Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation and Biochars Synthesis
2.2. Biochars Characterization
2.3. Amoxicillin Adsorption Experiments
2.3.1. Chemicals
2.3.2. Batch Assays Experimental Protocol and Data Analysis
2.3.3. Statistical Analysis
3. Results
3.1. Biochars Characterization
3.2. Batch Adsorption Study
3.2.1. Impact of Contact Time—Kinetic Study
3.2.2. Impact of pH
3.2.3. Impact of Adsorbent Dose
3.2.4. Impact of Ionic Strength
3.2.5. Impact of Initial Concentration—Isotherm Study
3.3. Challenges and Opportunities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A bibliometric analysis of emerging contaminants (ECs) (2001–2021): Evolution of hotspots and research trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef] [PubMed]
- Omeka, M.E.; Ezugwu, A.L.; Agbasi, J.C.; Egbueri, J.C.; Abugu, H.O.; Aralu, C.C.; Ucheana, I.A. A review of the status, challenges, trends, and prospects of groundwater quality assessment in Nigeria: An evidence-based meta-analysis approach. Environ. Sci. Pollut. Res. 2024, 31, 22284–22307. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
- Sumpter, J.P.; Johnson, A.C.; Runnalls, T.J. Pharmaceuticals in the Aquatic Environment: No Answers Yet to the Major Questions. Environ. Toxicol. Chem. 2024, 43, 589–594. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Show, P.L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
- Litskas, V.D.; Karamanlis, X.N.; Prousali, S.P.; Koveos, D.S. Effects of the Antibiotic Amoxicillin on Key Species of the Terrestrial Environment. Bull. Environ. Contam. Toxicol. 2018, 100, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Nasir, A.; Saleh, M.; Aminzai, M.T.; Alary, R.; Dizge, N.; Yabalak, E. Adverse effects of veterinary drugs, removal processes and mechanisms: A review. J. Environ. Chem. Eng. 2024, 12, 111880. [Google Scholar] [CrossRef]
- Akintola, A.T.; Ayankunle, A.Y. Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review. Waste Biomass Valorization 2023, 14, 2433–2458. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Mustafa, F.S.; Hassan, M.A.; Omer, K.M.; Hama, S. Biochar as green adsorbents for pharmaceutical pollution in aquatic environments: A review. Desalination 2024, 583, 117725. [Google Scholar] [CrossRef]
- Homem, V.; Alves, A.; Santos, L. Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. Int. J. Environ. Anal. Chem. 2010, 90, 1063–1084. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review. Rev. Environ. Sci. Biotechnol. 2018, 17, 109–145. [Google Scholar] [CrossRef]
- Du, C.; Zhang, Z.; Yu, G.; Wu, H.; Chen, H.; Zhou, L.; Zhang, Y.; Su, Y.; Tan, S.; Yang, L.; et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis. Chemosphere 2021, 272, 129501. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, W.; Dong, X.; Wang, F.; Yang, W.; Liu, C.; Chen, D. A review on recent advances of biochar from agricultural and forestry wastes: Preparation, modification and applications in wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 111638. [Google Scholar] [CrossRef]
- Prochnow, F.D.; Cavali, M.; Dresch, A.P.; Belli, I.M.; Libardi, N.J.; de Castilhos, A.B.J. Biochar: From Laboratory to Industry Scale- An Overview Brazilian Context, and Contributions to Sustainable Development. Processes 2024, 12, 1006. [Google Scholar] [CrossRef]
