane clustering indicates
distinct influences, with membranes grouped based on correlation with operational factors. Excluding
outliers increases total variance to 74.15%, showing altered membrane arrangements. Interestingly,
the adopted strategy showed a high discrepancy between P and Pnorm, indicating the relevance of
comparing between PVA membranes with specific layers and those with none. PCA results showed
that Pnorm is more important than P in operational features, highlighting its significance in both
research and practical applications. Our findings show that even know P remains a key performance
property; Pnorm is critical for developing high-performance, efficient, and economically viable perva-
poration desalination membranes. Subsequent PCA for membranes without specific layers (M1 to
M6) and with specific layers (M7 to M11) highlights higher total variance and influence of variables,
aiding in understanding membranes’ behavior and suitability under different conditions. Overall,
PCA effectively delineates performance characteristics and potential applications of PVA-based TFC
membranes. This study would confirm the applicability of the PCA approach in monitoring the
operational efficiency of pervaporation desalination via these membranes.

Keywords: PVA-based TFC membrane; pervaporation desalination; principal component analysis;
operational features

1. Introduction

Pervaporation, a membrane-based separation technique, is extensively utilized for sep-
arating components from liquid feed solutions. The process involves selective components
dissolving into the membrane at the feeding side, diffusing through it, and evaporating at
the permeated side under reduced pressure [1,2]. It has found widespread application in
liquid–liquid separation of organic solvent mixtures and dehydration of aqueous solutions
of organic solvents. Key factors affecting pervaporation performance include permeation
flux and the separation factor. Recently, it has also been employed in desalination pro-
cesses, offering a solution for treating highly salty water from industrial processes and
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producing freshwater from seawater [3]. Although two-dimensional nanomaterial-based
membranes have shown high water fluxes in pervaporation desalination, polymeric mem-
branes, particularly polyvinyl alcohol (PVA)-based membranes, remain of interest due
to their cost-effectiveness, well-established fabrication techniques, and operational con-
venience [4,5]. PVA membranes exhibit high salt rejection and notable water permeation
fluxes. Strategies to enhance water permeation fluxes include increasing membrane surface
area through hierarchically nanostructured surfaces and utilizing mixed matrix mem-
branes (MMM) containing inorganic additives like silica nanoparticles, carbon nanotubes
(CNTs), graphene oxides (GOs), and laponite [5–7]. These additives alter PVA’s chain
entanglements and crystalline structures, promoting water diffusion through membranes.
Crosslinking agents containing sulfonic acid groups maintain membrane hydrophilicity
while providing channels for water molecule movement, enhancing water permeation [8].
Surface-functionalized CNTs are also effective in constructing water-transportation path-
ways within PVA membranes, resulting in significant increases in water permeation fluxes.
These strategies highlight the ongoing efforts to optimize PVA-based membranes for perva-
poration applications, aiming for improved efficiency and performance [4,5].

Principal Component Analysis (PCA) is a powerful statistical technique widely em-
ployed in various fields, including membrane processes, to extract meaningful information
from complex datasets. In membrane processes, PCA finds extensive application in under-
standing and optimizing membrane performance, designing membranes, and analyzing
experimental data [9,10]. One of the primary applications of PCA in membrane processes
is in understanding the relationships between multiple variables involved in membrane
performance [9]. Membrane processes typically involve numerous parameters, such as
feed composition, operating conditions, membrane properties, and performance indicators
like flux and selectivity [9–11]. By applying PCA to experimental data, researchers can
identify underlying patterns and correlations among these variables. PCA can reveal which
variables are most influential in determining membrane performance and how they interact
with each other. This understanding is invaluable for optimizing process parameters and
designing membranes tailored to specific applications [9,11]. Moreover, PCA facilitates the
identification of key factors or principal components (PCs) driving variability in membrane
performance. These principal components represent linear combinations of the original
variables and capture the most significant sources of variation in the dataset [12,13]. By
focusing on these PCs, researchers can simplify the analysis and interpretation of complex
datasets. For example, in membrane-fouling studies, PCA can identify dominant foulants
or fouling mechanisms based on variations in key performance indicators [14,15].

