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Abstract: This study investigates the synthesis, characterization, and environmental application for
amoxicillin (AMX) removal in batch mode of three novel calcium-rich biochars. These biochars were
produced from the co-pyrolysis of poultry manure, date palm wastes, and waste marble powder
at temperatures of 700 ◦C (Ca-B-700), 800 ◦C (Ca-B-800), and 900 ◦C (Ca-B-900). Characterization
results show that increasing the pyrolysis temperature results in improved structural, textural, and
surface chemistry properties. For instance, the BET surface area of the Ca-B-900 was assessed to
be 52.3 m2 g−1, which is 14.1 and 3.1 times higher than those observed for Ca-B-700 and Ca-B-800,
respectively. Moreover, the Ca-B-900 shows higher AMX removal ability (56.2 mg g−1) than Ca-B-800
(46.8 mg g−1), Ca-B-700 (14.6 mg g−1), and numerous other engineered biochars. The AMX removal
process by these biochars is favorable under wide experimental conditions of initial pH and AMX
concentrations. Additionally, the experimental and modeling data show that the AMX adsorption
process includes both physical and chemical mechanisms. This study confirms that Ca-rich biochars
can perform significant removal of AMX in batch mode.

Keywords: wastes management; engineered biochars; pharmaceuticals removal; adsorption
characteristics; mechanism

1. Introduction

Studies on emerging contaminants have attracted significant attention over the last
two decades [1]. These substances, including herbicides, pesticides, micro- and nano-
plastics, new organic dyes, and pharmaceuticals, have been increasingly detected in water
ecosystems [2]. Even at very low concentrations, these compounds may have serious
adverse impacts on both aquatic systems and also human health [3]. Special attention has
been given to the pharmaceutical compounds due to their significant usage and the rising
concentrations detected in water resources [4]. This presence is attributed to uncontrolled
discharges from the pharmaceutical industry and the excretion of these substances in
urine and feces by humans in hospitals and animals on farms [5]. Active pharmaceutical
substances are highly resistant to biodegradation and thus persist in aquatic ecosystems.
This persistence can adversely affect aquatic organisms and subsequently affect human
health through the food chain [4]. Amoxicillin is an active compound that belongs to the
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penicillin family. It is one of the most widely used antibiotics in the majority of European
countries [6]. Moreover, around 80% of the orally ingested AMX is excreted into the urine in
a non-metabolized form and consequently transferred to wastewater treatment plants [7].

Numerous technologies have been tested for the removal of pharmaceuticals from
aquatic environments. They mainly include membrane advanced oxidation processes,
membrane filtration, and biological degradation [8]. However, the real application of these
methods can be challenging due to the required stringent experimental conditions, high
energy consumption, and the possible production of toxic by-products [9]. Adsorption
methods have been pointed out as an attractive and promising approach for removing
pharmaceuticals due to their simple design and operation, minimal energy requirements,
eco-friendliness, and high effectiveness [10]. Numerous materials, such as raw agricultural
wastes [11], activated carbons [12], molecular organic frameworks [13], and biochars [10]
have been applied to purify water from pharmaceuticals. However, biochar constitutes
a more cost-effective option for the elimination of pharmaceutical residues, valued by
its environmental benefits and sustainability, low cost, and adaptability for large-scale
use [14,15]. For instance, on the environmental side, the production of 1 kg of biochar
requires only 6.1 MJ and has net negative greenhouse gas emissions (−0.9 kg CO2 eq).
These values are much more attractive when compared to those corresponding to the
generation of 1 kg of activated carbon: 97 MJ and + 6.6 kg CO2 eq [9].