- Samaraweera, H.; Palansooriya, K.N.; Dissanayaka, P.D.; Khan, A.H.; Sillanpää, M.; Mlsna, T. Sustainable phosphate removal using Mg/Ca-modified biochar hybrids: Current trends and future outlooks. Case Stud. Chem. Environ. Eng. 2023, 8, 100528. [Google Scholar] [CrossRef]
- Jellali, S.; Hadroug, S.; Al-Wardy, M.; Al-Nadabi, H.; Nassr, N.; Jeguirim, M. Recent developments in metallic-nanoparticles-loaded biochars synthesis and use for phosphorus recovery from aqueous solutions. A critical review. J. Environ. Manag. 2023, 342, 118307. [Google Scholar] [CrossRef] [PubMed]
- Jellali, S.; Khiari, B.; Al-balushi, M.; Al-sabahi, J.; Hamdi, H.; Bengharez, Z.; Al-abri, M.; Al-nadabi, H.; Jeguirim, M. Use of waste marble powder for the synthesis of novel calcium-rich biochar: Characterization and application for phosphorus recovery in continuous stirring tank reactors. J. Environ. Manag. 2024, 351, 119926. [Google Scholar] [CrossRef]
- Xu, C.; Liu, R.; Chen, L. Removal of Phosphorus from Domestic Sewage in Rural Areas Using Oyster Shell-Modified Agricultural Waste–Rice Husk Biochar. Processes 2023, 11, 2577. [Google Scholar] [CrossRef]
- Xu, Z.C.; Zhang, B.; Wang, T.; Liu, J.; Mei, M.; Chen, S.; Li, J. Environmentally friendly crab shell waste preparation of magnetic biochar for selective phosphate adsorption: Mechanisms and characterization. J. Mol. Liq. 2023, 385, 122436. [Google Scholar] [CrossRef]
- Li, S.; Wang, N.; Chen, S.; Sun, Y.; Li, P.; Tan, J.; Jiang, X. Enhanced soil P immobilization and microbial biomass P by application of biochar modified with eggshell. J. Environ. Manag. 2023, 345, 118568. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, B.; Huang, H.; Lv, X.; Zhao, N.; Guo, G.; Zhang, D. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Sci. Total Environ. 2019, 687, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Peng, N.; Zhang, D.; Zhou, H.; Gu, J.; Huang, J.; Liu, C.; Chen, Y.; Liu, Y.; Sun, J. Efficient removal of methylene blue using Ca(OH)2 modified biochar derived from rice straw. Environ. Technol. Innov. 2023, 31, 103145. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wei, Y. Facile synthesis of eggshell biochar beads for superior aqueous phosphate adsorption with potential urine P-recovery. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 622, 126589. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, S.; Zheng, Q.; Huang, B.; Zhang, J.; Fu, H.; Gao, H. Removal and recovery of phosphorus from solution by bifunctional biochar. Inorg. Chem. Commun. 2022, 139, 109341. [Google Scholar] [CrossRef]
- Cao, L.; Ouyang, Z.; Chen, T.; Huang, H.; Zhang, M.; Tai, Z.; Long, K.; Sun, C.; Wang, B. Phosphate removal from aqueous solution using calcium-rich biochar prepared by the pyrolysis of crab shells. Environ. Sci. Pollut. Res. 2022, 29, 89570–89584. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, Y.; Nan, H.; Pei, L.; Huang, Y.; Cao, X.; Xu, X.; Zhao, L. Metal chloride-loaded biochar for phosphorus recovery: Noteworthy roles of inherent minerals in precursor. Chemosphere 2021, 266, 128991. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.F.; Lopes, D.V.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Phosphorus removal from urban wastewater through adsorption using biogenic calcium carbonate. J. Environ. Manag. 2024, 351, 119875. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Kan, E. Sustainable use of Ca(OH)2 modified biochar for phosphorus recovery and tetracycline removal from water. Sci. Total Environ. 2022, 839, 156159. [Google Scholar] [CrossRef]