In membrane design and optimization, PCA aids in reducing the dimensionality
of the design space and identifying critical parameters for membrane performance. By
identifying the PCs contributing most to the desired outcomes, researchers can prioritize
these factors in membrane design and optimization efforts. This targeted approach saves
time and resources by focusing experimental efforts on the most influential parameters.
Additionally, PCA can help in identifying trade-offs between conflicting objectives, such
as flux and selectivity, in membrane design [9,11]. Furthermore, PCA plays a crucial
role in process monitoring and fault diagnosis in membrane systems. By analyzing real-
time or historical data using PCA, deviations from normal operating conditions can be
detected early, allowing for timely intervention to prevent system failures or performance
degradation. PCA-based monitoring systems can flag abnormal patterns in variables
such as pressure, temperature, and permeate quality, indicating potential issues such as
fouling, scaling, or membrane degradation. This proactive approach to process monitoring
improves the reliability and efficiency of membrane processes [9,14,15].

The aim of this study is to explore the potential of applying PCA for estimating the
performance of the pervaporation desalination process using PVA-based TFC membranes.
Our intention is to provide experimentalists with a better understanding of how this
statistical tool can be utilized to optimize the operational features of these membranes’
pervaporation process.
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It is important to demonstrate the relevance of PCA by showing that the tendencies and
patterns identified through this analysis align with established knowledge and expectations
in the field. This alignment indicates that PCA is capturing meaningful and significant
relationships within the data. If the tendencies observed were entirely unexpected, it would
suggest that PCA might not be effective for optimization purposes in this context.

Several studies have demonstrated the efficacy of PCA in various fields of chemical
engineering [16,17]. PCA has been effectively used to optimize processes by identifying
critical variables and reducing experimental efforts [16,17]. By applying PCA to the per-
vaporation desalination process using PVA-based TFC membranes, we aim to contribute
to this body of knowledge, offering a methodological approach that experimentalists can
adopt to enhance the efficiency and effectiveness of their operations.

2. PVA-Based TFC Membranes: With and without Selective Layers

Table 1 offers a comparison of several PVA-based TFC membranes, particularly em-
phasizing the impact of selective layer thickness. The data reveal significant insights into
how the thickness of the separative layers influences water permeation flux and salt rejec-
tion [5]. The SPTA-crosslinked PVA/Ws-OL-50 membrane, with a thickness of 0.53 µm,
achieves a high water permeation flux of 78.6 kg m2 h−1 at 65 ◦C and a salt rejection of
99.91%. This indicates that a well-optimized selective layer thickness can significantly
enhance water flux while maintaining high salt rejection [5]. In contrast, membranes with
thicker selective layers generally exhibit lower water permeation fluxes. For example,
the PVA/Sulfo-succinic acid PAN ultrafiltration membrane, with a 4.9 µm selective layer,
shows a flux of 27.9 kg m2 h−1 at 70 ◦C, which is lower compared to thinner layers [5]
(Table 1).

The inclusion of hydrophilic additives like Ws-OL and the use of sulfonic acid-
containing crosslinking agents are critical in enhancing membrane performance. The
SPTA-crosslinked PVA/Ws-OL-50 membrane demonstrates superior performance com-
pared to other configurations, highlighting the synergistic effect of optimized selective layer
thickness and the incorporation of effective additives. The study by Liang et al. [8] supports
this finding, showing that sulfonic acid groups facilitate water transportation through the
membrane, thereby increasing the permeation flux. Similarly, Xue et al. [18] demonstrated
that tailoring the molecular structure of crosslinked polymers can significantly improve
pervaporation desalination performance.

When compared with other PVA-based TFC membranes reported in the literature,
such as those utilizing glutaraldehyde as a crosslinking agent on electrospun PAN nanofiber
mats, the SPTA-crosslinked PVA/Ws-OL membrane exhibits superior water permeation
flux [5]. For instance, a membrane reported by Liang et al. [8] with a selective layer
thickness of 0.62 µm and a water permeation flux of 7.36 kg m2 h−1 at 25 ◦C falls short in
comparison. Additionally, the performance of the SPTA-crosslinked membrane surpasses
that of membranes modified with other agents like pyromellitic dianhydride or polyacrylic
acid, which, despite achieving high salt-rejection rates, do not match the water permeation
flux achieved by the PVA/Ws-OL membrane (Table 1) [5].

The operational temperature significantly impacts membrane performance. Higher
temperatures typically enhance water permeation flux due to increased molecular move-
ment and reduced viscosity of water [5,19]. For example, the water permeation flux of
the SPTA-crosslinked PVA/Ws-OL membrane increases from 14,540 g m2 h−1 at 25 ◦C to
56,420 g m2 h−1 at 65 ◦C [5]. This temperature dependence is quantified by the activation
energy (Ea) of water permeation. The lower Ea of 27 kJ mol−1 for the PVA/Ws-OL-50
membrane compared to the neat PVA membrane (47 kJ mol−1) indicates enhanced water
transport facilitated by the Ws-OL additive and SPTA crosslinking [5].
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Table 1. Pervaporation desalination performance of PVA-based TFC membranes.