Calcium-rich biochars are novel materials that are typically synthesized from the
pyrolysis of pre-impregnated biomasses or post-impregnated biochars with calcium chlo-
ride chemical reagents (CaCl2) [16,17]. In this last decade, to reduce the use of chemicals
and to boost sustainability and circular economy concepts, various Ca-rich biochars were
produced from the co-pyrolysis of biomasses mixed with calcium-based wastes such as
powder marble [18], oyster shell [19], crab shells [20], eggshell [21], and dolomite [22]. The
characteristics of the synthesized biochars depend mainly on the percentage of the mineral
waste and also the pyrolysis conditions [23–25]. Usually, improved textural properties (i.e.,
surface area and porosity) are obtained when increasing the pyrolysis temperature and
the pyrolysis contact time or decreasing the percentage of the Ca-based wastes [25–28].
For instance, Wang et al. [24] showed that increasing the corn straw/eggshell mass ratio
from 1:0 to 1:4 and 2:3 decreased the BET surface area of the related biochars from 179.7 to
67.5 and only 23.6 m2 g−1, respectively. Moreover, Xu et al. [19] showed that increasing
the pyrolysis temperature from 700 to 900 ◦C of a mixture of rice husk and oyster shells
(at a mass ratio of 1:2) increased the BET surface area and the total pore volume from
21.3 m2 g−1 and 0.025 cm3 g−1 to 46.2 m2 g−1 and 0.019 cm3 g−1, respectively. A similar
trend was observed for Ca(OH)2-modified wood biochar [29].

In addition, most of the previous valorization studies of Ca-rich biochars for wastew-
ater treatment have been concerned with nutrient recovery from wastewater (i.e., phos-
phorus (P)) [17,30]. In this regard, these biochars were found to be excellent materials
for P recovery, even under challenging conditions [16]. However, only rare studies have
investigated the use of Ca-rich biochars, which are synthesized from the co-pyrolysis of
biomasses with Ca-based industrial wastes, for pharmaceuticals removal from aqueous
solutions [29,31]. For instance, in the study of Zen and Kan [29], tetracycline removal by
Ca(OH)2-modified wood biochar was found to be moderately removed in batch mode
(20.9 mg g−1) and not removed in column mode. To the best of our knowledge, the only
preliminary study regarding the use of Ca-rich biochar for AMX removal was recently car-
ried out by our research work [31]. In this study, we synthesized a novel biochar at 900 ◦C
from two abundant organic feedstocks and a mineral industrial waste: (i) an animal organic
waste: poultry manure (PM), (ii) lignocellulosic biomass: date palm waste (DPW), and
(iii) a Ca-based industrial waste: marble powder (WMP). Results of this study showed that
this Ca-rich biochar (Ca-B-900) selectively recovered P, and no significant AMX removal
was observed under dynamic conditions (both column and reactors). While this study
provides valuable insights into the general behavior of AMX removal by Ca-B-900 in batch
mode, a detailed and comprehensive understanding of the effect of pyrolysis temperature
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as well as the adsorption experimental conditions (i.e., contact time, initial pH, initial
AMX concentration, etc.) on AMX removal efficacy is still lacking. Moreover, the involved
mechanisms in this pharmaceutical removal by Ca-rich biochars were not yet appropriately
illustrated [29,31]. Further investigations are needed in order to overcome this knowledge
gap and also to facilitate the future upscaling process for real-site conditions application.

Therefore, the present research work aims to (i) synthesize Ca-rich biochars from
the co-pyrolysis of poultry manure, date palm waste, and waste marble powder at three
different temperatures: 700, 800, and 900 ◦C, (ii) characterize these biochars by using
various analytical methods, (iii) study the AMX removal efficiency in batch mode and
under different experimental situations encompassing contact time, initial pH, adsorbent
dosage, ionic strength, and initial AMX concentration, and (iv) explore the main involved
mechanisms in this removal process.