- Jin, X.; Guo, J.; Hossain, M.F.; Lu, J.; Lu, Q.; Zhou, Y.; Zhou, Y. Recent advances in the removal and recovery of phosphorus from aqueous solution by metal-based adsorbents: A review. Resour. Conserv. Recycl. 2024, 204, 107464. [Google Scholar] [CrossRef]
- Jellali, S.; Khiari, B.; Al-balushi, M.; Al-harrasi, M.; Al-sabahi, J. Novel calcium-rich biochar synthesis and application for phosphorus and amoxicillin removal from synthetic and urban wastewater: Batch, columns, and continuous stirring tank reactors investigations. J. Water Process Eng. 2024, 58, 104818. [Google Scholar] [CrossRef]
- Shin, J.; Kwak, J.; Son, C.; Kim, S.; Lee, Y.-G.; Kim, H.-J.; Rho, H.; Lee, S.-H.; Park, Y.; Hwa Cho, K.; et al. Oyster shell-doped ground coffee waste biochars for selective removal of phosphate and nitrate ions from aqueous phases via enhanced electrostatic surface complexations: A mechanism study. J. Environ. Chem. Eng. 2024, 12, 112154. [Google Scholar] [CrossRef]
- Jellali, S.; Azzaz, A.A.; Jeguirim, M.; Hamdi, H.; Mlayah, A. Use of lignite as a low-cost material for cadmium and copper removal from aqueous solutions: Assessment of adsorption characteristics and exploration of involved mechanisms. Water 2021, 13, 164. [Google Scholar] [CrossRef]
- Jellali, S.; Khiari, B.; Al-Harrasi, M.; Charabi, Y.; Al-Sabahi, J.; Al-Abri, M.; Usman, M.; Al-Raeesi, A.; Jeguirim, M. Industrial sludge conversion into biochar and reuse in the context of circular economy: Impact of pre-modification processes on pharmaceuticals removal from aqueous solutions. Sustain. Chem. Pharm. 2023, 33, 101114. [Google Scholar] [CrossRef]
- Altıkat, A.; Alma, M.H.; Altıkat, A.; Bilgili, M.E.; Altıkat, S. A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability 2024, 16, 937. [Google Scholar] [CrossRef]
- Jellali, S.; Khiari, B.; Usman, M.; Hamdi, H.; Charabi, Y.; Jeguirim, M. Sludge-derived biochars: A review on the influence of synthesis conditions on pollutants removal efficiency from wastewaters. Renew. Sustain. Energy Rev. 2021, 144, 111068. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Sutcu, M.; Alptekin, H.; Erdogmus, E.; Er, Y.; Gencel, O. Characteristics of fired clay bricks with waste marble powder addition as building materials. Constr. Build. Mater. 2015, 82, 1–8. [Google Scholar] [CrossRef]
- Kwon, E.E.; Lee, T.; Ok, Y.S.; Tsang, D.C.W.; Park, C.; Lee, J. Effects of calcium carbonate on pyrolysis of sewage sludge. Energy 2018, 153, 726–731. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, D.; Zheng, X.; Ye, X.; Niu, X.; Lin, Z.; Fu, M.; Zhou, S. Adsorption recovery of phosphate from waste streams by Ca/Mg-biochar synthesis from marble waste, calcium-rich sepiolite and bagasse. J. Clean. Prod. 2021, 288, 125638. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Huo, J.; Zhang, X.; Wen, H.T.; Zhang, D.; Zhao, Y.; Kang, D.; Guo, W.; Ngo, H.H. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds. Sci. Total Environ. 2024, 909, 168426. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lv, J. Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods. Sustainability 2023, 15, 1778. [Google Scholar] [CrossRef]