Separative Layer Crosslinking Agent Porous Substrate
Thickness

of Separative
Layer (δ; µm)

NaCl Concentrations
of the Feeding

Solution (NaCl; wt%)

Operation
Temperature

(T; ◦C)

Water Permeation
Flux (P; kg m−2 h−1)

Normalized P
with Selective Layer

Thickness
(Pnorm; kg µm m−2 h−1)

Salt Rejection
(%) Reference

PVA Glutaraldehyde

Electrospun PAN
nanofiber mat on

polyester
nonwoven

0.62 3.5 25 7.36 4.56 99.5 [20]

PVA Maleic acid Polysulfone
hollow fiber 0.1 3.0 70 7.4 0.74 99.9 [21]

PVA Sulfo-succinic acid
PAN

ultrafiltration
membrane

4.9 3.5 70 27.9 136.7 99.8 [22]

PVA SPTA
PAN

ultrafiltration
membrane

0.8 3.5 70 46.3 37.0 99.5 [8]

PVA Pyromellitic
dianhydride

PAN
ultrafiltration

membrane
2 3.5 70 32.3 64.6 99.98 [23]

PVA

Poly acrylic acid
co-2-acrylamido-2-

methyl propane
sulfonic acid

Electrospun PAN
nanofiber mat 0.73 3.5 75 234.9 171.5 99.7 [18]

PVA/GO Glutaraldehyde Electrospun PAN
nanofiber mat 0.12 3.5 70 69.1 8.3 99.9 [24]

PVA/CNT Maleic anhydride
PAN

ultrafiltration
membrane

1.0 3.5 45 14.5 14.5 99.96 [25]

PVA/UIO 66 MOF a P (AA-AMPS) b
Porous

polysulfone
membrane

0.95 3.5 70 120 114 99.9 [26]

PVA/Ws-OL Maleic anhydride
PAN

ultrafiltration
membrane

0.53 3.5 65 56.4 29.9 99.97 [5]

PVA/Ws-OL SPTA
PAN

ultrafiltration
membrane

0.53 3.5 65 78.6 41.6 99.91 [5]

a MOF: metal organic framework. b Data with 3.5 wt% NaCl(aq) not available.
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Some ambiguous findings could be entailed from Table 1, as maleic acid-crosslinked
PVA membrane with a thickness of 0.1 µm has a flux of 7.4 kg m2 h−1, whereas sulfo-succinic-
crosslinked PVA membrane exhibits a layer approximately 50 times thicker (4.9 µm) and has
a flux of 27.9 kg m2 h−1. Similarly, polyacrylic acid co2-acrylamido-2-methylpropane sulfonic
acid-crosslinked PVA membrane with a thickness of 0.73 µm has a flux of 234.9 kg m2 h−1.
These disparities and contradictory findings, with respect to the thickness, would indi-
cate a higher relation of intrinsic properties of these membranes over the operational
features [27–29].

The findings from Table 1 and supporting literature underline the critical importance
of selective layer in the performance of PVA-based TFC membranes for pervaporation
desalination. Membranes with optimized selective layers, particularly those incorporating
hydrophilic additives and effective crosslinking agents, achieve superior water permeation
flux and high salt rejection [5]. This optimization is crucial for the economic viability and
operational efficiency of pervaporation desalination technologies.

Future research should continue to explore the interplay between membrane compo-
sition, selective layer, and operational conditions to further enhance desalination perfor-
mance. By applying PCA to the pervaporation desalination process using PVA-based TFC
membranes, we aim to offer a methodological approach that experimentalists can adopt to
enhance the efficiency and effectiveness of their optimization operations.

3. Materials and Methods
3.1. Data Normalization

Data normalization holds paramount relevance before analysis due to its pivotal role
in ensuring the comparability and accuracy of results. By standardizing the scale of vari-
ables, normalization eliminates the influence of differing magnitudes, thereby preventing
biases in analytical outcomes. This preprocessing step enhances the effectiveness of various
analytical techniques, such as machine learning algorithms and statistical analyses, by facil-
itating fair comparisons and improving the stability of models. Moreover, normalization
aids in improving the convergence speed of optimization algorithms and mitigating issues
related to multicollinearity [12]. Overall, the practice of data normalization serves as a
crucial prerequisite for generating reliable insights and making informed decisions based
on data-driven analyses. The variance in individuals’ weights has been rectified through
a normalization method similar to that employed by Mouhtady et al. [30]. The objective
is to mitigate bias stemming from variations in magnitude, and the procedure is outlined
as follows:

Xst =
(Value − Mean)

Standard Deviation
(1)

where “Xst” presents the standardized dataset values.