2. Materials and Methods
2.1. Feedstock Preparation and Biochars Synthesis

Three feedstocks were used during this work: PM, DPW, and WMP. The PM and dry
DPW were provided from a local farm in Muscat, Oman. They were air-dried until they
reached a nearly constant weight, then ground using a mechanical grinder and sieved.
The fraction with a dimension lower than 1 mm was selected and used hereafter for the
production of the biochars. The WMP was collected from an industrial site in Oman in a
slurry form. It was air-dried until a constant weight and used without any modification. A
feedstock mass of 100 g was prepared by a manual mixing of 45 g of PM, 10 g of DPW, and
45 g of WMP, respectively, and used for the production of the biochars. The chosen WMP
percentage should permit the formation of enough contents of CaO and Ca(OH)2. It is in
line with previous works [21,32].

The Ca-rich biochars synthesis was performed using an electric tubular furnace (Car-
bolite, TF1-1200, Neuhausen, Germany) under an N2 atmosphere. The heating gradient
and residence time were kept constant at 5 ◦C min−1 and 2 h, respectively. Three biochars
were synthesized at final pyrolysis temperatures of 700, 800, and 900 ◦C. They were labelled
Ca-B-700, Ca-B-800, and Ca-B-900, respectively. These pyrolysis temperatures were chosen
in order to elucidate the effect of WMP carbonization degree and the biochars’ calcium
oxide contents on AMX removal efficiency. They are in line with previous studies [18,19].
These biochars were kept in plastic airtight containers and used for AMX removal assays
from aqueous solutions. The biochars production yields at a given temperature pyrolysis
‘T’ (YT (%)) were calculated as follows:

YT (%) =
M f ,T

M0,T
× 100 (1)

where M0,T and Mf,T are the feedstock mixture masses before and after the pyrolysis process
at a fixed pyrolysis temperature.

2.2. Biochars Characterization

During this work, the three synthesized biochars were characterized through the
analysis of their (i) surface morphology and elemental composition by a scanning electron
microscope (SEM) coupled with energy dispersive X-ray (EDS) (Jeol, Jsm-7800F, Tokyo,
Japan), (ii) mineral composition by X-ray fluorescence device (XRF) (Rigaku, Nexqc, Tokyo,
Japan), (iii) crystallinity through X-ray diffraction (XRD) (Rigaku, Miniflex 600, Tokyo,
Japan), (iv) pores properties (BET surface areas, total pore volumes (TPV), and average pore
sizes (APS) by a Micrometrics instrument (ASAP-2020, Ottawa, ON, Canada), (v) functional
groups richness by Fourier Transform Infrared (FTIR) (Perkin Elmer, Frontier, MA, USA),
and (vi) the surface charge versus pH on the basis of the pH drift method [33].
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2.3. Amoxicillin Adsorption Experiments
2.3.1. Chemicals

The AMX reagent used in this work (chemical formula: C16H19N3O5S; molecular
weight: 365.4 g mol−1) was purchased from Sigma-Aldrich, St. Louis, MO, USA. It was
employed for the preparation of a stock solution of 1000 mg L−1, which has been used
throughout this study. This solution was diluted by using distilled water to obtain the
desired synthetic solution concentrations. Moreover, NaOH and HCl (from Sigma-Aldrich)
were used for the adjustment of the prepared solutions’ pH values. These values were
measured by a dedicated pH meter (Mettler Toledo, Columbus, OH, USA).

2.3.2. Batch Assays Experimental Protocol and Data Analysis

The efficiency of the three Ca-rich biochars in removing AMX from aqueous solutions
was performed under static conditions (batch mode). This step was ensured through con-
trolled shaking adsorbent within AMX solutions in 120 mL glass flasks by a multi-position
magnetic stirrer (Gallenkamp, Cambridge, UK) at 600 rpm. The biochars’ effectiveness in
removing AMX was assessed through sample analyses before and after adsorption. These
samples were first filtrated through 0.22 µm PVDF filters (Whatman, Buckinghamshire, UK)
and then analyzed by high-performance liquid chromatography (HPLC, Shimadzu, Kyoto,
Japan). The effect of various parameters (i.e., contact time, initial pH, biochar dosage,
and initial concentration) on AMX removal by the three biochars was studied under the
conditions given in Table 1. The interval variation of these parameters was fixed on the
basis of our previous study [34] and also preliminary investigations.