- Xu, Y.; Liao, H.; Zhang, J.; Lu, H.; He, X.; Zhang, Y.; Wu, Z.; Wang, H.; Lu, M. A Novel Ca-Modified Biochar for Efficient Recovery of Phosphorus from Aqueous Solution and Its Application as a Phosphorus Biofertilizer. Nanomaterials 2022, 12, 2755. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhang, C.; Chen, Z.; Wang, X.; Zhang, Y.; Guo, L. Converting wastes to resource: Utilization of dewatered municipal sludge for calcium-based biochar adsorbent preparation and land application as a fertilizer. Chemosphere 2022, 298, 134302. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Jang, H.M.; Kan, E.; Wallace, A.R.; Sun, W. Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environ. Eng. Res. 2019, 24, 434–442. [Google Scholar] [CrossRef]
- Meghani, R.; Lahane, V.; Kotian, S.Y.; Lata, S.; Tripathi, S.; Ansari, K.M.; Yadav, A.K. Valorization of Ginger Waste-Derived Biochar for Simultaneous Multiclass Antibiotics Remediation in Aqueous Medium. ACS Omega 2023, 8, 11065–11075. [Google Scholar] [CrossRef] [PubMed]
- Hadroug, S.; Jellali, S.; Jeguirim, M.; Kwapinska, M.; Hamdi, H.; Leahy, J.J.; Kwapinski, W. Static and dynamic investigations on leaching/retention of nutrients from raw poultry manure biochars and amended agricultural soil. Sustainability 2021, 13, 1212. [Google Scholar] [CrossRef]
- Mitrogiannis, D.; Psychoyou, M.; Baziotis, I.; Inglezakis, V.J.; Koukouzas, N.; Tsoukalas, N.; Palles, D.; Kamitsos, E.; Oikonomou, G.; Markou, G. Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chem. Eng. J. 2017, 320, 510–522. [Google Scholar] [CrossRef]
- Shan, G.N.M.; Rafatullah, M.; Siddiqui, M.R.; Kapoor, R.T.; Qutob, M. Calcium oxide from eggshell wastes for the removal of pharmaceutical emerging contaminant: Synthesis and adsorption studies. J. Indian Chem. Soc. 2024, 101, 101174. [Google Scholar] [CrossRef]
- Jellali, S.; Azzaz, A.A.; Al-Harrasi, M.; Charabi, Y.; Al-Sabahi, J.N.; Al-Raeesi, A.; Usman, M.; Al Nasiri, N.; Al-Abri, M.; Jeguirim, M. Conversion of Industrial Sludge into Activated Biochar for Effective Cationic Dye Removal: Characterization and Adsorption Properties Assessment. Water 2022, 14, 2206. [Google Scholar] [CrossRef]
- Varela, C.F.; Moreno-Aldana, L.C.; Agámez-Pertuz, Y.Y. Adsorption of pharmaceutical pollutants on ZnCl2-activated biochar from corn cob: Efficiency, selectivity and mechanism. J. Bioresour. Bioprod. 2024, 9, 58–73. [Google Scholar] [CrossRef]
- Ma, Y.; Li, P.; Yang, L.; Wu, L.; He, L.; Gao, F.; Qi, X.; Zhang, Z. Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal. Ecotoxicol. Environ. Saf. 2020, 196, 110550. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Qian, Z.; Liu, J.; Geng, N.; Hou, J.; Li, D. Investigation on the adsorption of antibiotics from water by metal loaded sewage sludge biochar. Water Sci. Technol. 2021, 83, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; Chen, F.; Simões dos Reis, G.; Dinh, V.M.; Khokarale, S.G.; Finell, M.; Mikkola, J.P.; Hultberg, M.; Dotto, G.L.; Xiong, S. Cellulose Fiber Rejects as Raw Material for Integrated Production of Pleurotus spp. Mushrooms and Activated Biochar for Removal of Emerging Pollutants from Aqueous Media. ACS Omega 2023, 8, 5361–5376. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; el kacem Qaiss, A.; Bouhfid, R. Functional CoFe2O4-modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. Sep. Purif. Technol. 2021, 266, 118592. [Google Scholar] [CrossRef]
