Developing Lead Compounds of eEF2K Inhibitors Using Ligand–Receptor Complex Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Data Collection and Preparation
2.1.1. Construction and Data Analysis of the Known eEF2K Inhibitor Database (eEF2K-bio)
2.1.2. Gathering and Analysis of eEF2K Protein Structure
2.2. Generation of eEF2K Inhibitor Lead Compounds
2.2.1. Lead Compound Generation Strategy
2.2.2. Generation and Analysis of the eEF2K Inhibitor Candidate Compound Database (eEF2K-Gen)
2.3. Comparative Analysis of eEF2K-Gen and eEF2K-Bio
2.4. Selection of Lead Compounds from eEF2K-Gen
Screening Strategy and Results
3. Conclusions
4. Methods
4.1. Dataset
4.1.1. eEF2K-Bio
4.1.2. The Crystal Structure of eEF2K
4.1.3. PyMOL
4.2. Molecular Docking
4.2.1. DiffDock
4.2.2. AutoDock
4.3. Deep Generative Model
4.4. Metrics
4.4.1. Drug-Likeness
4.4.2. Tanimoto Similarity
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef]
- Bilbrough, T.; Piemontese, E.; Seitz, O. Dissecting the Role of Protein Phosphorylation: A Chemical Biology Toolbox. Chem. Soc. Rev. 2022, 51, 5691–5730. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.; Alexander, L.T.; Knapp, S.; Bayley, H. Single-Molecule Protein Phosphorylation and Dephosphorylation by Nanopore Enzymology. ACS Nano 2019, 13, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Gelens, L.; Saurin, A.T. Exploring the Function of Dynamic Phosphorylation-Dephosphorylation Cycles. Dev. Cell 2018, 44, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Casertano, M.; Genovese, M.; Piazza, L.; Balestri, F.; Del Corso, A.; Vito, A.; Paoli, P.; Santi, A.; Imperatore, C.; Menna, M. Identifying Human PTP1B Enzyme Inhibitors from Marine Natural Products: Perspectives for Developing of Novel Insulin-Mimetic Drugs. Pharmaceuticals 2022, 15, 325. [Google Scholar] [CrossRef] [PubMed]
- Casertano, M.; Genovese, M.; Santi, A.; Pranzini, E.; Balestri, F.; Piazza, L.; Del Corso, A.; Avunduk, S.; Imperatore, C.; Menna, M.; et al. Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea Avara. Pharmaceutics 2023, 15, 528. [Google Scholar] [CrossRef] [PubMed]
- Latham, B.D.; Geffert, R.M.; Jackson, K.D. Kinase Inhibitors FDA-Approved 2018-2023: Drug Targets, Metabolic Pathways, and Drug-Induced Toxicities. Drug Metab. Dispos. 2024, 52, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Middelbeek, J.; Clark, K.; Venselaar, H.; Huynen, M.A.; van Leeuwen, F.N. The Alpha-Kinase Family: An Exceptional Branch on the Protein Kinase Tree. Cell. Mol. Life Sci. 2010, 67, 875–890. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P. The Role of Protein Phosphorylation in Human Health and Disease. Eur. J. Biochem. 2001, 268, 5001–5010. [Google Scholar] [CrossRef] [PubMed]
- Blume-Jensen, P.; Hunter, T. Oncogenic Kinase Signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Drennan, D.; Ryazanov, A.G. Alpha-Kinases: Analysis of the Family and Comparison with Conventional Protein Kinases. Prog. Biophys. Mol. Biol. 2004, 85, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Crawley, S.W.; Yang, Y.; Côté, G.P.; Jia, Z. Crystal Structure of the α-Kinase Domain of Dictyostelium Myosin Heavy Chain Kinase A. Sci. Signal. 2010, 3, ra17. [Google Scholar] [CrossRef]
- Piserchio, A.; Isiorho, E.A.; Long, K.; Bohanon, A.L.; Kumar, E.A.; Will, N.; Jeruzalmi, D.; Dalby, K.N.; Ghose, R. Structural Basis for the Calmodulin-Mediated Activation of Eukaryotic Elongation Factor 2 Kinase. Sci. Adv. 2022, 8, eabo2039. [Google Scholar] [CrossRef] [PubMed]