3.2. PCA

PCA findings were yielded by using XLSTAT 2014 software, following the similar
approach adopted by Mouhtady et al. [30]. Hence, PCA has been applied for pervapora-
tion desalination performance of PVA-based TFC membranes, influenced by six different
operational features (Lai et al. [5]). PCA is a data-driven unsupervised machine learning
technique that works on the reduction of a certain dataset. The outcome of such reduction
has been applied for a better visualization of certain phenomena, seeking hidden knowl-
edge by the given correlations (negative or positive), and the representativity of the PCs.
The jth PC matrix (Fi) is expressed using a unit-weighting vector (Uj), and the original
data matrix M with m × n dimensions (m: number variables; n: number of datasets) as
follows [11,13,31]:

Fi = UT
j M = ∑i=0 Uji Mi (2)

where u is the loading coefficient and M is the data vector of size n. The variance matrix
M(Var(M)) is obtained by projecting M to U and should be maximized as follows:
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Var(M) =
1
n
(UM)(UM)T =

1
n

UMMTU (3)

MaxVar(M) = Max
((

1
n

)
UMMTU

)
(4)

Since 1
n MMT is the same as the covariance matrix of M(cov(M)), Var(M) can be ex-

pressed as follows:
Var (M) = UTcov (M) U (5)

The Lagrangian function can be defined by performing the Lagrange multiplier
method as follows:

L = UT (6)

L = UTcov(M)U − δ
(

UTU − 1
)

(7)

For (7), “UTU − 1” is considered to be equal to zero, since the weighting vector is
a unit vector. Hence, the maximum value of var(M) can be calculated by equating the
derivative of the Lagrangian function (L), with respect to U, as follows:

dL
dU

= 0 (8)

cov(M)U − δU = (cov(M)− δI)U = 0 (9)

where
δ: eigenvalue of cov(M);
U: eigenvector of cov(M).

4. Results and Discussion
4.1. PCA All-in-One Dataset

Figure 1 shows the PCA-biplot representation for all datasets for pervaporation de-
salination performance of the investigated PVA-based TFC membranes, obtained from
the study of Lai et al. [5]. The first two PCs exhibited 62.34% of the total variance (PC1
and PC2 scoring 38.28% and 24.08%, respectively; Figure 1a). This variance is considered
as moderate, yet acceptable for the sake of seeking patterns between the investigated
TFC membranes. For the variables, normalized permeation with selective layer thickness
(Pnorm) yielded the highest contribution towards PC1, scoring nearly 40% (Figure 1b). In
fact, layer thickness significantly affects the performance of PVA-based TFC membranes
in pervaporation desalination. Thinner selective layers generally lead to higher water
flux due to reduced resistance to mass transfer. For example, water flux increased as the
thickness of the PVA selective layer decreased from 1.35 µm to 0.35 µm [32]. However,
excessively thin layers can compromise mechanical stability and selectivity, resulting in
lower salt-rejection rates. Moderate contributions can be noticed for the water permeation
flux (P) and temperature (T) (around 27% and 18%; Figure 1b). Regarding water perme-
ation flux (P), studies have shown that this parameter significantly influences desalination
performance [6,33,34]. A higher water flux enables faster water vapor transport through
the membrane, resulting in efficient desalination. In the study by Selim et al. [33], Laponite
nanodisc/PVA membranes exhibited excellent desalination performance, achieving a water
flux of 49.25 kg/m2 h with a rejection of 99.94% when desalinating a 5 wt.% NaCl solution
at 70 ◦C. For the rest of the variables, minor to negligible contributions were obtained.
For PC2, the highest contribution has been scored by salt rejection, scoring 35% of the
axis’s contribution (Figure 1b). NaCl and T exhibited moderate contributions (around 30%),
and the rest of the variables scored minor to negligible contributions. It should be noted
that increasing the temperature leads to higher salt-rejection rates [35]. Interestingly, high
separation of variables was scored between the two PCs (except for T), indicating a relative
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independence (or lack of correlation) between the variables of PC1 and PC2, from one hand
and another.
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Figure 1. (a) PCA biplot representation of all datasets for pervaporation desalination performance of
PVA-based TFC membranes (data were obtained from the previous findings of Lai et al. [5]). Grey
bullets indicate the different PVA-based TFC membranes. Red bullets indicate operational features.
(b) The % contribution of the different variables in-hand, relative to PC1 (black) and PC2 (white).