- Allwar, A.; Herawati, M.; Wardana, F.S.; Khoirunnisa, A.; Anugrah, Z.M. Composite of Ag2O-CuO/biochar as an adsorbent for removal of amoxicillin and paracetamol from aqueous solution. Int. J. Environ. Sci. Technol. 2023, 20, 13411–13422. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, C.; Liu, F.; Yuan, Y.; Wu, H.; Li, A. Effects of ionic strength on removal of toxic pollutants from aqueous media with multifarious adsorbents: A review. Sci. Total Environ. 2019, 646, 265–279. [Google Scholar] [CrossRef]
- Yunusa, U.; Umar, U.; Idris, S.A.; Kubo, A.I.; Abdullahi, T. Experimental and DFT computational insights on the adsorption of selected pharmaceuticals of emerging concern from water systems onto magnetically modified biochar. J. Turkish Chem. Soc. Sect. A Chem. 2021, 8, 1179–1196. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Cui, M.-h.; Liu, H.; Liu, H.; Zheng, Z.; Zheng, W.; Zhang, C.; Wen, D. Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: Performance and mechanism. J. Hazard. Mater. 2022, 426, 127798. [Google Scholar] [CrossRef]
- Choi, S.W.; Hong, J.; Youn, S.; Kim, I. Removal of amoxicillin by coffee grounds biochar with different pretreatment methods. Environ. Adv. 2023, 14, 100446. [Google Scholar] [CrossRef]
- Herrera, K.; Morales, L.F.; López, J.E.; Montoya-Ruiz, C.; Muñoz, S.; Zapata, D.; Saldarriaga, J.F. Biochar production from tannery waste pyrolysis as a circular economy strategy for the removal of emerging compounds in polluted waters. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Limousy, L.; Ghouma, I.; Ouederni, A.; Jeguirim, M. Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ. Sci. Pollut. Res. 2017, 24, 9993–10004. [Google Scholar] [CrossRef] [PubMed]
- Sousa, É.; Rocha, L.; Jaria, G.; Gil, M.V.; Otero, M.; Esteves, V.I.; Calisto, V. Optimizing microwave-assisted production of waste-based activated carbons for the removal of antibiotics from water. Sci. Total Environ. 2021, 752, 141662. [Google Scholar] [CrossRef] [PubMed]
- Simões Dos Reis, G.; Bergna, D.; Tuomikoski, S.; Grimm, A.; Lima, E.C.; Thyrel, M.; Skoglund, N.; Lassi, U.; Larsson, S.H. Preparation and Characterization of Pulp and Paper Mill Sludge-Activated Biochars Using Alkaline Activation: A Box-Behnken Design Approach. ACS Omega 2022, 7, 32620–32630. [Google Scholar] [CrossRef] [PubMed]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Santos Júnior, O.O.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Sadegh, N. Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 2014, 1, 64–73. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Krasucka, P.; Pan, B.; Sik Ok, Y.; Mohan, D.; Sarkar, B.; Oleszczuk, P. Engineered biochar—A sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 2021, 405, 126926. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Akrout, H.; Assadi, A.A.; Bousselmi, L. Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions. J. Clean. Prod. 2018, 201, 28–38. [Google Scholar] [CrossRef]
- Pathy, A.; Ray, J.; Paramasivan, B. Challenges and opportunities of nutrient recovery from human urine using biochar for fertilizer applications. J. Clean. Prod. 2021, 304, 127019. [Google Scholar] [CrossRef]
- Gray, M.; Smith, L.B.; Maxwell-Barton, W.L. Global Biochar Market Report. 2023, pp. 1–30. Available online: https://biochar-international.org/2023-global-biochar-market-report/ (accessed on 2 July 2024).