Table 1. Experimental conditions used for AMX removal by the Ca-rich biochars.

Experimental Set Contact Time (h) pH Biochar Dosage
(g L−1)

Dissolved NaCl/Na2SO4
(mM L−1)

Initial Concentration
(mg L−1)

Effect of
contact time From 1 min to 24 h 6.8 1 0/0 100

Effect of pH 24 4–10 1 0/0 100

Effect of dose 24 6.8 0.1–40 0/0 100

Effect of
ionic strength

24 6.8 1 14–42/0 100

24 6.8 1 1–5.2/0 100

Effect of initial
concentration 24 6.8 1 0/0 5–100

The adsorbed AMX amount after a desired contact time ‘t’ (qt), and the corresponding
removal yield (Rt) were assessed as follows:

qt =
(C0 − Ct) ∗ V

Mb
(2)

Rt(%) =
(C0 − Ct)

C0
× 100 (3)

where C0 and Ct (mg L−1) are the AMX concentrations before adsorption and after a contact
time of ‘t’, respectively. Mb and V are the mass of the biochar (g) and the volume of the
solutions (L), respectively.

To obtain a better understanding of the AMX kinetic adsorption process by the three
biochars, the related experimental data were fitted to three famous models, namely pseudo-
first-order (PFO), pseudo-second-order (PSO), and diffusion models (WM). Similarly, Fre-
undlich, Langmuir, and Dubinin-Radushkevich (D-R) models were used to fit the exper-
imental isotherm data. The equations of these kinetic and isotherm models, as well as
the definition of the included parameters, are provided in the Supplementary Materials
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(Table S1). The agreement between the experimental and these models-calculated curves
was assessed by estimating the related correlation coefficients (R2) as well as the mean
absolute percentage errors (MPAE) as follows:

MAPEkinetic =

∑
∣∣∣∣ qt,exp − qt,pred

qt,exp

∣∣∣∣
N

∗ 100 (4)

MAPEisotherm =

∑
∣∣∣∣ qe,exp − qe,pred

qe,exp

∣∣∣∣
N

∗ 100 (5)

where MAPEkinetic and MAPEisotherm are the mean absolute percentage errors between the
experimental and predicted kinetic and isotherm data, respectively. The qt,exp, qt,pred and
qe,exp and qe,pred denote the experimental and predicted adsorbed AMX quantity at time ‘t’
and at equilibrium, respectively. N represents the number of experimental runs.

All the cited above batch experimental data were carried out at least in triplicate. The
experimental results given in this work represent the average values.

2.3.3. Statistical Analysis

Excel 2016 was used for figure plotting and the regression analysis of the experimental
and predicted data. The error bars in the plots are the standard deviation that is estimated
from the triplicate batch assays.

3. Results
3.1. Biochars Characterization

The biochar production yields were assessed to be 63.9%, 57.5%, and 42.6% for Ca-B-
700, Ca-B-800, and Ca-B-900, respectively (Table 2). The decrease of this yield production
with the increase of the temperature is expected and is imputed to a higher decomposition
rate of the volatile matter contained in the used feedstocks [35]. It is important to mention
that these yields are much higher than those usually reported for lignocellulosic, animal,
or even sludge biomasses [35–37]. This is mainly due to the mineral nature of the WMP,
which is only slightly carbonized even at high pyrolysis temperatures [38,39].

Table 2. Main properties of the three synthesized calcium-rich biochars (BET SA: Brunauer–Emmett–
Teller Surface area; TPV: total pore volume, APS: average pore size).