For TFC membranes (here the individuals), two clusters were distinguished (Figure 1a).
The green cluster contains M3, M6, and M9, and showed high positive correlation along
PC1, with a minor positive/contribution along PC2. This would indicate that membranes
of the following clusters are more likely influenced by the variables that exhibited exclusive
contribution along PC1. These variables are more likely permeation features (P and Pnorm;
Figure 1). The blue cluster, including M4, M5, M7, M8, M10, and M11, showed a high
distance from the variables, and exhibited a central position on the node. This would
indicate that they are less influenced by the investigated variables than membranes of
the green cluster. Only M1 and M2 were skewed away from the rest of the membranes,
yielding a high negative input along PC1, with a respective negative and positive input,
along PC2 (Figure 1). Even knowing that the “all dataset” approach allowed discerning
between different sets of membranes, and highlighted the high influence of permeation
on M3, M6, and M9 (blue cluster), the moderate contribution of the total variance would
make findings less reliable. It is noteworthy that the separation between different per-
formance features along both PCs is peculiar, and would indicate the independence of
these variables from each other. This assumption is far away from the truth, so the high
discrepancy between performance features would indicate the relevance on relying on
other operational/performance features in order to discern a better decision.

Figure 2 shows the PCA-biplot representation for all datasets for pervaporation desali-
nation performance, with the exception of the outliers in the first PCA approach: M1 and
M2. Excluding these two samples allowed an increase in the total variance to 74.15% (PC1
and PC2 scoring 47.95% and 26.20%, respectively; Figure 2a). The higher variance would
confirm the efficiency of excluding outliers from a dataset, for the sake of seeking more
accurate trends. For the variables, and similarly to the all datasets case, high separation
between variables can be noticed. For PC1, temperature (T) and both permeation fluxes
(P and Pnorm) exhibited moderate contributions towards PC1 (26–32%; Figure 2b). For salt
rejection, a minor contribution was expressed (14%; Figure 2b), along with a negligible one
for the thickness of the separative layer (δ). For PC2, the dominant contribution was yielded
for the thickness of separative layers “δ”, scoring for more than 70% of the contribution,
along this axis (Figure 2b). These findings are intriguing, since minor contributions of δ
were yielded in the first approach (Figure 1). This difference would confirm the influence
of removing outliers from the dataset, as totally different trends were yielded in our case.
For TFC membranes, and similarly to the first case (Figure 1), two clusters were obtained,
yet with totally different arrangements. The green cluster encompassed M4 and M9, and
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showed a moderate positive correlation along PC1. The blue cluster encompassed M5, M7,
M10, and M11 and showed a moderate negative influence, along PC1. The high proximity
between the two clusters and the plotting around the node of the first two PCs would
indicate some high similarities between the investigated membranes. M3, M6, and M8 can
be excluded from this similarity, as they were plotted away from these two clusters. On
the other hand, δ have interestingly shown a high influence for M3; this matter is peculiar
since this variable exhibits dominance of influence in this approach. Interestingly, both
permeation features showed a high dispatchment along PC1, as P and Pnorm showed a high
positive and negative influence, respectively (Figure 1). Water permeation flux refers to the
rate at which water molecules pass through a given material or membrane per unit area per
unit time. This flux can be influenced by factors such as the properties of the material or
membrane (such as pore size, porosity, thickness), the pressure gradient across the material,
and the concentration gradient of water [5,9,36]. Higher water permeation flux indicates
faster water transport through the material or membrane [36]. Normalized permeation
with a selective thickness layer (Pnorm) refers to a measure of permeation that considers the
presence of a specific layer of material with a known thickness and permeability [5,8,37].
This concept is often used in the context of composite materials or membranes, where
different layers have different properties. By normalizing the permeation with respect to
the thickness and permeability of the selective layer, researchers can better understand the
contribution of each layer to the overall permeation process. This allows for comparisons
between different materials or membranes by accounting for the presence of the selective
layer. Having this discrepancy between these two features would indicate the relevance
of having a selective layer in separation [5,8,37]. These trends were obtained when M1
and M2 (PVA only as separative layer; Table 1) were excluded from the statistical study
(Figure 2). For the sake of deciphering the sensitive layer effect, PCA can be single-handedly
attempted for pervaporation desalination performance on PVA-based TFC membranes
with and without added specific layers (Figures 3 and 4, respectively).
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Figure 2. (a) PCA biplot representation of datasets, excluding M1 and M2, for pervaporation desalina-
tion performance of PVA-based TFC membranes (data were obtained from the previous findings of
Lai et al. [5]). Grey bullets indicate the different PVA-based TFC membranes. Red bullets indicate op-
erational features (NaCl was removed due to the high proximity between the investigated materials).
(b) The % contribution of the different variables in-hand, relative to PC1 (black) and PC2 (white).
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Figure 3. (a) PCA biplot representation of datasets for pervaporation desalination performance of
PVA-based TFC membranes without any specific layers (M1 to M6; data were obtained from the
previous findings of Lai et al. [5]). Grey bullets indicate the different PVA-based TFC membranes.
Red bullets indicate operational features. (b) The % contribution of the different variables in-hand,
relative to PC1 (black) and PC2 (white).
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Figure 4. (a) PCA biplot representation of datasets for pervaporation desalination performance of
PVA-based TFC membranes with specific layers (M7 to M11; data were obtained from the previous
findings of Lai et al. [5]). Grey bullets indicate the different PVA-based TFC membranes. Red bullets
indicate operational features (NaCl was removed due to its proximity between the investigated
materials). (b) The % contribution of the different variables in-hand, relative to PC1 (black) and
PC2 (white).