Experimental Set | Contact Time (h) | pH | Biochar Dosage (g L−1) | Dissolved NaCl/Na2SO4 (mM L−1) | Initial Concentration (mg L−1) |
---|---|---|---|---|---|
Effect of contact time | From 1 min to 24 h | 6.8 | 1 | 0/0 | 100 |
Effect of pH | 24 | 4–10 | 1 | 0/0 | 100 |
Effect of dose | 24 | 6.8 | 0.1–40 | 0/0 | 100 |
Effect of ionic strength | 24 | 6.8 | 1 | 14–42/0 | 100 |
24 | 6.8 | 1 | 1–5.2/0 | 100 | |
Effect of initial concentration | 24 | 6.8 | 1 | 0/0 | 5–100 |
Biochar | Yield (%) | Mineral Contents (mg g−1) | Textural Properties | pHzpc | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | K | P | Fe | Mn | Ni | Zn | Cu | Cd | BET SA (m2 g−1) | TPV (cm3 g−1) | APS (nm) | |||
Ca-B-700 | 63.9 | 219.0 | 10.8 | 9.4 | 0.76 | 0.25 | 0.18 | 0.15 | 0.04 | 0.01 | 3.7 | 0.013 | 35.1 | 10.89 |
Ca-B-800 | 57.5 | 245.0 | 11.4 | 9.4 | 0.87 | 0.26 | 0.19 | 0.16 | 0.05 | 0.01 | 16.9 | 0.018 | 15.1 | 13.30 |
Ca-B-900 [31] | 42.6 | 324.0 | 12.3 | 12.4 | 1.03 | 0.34 | 0.22 | 0.12 | 0.06 | 0.08 | 52.3 | 0.032 | 9.4 | 13.46 |
Parameter | Ca-B-700 | Ca-B-800 | Ca-B-900 | |
---|---|---|---|---|
PFO model | qe,exp (mg g−1) | 6.4 | 8.0 | 15.1 |
k1 (min−1) | 0.0009 | 0.0016 | 0.0096 | |
R2 | 0.991 | 0.989 | 0.813 | |
MAPE (%) | 18.0 | 26.7 | 43.1 | |
PSO model | k2 (g mg−1 min−1) | 0.00019 | 0.00022 | 0.00046 |
qe,pred (mg g −1) | 8.8 | 10.5 | 15.9 | |
R2 | 0.978 | 0.975 | 0.928 | |
MAPE (%) | 21.7 | 20.5 | 28.9 | |
Diffusion model | Df (×10−13 m2 s−1) | 0.39 | 0.52 | 1.45 |
R2 | 0.948 | 0.931 | 0.960 | |
Dip (×10−13 m2 s−1) | 1.56 | 1.87 | 1.57 | |
R2 | 0.957 | 0.990 | 0.960 |
Isotherm | Parameter | Ca-B-700 | Ca-B-800 | Ca-B-900 |
Langmuir | KL (L mg−1) | 0.019 | 0.007 | 0.0136 |
qm,L,pred (mg g−1) | 14.6 | 46.8 | 56.2 | |
R2 | 0.982 | 0.975 | 0.962 | |
MAPE (%) | 9.8 | 12.1 | 11.4 | |
Freundlich | n | 1.38 | 1.10 | 1.31 |
KF | 0.409 | 0.346 | 1.134 | |
R2 | 0.941 | 0.947 | 0.962 | |
MAPE (%) | 13.7 | 14.8 | 7.9 | |
D-R | qm,D-R,pred (mg g−1) | 13.6 | 26.3 | 37.1 |
E (kJ mol−1) | 4.75 | 4.24 | 4.96 | |
R2 | 0.986 | 0.998 | 0.941 | |
MAPE (%) | 6.0 | 4.3 | 13.8 |
Feedstock, Provenance | Pretreatment | Pyrolysis Conditions | Post-Treatment | Adsorption Experimental Conditions | Langmuir’s Adsorption Capacity (mg g−1) | Reference |
---|---|---|---|---|---|---|
Vine wood, Iran | - | T = 600 °C; G = -; t = 2 h | Impregnation with NaOH at a mass ratio of 5% | C0 = 20–200 mg L−1; pH = 2; D = 0.4 g L−1; t = 8 h; T = 25 °C | 2.7 | [67] |
Industrial sludge, Oman | - | T = 750 °C; G = 5 °C min−1; t = 2 h | - | C0 = 20–120 mg L−1; pH = 6.8 ; D = 1 g L−1; t = 3 h; T = RT | 22.6 | [34] |
Impregnation with 1 M ZnCl2 | 31.9 | |||||