- Gschwendt, M.; Kittstein, W.; Marks, F. Elongation Factor-2 Kinase: Effective Inhibition by the Novel Protein Kinase Inhibitor Rottlerin and Relative Insensitivity towards Staurosporine. FEBS Lett. 1994, 338, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, J.; Proud, C.G. Eukaryotic Elongation Factor 2 Kinase (eEF2K) in Cancer. Cancers 2017, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Leprivier, G.; Remke, M.; Rotblat, B.; Dubuc, A.; Mateo, A.-R.F.; Kool, M.; Agnihotri, S.; El-Naggar, A.; Yu, B.; Prakash Somasekharan, S.; et al. The eEF2 Kinase Confers Resistance to Nutrient Deprivation by Blocking Translation Elongation. Cell 2013, 153, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.D.J.; Ferguson, S.B.; Giles, D.H.; Wang, Q.; Wellmann, R.M.; O’Brien, J.P.; Warthaka, M.; Brodbelt, J.S.; Ren, P.; Dalby, K.N. The Molecular Mechanism of Eukaryotic Elongation Factor 2 Kinase Activation. J. Biol. Chem. 2014, 289, 23901–23916. [Google Scholar] [CrossRef] [PubMed]
- Redpath, N.T.; Foulstone, E.J.; Proud, C.G. Regulation of Translation Elongation Factor-2 by Insulin via a Rapamycin-Sensitive Signalling Pathway. EMBO J. 1996, 15, 2291–2297. [Google Scholar] [CrossRef]
- Kenney, J.W.; Moore, C.E.; Wang, X.; Proud, C.G. Eukaryotic Elongation Factor 2 Kinase, an Unusual Enzyme with Multiple Roles. Adv. Biol. Regul. 2014, 55, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-Y.; Wang, L.; Das, J.K.; Kumar, A.; Ballard, D.J.; Ren, Y.; Xiong, X.; de Figueiredo, P.; Yang, J.-M.; Song, J. Control of CD4+ T Cells to Restrain Inflammatory Diseases via Eukaryotic Elongation Factor 2 Kinase. Signal Transduct. Target. Ther. 2023, 8, 415. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ali, T.; Zheng, C.; Liu, Z.; He, K.; Shah, F.A.; Ren, Q.; Rahman, S.U.; Li, N.; Yu, Z.-J.; et al. Fluoxetine Regulates eEF2 Activity (Phosphorylation) via HDAC1 Inhibitory Mechanism in an LPS-Induced Mouse Model of Depression. J. Neuroinflammation 2021, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.Y.; Hawken, E.; Vazquez, G.H. The Mechanisms Behind Rapid Antidepressant Effects of Ketamine: A Systematic Review with a Focus on Molecular Neuroplasticity. Front. Psychiatry 2022, 13, 860882. [Google Scholar] [CrossRef] [PubMed]
- Chibaya, L.; Karim, B.; Zhang, H.; Jones, S.N. Mdm2 Phosphorylation by Akt Regulates the P53 Response to Oxidative Stress to Promote Cell Proliferation and Tumorigenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2003193118. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.L.; Xie, T.; Zhang, S.Y.; Liu, B. Eukaryotic Elongation Factor-2 Kinase (eEF2K): A Potential Therapeutic Target in Cancer. Apoptosis 2014, 19, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Cavasotto, C.N.; Di Filippo, J.I. Artificial Intelligence in the Early Stages of Drug Discovery. Arch. Biochem. Biophys. 2021, 698, 108730. [Google Scholar] [CrossRef] [PubMed]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep Learning Enables Rapid Identification of Potent DDR1 Kinase Inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Wang, Q.; Edupuganti, R.; Tavares, C.D.J.; Dalby, K.N.; Ren, P. Using Docking and Alchemical Free Energy Approach to Determine the Binding Mechanism of eEF2K Inhibitors and Prioritizing the Compound Synthesis. Front. Mol. Biosci. 2015, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G. Generative Models for Artificially-Intelligent Molecular Design. Mol. Inform. 2018, 37, 1880131. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The Rise of Deep Learning in Drug Discovery. Drug Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Godinez, W.J.; Ma, E.J.; Chao, A.T.; Pei, L.; Skewes-Cox, P.; Canham, S.M.; Jenkins, J.L.; Young, J.M.; Martin, E.J.; Guiguemde, W.A. Design of Potent Antimalarials with Generative Chemistry. Nat. Mach. Intell. 2022, 4, 180–186. [Google Scholar] [CrossRef]