4.2. PCA of PVA-Based TFC with and without Specific Layers

Figure 3 shows the PCA-biplot representation for the dataset for pervaporation de-
salination performance on PVA-based TFC membranes without any added specific layers
(M1 to M6; Table 1). The first two PCs accounted for 69.98% of the total variance (PC1 and
PC2 scoring 40.82% and 29.15%, respectively; Figure 3a). The higher variance in this case
(compared with the all datasets approach; Figure 1) can indicate the higher reliability of
the analysis, when PCA is performed on a definite type of membranes. For variables, the
highest contribution along PC1 was obtained for Pnorm (around 40%; Figure 3b). In fact, de-
salination was found to be impacted by the temperature and the thickness. However, water
permeation flux was found to be the main indicative parameter on desalination efficiency
according to the literature [38]. For T, P, and δ, a moderate contribution was obtained,
scoring between 10% and 20% (Figure 3b), and the rest of the variables scored minor to neg-
ligible contributions towards PC1. According to Qian et al. [39], increasing the temperature
causes a narrowing in the layer pores due to thermal expansion which results in the spill out
of PVA, thus creating a rough surface. The roughness leads to a greater filtration area and
therefore a higher permeation flux [6]. For PC2, the highest contributions were scored for
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NaCl and salt rejection (scoring around 34% and 42%, respectively, Figure 3b). A moderate
contribution was yielded for temperature (T) (around 20%, Figure 3b), along with minor to
negligible contribution for the rest of the variables. It should be mentioned that increasing
the temperature leads to an increase in salt-rejection rates [38], which is consistent with
the latter findings, indicating a positive correlation between salt rejection and temperature
(both on the positive side of PC2). Furthermore, an increase in operational temperatures,
for extended periods of usage, can cause an increase in the thickness and pore sizes of
PVA membranes, due to the rise in crosslinking degree. This in turn, leads to a decrease in
the surface charge and a growth in salt rejection as well as water permeation flux [40,41].
Interestingly, when PVA membranes without special layers (M1 to M5) were exclusively
taken into consideration, it scored similar trends of variables in comparison with the all
datasets approach (Figure 1). Hence, a good separation between variables was obtained
between PC1 and PC2 with the exception of temperature (T) that mutually contributed on
both PCs, as was evidenced in the above analysis: temperature increase affects both the
permeation flux and the salt-rejection rate. On the other hand, PC2 was the axis dedicated
to estimating salt-removal efficiency. For individuals, no clustering was obtained; this
would somehow indicate the efficiency of PCA in distinguishing between PVA-based TFC
membranes without any added specific layers. Nonetheless, individuals can be subdivided
into two different groups: one presenting a positive correlation with all of the investigated
factors; this is plotted on the positive side of PC1 (M3, M5, and M6; Figure 3a); and another
group presenting a negative correlation with all of the variables, and therefore it is plotted
on the negative side of PC1 (M1, M2, and M4; Figure 3a). This dissociation into two major
clusters would indicate the capacity of positively plotted membranes to work better under
higher performance conditions, and the opposite is true for the negatively plotted ones.