Impregnation with 1 M FeCl3 | 32.1 | |||||
Olive stone, Tunisia | Impregnation with phosphoric acid (50%, by weight) at 110 °C for 9 h | T = 170 °C; G = -; t = 0.5 h, then T = 380 °C; G = -; t = 2.5 h | - | C0 = 12.5–100 mg L−1; pH = not adjusted; D = 1 g L−1; t = 10 h; T = 20 °C | 38.7 | [63] |
Coffee grounds, South Korea | Impregnation with phosphoric acid at 110 °C for 36 h | T = 600 °C; G = -; t = 2 h | - | C0 = 0–200 mg L−1; pH = not adjusted; D = 1 g L−1; t = 24 h; T = RT | 54.6 | [61] |
Paper mill sludge, Portugal | Impregnation with KOH at a ratio (KOH/sludge) of 1:5 (w/w), then sonication for 1 h in an ultrasonic batch | T = 800 °C; G = 15 °C min−1; t = 20 min | - | C0 = 0–5 mg/L; pH = not adjusted; D = 15 mg L−1; t = 15 h; T = 25 °C | 204.0 | [64] |
Pulp and paper mill sludge, Sweeden | Impregnation with KOH at a mass ratio of 1:1 | T = 800 °C; G = 10 °C min−1; t = 3 h | - | C0 = 0–1000 mg L−1; pH = 6; D = 1.5 g L−1; t = 4 h; T = 25 °C | 305.0 | [65] |
Guava seeds, Brazil | - | T= 500 °C; G = 20 °C min−1; t = 2 h | Impregnation with NaOH at a mass ratio of 3:1 (NaOH/biomass), then pyrolysis for: T= 750 °C; G = - °C min−1; t = 1.5 h | C0 = 50–800 mg L−1; pH = 4; D = 1 g L−1; t = 4 h; T = 25 °C | 570.5 | [66] |
Mixture of poultry manure and date palm waste, Oman | Mixing with waste marble powder | T = 700 °C; G = 5 °C min−1; t = 2 h | - | C0 = 5–100 mg L−1; pH = 6.8 ; D = 1 g L−1; t = 20 h; T = RT | 14.6 | This study |
T = 800 °C; Idem. | 46.8 | |||||
T = 900 °C; Idem. | 56.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellali, S.; Hamdi, W.; Al-Harrasi, M.; Al-Wardy, M.; Al-Sabahi, J.; Al-Nadabi, H.; Al-Raeesi, A.; Jeguirim, M. Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration. Processes 2024, 12, 1552. https://doi.org/10.3390/pr12081552
Jellali S, Hamdi W, Al-Harrasi M, Al-Wardy M, Al-Sabahi J, Al-Nadabi H, Al-Raeesi A, Jeguirim M. Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration. Processes. 2024; 12(8):1552. https://doi.org/10.3390/pr12081552
Chicago/Turabian StyleJellali, Salah, Wissem Hamdi, Majida Al-Harrasi, Malik Al-Wardy, Jamal Al-Sabahi, Hamed Al-Nadabi, Ahmed Al-Raeesi, and Mejdi Jeguirim. 2024. "Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration" Processes 12, no. 8: 1552. https://doi.org/10.3390/pr12081552
APA StyleJellali, S., Hamdi, W., Al-Harrasi, M., Al-Wardy, M., Al-Sabahi, J., Al-Nadabi, H., Al-Raeesi, A., & Jeguirim, M. (2024). Investigations on Amoxicillin Removal from Aqueous Solutions by Novel Calcium-Rich Biochars: Adsorption Properties and Mechanisms Exploration. Processes, 12(8), 1552. https://doi.org/10.3390/pr12081552