- Zhang, Z.; Min, Y.; Zheng, S.; Liu, Q. Molecule Generation for Target Protein Binding with Structural Motifs. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Wang, Z.; Sun, L.; Xu, Y.; Liang, P.; Xu, K.; Huang, J. Discovery of Novel JAK1 Inhibitors through Combining Machine Learning, Structure-Based Pharmacophore Modeling and Bio-Evaluation. J. Transl. Med. 2023, 21, 579. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.C. Sol-Gel Silica Nanoparticles in Medicine: A Natural Choice. Design, Synthesis and Products. Molecules 2018, 23, 2021. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, X.; Li, Y.; Wang, P.; Wu, T.; Xiao, H.; Zhao, Y.; Liao, Q.; Song, Z. Discovery of New Inhibitors of eEF2K from Traditional Chinese Medicine Based on In Silico Screening and In Vitro Experimental Validation. Molecules 2022, 27, 4886. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Comert Onder, F.; Durdagi, S.; Sahin, K.; Ozpolat, B.; Ay, M. Design, Synthesis, and Molecular Modeling Studies of Novel Coumarin Carboxamide Derivatives as eEF-2K Inhibitors. J. Chem. Inf. Model. 2020, 60, 1766–1778. [Google Scholar] [CrossRef] [PubMed]
- Piserchio, A.; Long, K.J.; Browning, L.S.; Bohanon, A.L.; Isiorho, E.A.; Dalby, K.N.; Ghose, R. ADP Enhances the Allosteric Activation of Eukaryotic Elongation Factor 2 Kinase by Calmodulin. Proc. Natl. Acad. Sci. USA 2023, 120, e2300902120. [Google Scholar] [CrossRef]
- Ragoza, M.; Masuda, T.; Koes, D.R. Generating 3D Molecules Conditional on Receptor Binding Sites with Deep Generative Models. Chem. Sci. 2022, 13, 2701–2713. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Stärk, H.; Jing, B.; Barzilay, R.; Jaakkola, T.S. DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Schneider, N.; Kawashima, E.; Nealschneider, D.; Dalke, A.; Swain, M.; Cole, B.; Turk, S.; Savelev, A.; Vaucher, A.; et al. Rdkit/Rdkit: 2024_03_5 (Q1 2024) Release; European Organization for Nuclear Research: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.P.; Murcko, M.A. Prediction of ‘Drug-Likeness’. Comput. Methods Predict. ADME Toxic. 2002, 54, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, version 1.8; Schrödinger, LLC.: New York, NY, USA, 2015. [Google Scholar]
- Schwaller, P.; Probst, D.; Vaucher, A.C.; Nair, V.H.; Kreutter, D.; Laino, T.; Reymond, J.-L. Mapping the Space of Chemical Reactions Using Attention-Based Neural Networks. Nat. Mach. Intell. 2021, 3, 144–152. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Svensson, F.; Zoufir, A.; Bender, A. eMolTox: Prediction of Molecular Toxicity with Confidence. Bioinformatics 2018, 34, 2508–2509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Yu, W.; Luo, Y.; Liu, T.; Su, A. Developing Lead Compounds of eEF2K Inhibitors Using Ligand–Receptor Complex Structures. Processes 2024, 12, 1540. https://doi.org/10.3390/pr12071540
Xu J, Yu W, Luo Y, Liu T, Su A. Developing Lead Compounds of eEF2K Inhibitors Using Ligand–Receptor Complex Structures. Processes. 2024; 12(7):1540. https://doi.org/10.3390/pr12071540
Chicago/Turabian StyleXu, Jiangcheng, Wenbo Yu, Yanlin Luo, Tiantao Liu, and An Su. 2024. "Developing Lead Compounds of eEF2K Inhibitors Using Ligand–Receptor Complex Structures" Processes 12, no. 7: 1540. https://doi.org/10.3390/pr12071540
APA StyleXu, J., Yu, W., Luo, Y., Liu, T., & Su, A. (2024). Developing Lead Compounds of eEF2K Inhibitors Using Ligand–Receptor Complex Structures. Processes, 12(7), 1540. https://doi.org/10.3390/pr12071540