Figure 4 shows the PCA-biplot representation for datasets for pervaporation desalina-
tion performance on PVA-based TFC membranes with added specific layers (M7 to M11;
Table 1). The first two PCs accounted for 92.22% of the total variance (PC1 and PC2 scoring
60.11% and 32.11%, respectively; Figure 4a). A high variance would indicate an increase in
similarities between the investigated materials, and shows the high applicability of PCA
for PVA-based TFC membranes with added specific layers. For variables and along PC1,
moderate contributions were yielded for salt rejection, P, and T (accounting for between 20%
and 30%, Figure 4a). Concerning T and salt rejection, the reader can refer to the discussion
highlighted in Figure 3, applicable for the current findings, relating the temperature to
the pore sizes. On the other hand, increasing temperature has a role in the growth of
salt-rejection rates. However, the permeation P depends on the membrane type and on
possible added layers. As a matter of fact, it was highlighted that adding Ws-OL to the PVA
membrane resulted in an increase in the water permeation flux by a factor of 2.1 compared
to the pure PVA membrane [42]. The main interpretation of this enhancement is due to the
fact that crystalline regions of PVA membranes act as obstacles for water diffusion. Thus,
adding Ws-OL to the PVA membrane reduced the crystallite sizes, making it more adequate
for permeation [4]. The rest of the investigated variables scored low to negligible tendencies
around PC1. For PC2, the highest contribution was dominated by average thickness of
separative layers “δ”, scoring nearly 60% (Figure 4b). In concordance with this finding, it
is evidenced that in the prevaporation technique, adding specific layers strongly attracts
water, and allows water to pass through during pervaporation. In particular, Lai et al.
2023 [5] concluded that the addition of Ws-OL makes the membrane highly hydrophilic;
thus, it is considered as an enhancing component for the production of such membranes.
A similar conclusion was reported when electrospun PAN nanofibers were added to the
PVA membrane [18]. A moderate contribution was scored for Pnorm (Figure 4b), along with
low to negligible contribution for the rest of the variables. Comparatively to the case of
no specific layers, high separation between the variables was obtained as variables that
exhibited contributions on one of the axes did not show contributions on the other. The
only exception is Pnorm, where a contribution towards both PCs was obtained, yet to a
lower extent for PC1.
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For individuals, and similarly to the PVA-based TFC membranes with added specific
layers (Figure 4), no clustering was obtained, indicating the efficiency of PCA in distin-
guishing between these membranes. The difference resides in a higher distribution of
variables for this case, unlike the exclusively positive trends of PC1 (Figure 3). Individuals
can be subdivided into two different groups: one presenting a positive correlation with the
investigated factors on the positive side of PC1 (Pnorm, P, and T; Figure 4a); and another
group presenting a positive correlation with the investigated factors on the negative side of
PC1 (δ and salt rejection; Figure 4a). This dissociation would indicate that M7, M9, and M11
are more likely suited in situations where high permeation and temperatures are present,
from one side. From another side, it showed the higher reliance of M8 and M10 on salt
rejection and thickness of separative layers “δ”.

4.3. Permeation: Between Intrinsic Properties and Operational Features

In evaluating the performance of PVA-based TFC membranes, two critical parameters
often come into focus: normalized permeation with selective layer thickness (Pnorm) and
water permeation flux (P). Understanding the relevance of these factors is crucial for
optimizing membrane design and enhancing desalination efficiency. Pnorm is a parameter
that accounts for the permeation rate of water through the membrane normalized by the
thickness of the selective layer. This parameter is essential for comparing the performance
of membranes with varying selective layer thicknesses. By normalizing the permeation
rate, Pnorm provides a more accurate representation of the intrinsic permeability of the
membrane material, independent of the membrane’s thickness [43]. Pnorm offers insight
into the inherent water permeability of the membrane material, which is critical for material
selection and development, and helps eliminate the influence of thickness variations,
providing a consistent basis for comparison among different membranes. This aspect is
particularly important, where membranes with varying thicknesses are tested [27]. On
the other hand, water permeation flux (P) is a measure of the amount of water that passes
through a unit area of the membrane per unit time, directly indicating the membrane’s
desalination performance in practical applications [28]. High P is desirable for efficient
desalination as it indicates a higher throughput of desalinated water. P is a primary
performance metric in pervaporation desalination, correlating directly with the productivity
of the desalination process and translating to higher operational efficiency and lower energy
consumption per unit of desalinated water, which is crucial for the economic viability of
pervaporation desalination technologies [29]. Moreover, understanding the influences
on water permeation flux, such as membrane material, structure, operating conditions,
and feed composition, helps in designing membranes with optimized performance for
specific desalination applications [27–29]. However, our results have shown opposite
trends, indicating that Pnorm is actually more important than P in operational features.
Pnorm mostly showed a higher contribution in PCAs where operational variables mostly
dominate (Figures 1–3). While Pnorm was found to be crucial in research and development
phases for optimizing the intrinsic properties of membrane materials [27], our findings
suggest that it also plays a more significant role in practical applications. In brief, both
normalized permeation with selective layer thickness (Pnorm) and water permeation flux (P)
are crucial for assessing the performance of PVA-based TFC membranes in pervaporation
desalination. While P remains a key indicator of practical desalination performance [28],
our findings indicate that Pnorm is more relevant for operational features, making it a critical
parameter to ensure the development of high-performance, efficient, and economically
viable pervaporation desalination membranes.

4.4. Layer Thickness: Influence of Selective Layer

The thickness of the selective layers in PVA-based TFC membranes plays a crucial role
in determining their performance in pervaporation desalination. Membranes with specific,
well-defined selective layers often exhibit more controlled and predictable permeation
characteristics compared to those without a distinct selective layer [44]. In membranes with
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specific selective layers, the thickness directly influences the permeation flux and selectivity;
a thinner selective layer generally results in higher water permeation flux due to reduced
resistance to water molecules [45], but it may also lead to decreased salt rejection if the layer
is too thin to maintain selectivity [46]. Conversely, a thicker selective layer tends to enhance
salt rejection due to a longer diffusion path for salt ions, though it may reduce the overall
water flux [47]. These findings go along the orthogonal positioning of δ along with P and
salt rejection for the membrane samples with selective layers (Figure 4). For PVA-based TFC
membranes without a specific selective layer, the performance tends to be less optimized
as the membrane’s thickness can vary inconsistently, leading to unpredictable permeation
rates and selectivity [48]. These membranes may not achieve the same level of efficiency
and reliability in desalination applications as those with carefully controlled selective
layers [48]. This would explain the moderate to low contribution of δ, when membrane
samples without selective layers were investigated (Figure 3) The relevance of controlling
the thickness of selective layers lies in achieving a balance between high water flux and
effective salt rejection, which is essential for the economic and operational efficiency of
pervaporation desalination processes [49]. Membranes with well-defined selective layers
that are optimized for thickness can offer superior performance, making them preferable
for high-demand desalination applications [49].

5. Conclusions

This study aims to apply the Principal Component Analysis (PCA) technique to
better understand operational features for pervaporation desalination performance of
PVA-based TFC membranes. When the entire dataset of PVA-based TFC membranes
(with and without specific layers) was taken into consideration, it was shown that layer
thickness significantly affect membrane performance. Thinner selective layers generally
lead to higher water flux due to reduced resistance to mass transfer. On the other hand, the
correlation between temperature and salt rejection confirms the influence of temperature
on membrane efficiency. To increase the variance, PCA was applied with the exclusion of
outliers (M1 and M2). Excluding these two samples raised the total variance to 74.15%. The
higher variance confirms the efficiency of excluding outliers from a dataset to seek more
accurate trends. This PCA approach allowed for the examination of permeation fluxes (P
and Pnorm), along with the thickness of separative layers (δ), and temperature.

To decipher the effect of the sensitive layer, PCA was separately applied to membranes
with and without added specific layers. It was revealed that Pnorm is the most influential
variable for PVA-based TFC membranes without specific layers. PCA results showed that
Pnorm is more important than P in operational features, highlighting its significance in
both research and practical applications. Our findings suggest that while P remains a key
performance property, Pnorm is critical for developing high-performance, efficient, and eco-
nomically viable pervaporation desalination membranes. Conversely, a high contribution
was noted for NaCl and salt rejection.

For membranes with specific layers, PCA showed the highest total variance of 92.22%.
This approach highlighted the role of increasing temperature in the growth of salt-rejection
rates. Additionally, the dominance of the contribution of δ showcased that adding specific
layers strongly attracts water and allows it to pass through during pervaporation. Mem-
branes with well-defined selective layers exhibit more controlled permeation characteristics,
where thinner layers increase water flux but may reduce salt rejection, and thicker layers
enhance salt rejection but lower water flux. These findings align with the orthogonal
positioning of δ, P, and salt rejection, yielded by PCA and indicating the importance of
optimizing selective layer thickness for superior performance. Membranes without specific
selective layers show less predictable performance, emphasizing the need for controlled
layer thickness to balance high water flux and effective salt rejection for economic and
efficient desalination applications.
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