Biochar Yield (%)

Mineral Contents (mg g−1) Textural Properties

pHzpc
Ca K P Fe Mn Ni Zn Cu Cd BET SA

(m2 g−1)
TPV

(cm3 g−1) APS (nm)

Ca-B-700 63.9 219.0 10.8 9.4 0.76 0.25 0.18 0.15 0.04 0.01 3.7 0.013 35.1 10.89

Ca-B-800 57.5 245.0 11.4 9.4 0.87 0.26 0.19 0.16 0.05 0.01 16.9 0.018 15.1 13.30

Ca-B-900 [31] 42.6 324.0 12.3 12.4 1.03 0.34 0.22 0.12 0.06 0.08 52.3 0.032 9.4 13.46

The SEM images of the Ca-B-700, Ca-B-800, and Ca-B-900 are given in Figure S1. It
can be clearly seen that the three biochars present irregular surfaces and a sponge-like
structure containing pores with different dimensions. The Ca-B-900 seems to have a better
structure with finer aggregates due to the fact that higher pyrolysis temperatures induce
more volatilization of organic matter present in the mixed organic feedstocks and also a
larger transformation yield of waste marble powder into calcium oxides/hydroxides [40,41].
The latter assumption is in line with the semi-qualitative EDS analyses, which indicate that
the Ca peaks increase with the rise of the pyrolysis temperature (Figure S1). Additionally,
the XRD analyses (Figure 1a–c) clearly show that at 700 ◦C, no significant transformation
of CaCO3 was observed (Figure 1a). However, as the pyrolysis temperature increases,
the CaCO3 transformation into CaO and Ca(OH)2 is favored (Figure 1b–c). The highest
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transformation rate was observed at a temperature of 900 ◦C, where more Ca-based oxide
contents were observed (Figure 1c). At this temperature, non-negligible peaks of CaO;
and Ca(OH)2 are detected at 2θ of 32.4◦, 37.5◦, 54.2◦, 64.3◦, and 67.5◦; and at 18.1◦, 28.4◦,
28.8◦, 34.2◦, 51.0◦, 62.5◦, and 64.3◦, respectively. This result is in concordance with that
of [38], who studied the pyrolysis of marble originating from Turkey. They showed that
its carbonization process occurs between around 650 and 850 ◦C with a maximum mass
loss of 41.3% at 1000 ◦C. Moreover, Ca-based nanoparticles (CaO/Ca(OH)2) detection was
reported for Ca-rich biochars generated from the co-pyrolysis of eggshells mixed with corn
straw [21] or with peanut shells [42], and oyster shells mixed with peanut shells [43] or
ground coffee waste [32]. A similar finding was also reported for Ca-rich biochar generated
from the pyrolysis of pure crab shells [26].
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The WMP carbonization and conversion into Ca-based oxides are further confirmed
by the XRF analyses (Table 2). Indeed, the Ca contents increased from 219 mg g−1 for Ca-B-
700 by 11.9% and 47.9% for Ca-B-800 and Ca-B-900 [31], respectively. These Ca contents
increases are due to the higher volatilization rate of the organic matter contained in the
PM and DPW feedstocks and also the better calcination of the WMP. The same increase
trend was observed for the majority of the minerals such as P, K, Fe, Mn, etc. (Table 2).
For instance, the potassium content observed at 700 ◦C has increased by around 5.6% and
13.9% in Ca-B-800 and Ca-B-900 [31], respectively. Moreover, most of the toxic heavy metals
in the three synthesized biochars have relatively low contents (Table 2). Other heavy metals
presented contents lower than the detection limit of the used ICP/MS apparatus: As, Al,
Hg, and Co.

In addition, the textural properties of the synthesized biochars were significantly
improved with the increase of the pyrolysis temperature (Table 2 and Figure 2). Indeed,
compared to Ca-B-700, the BET surface areas and ‘TPV’ of Ca-B-800 and Ca-B-900 have
increased by 356.8% and 1313.5%, and ‘38.5%’ and ‘146.2%’, respectively. This indicates
that the deposition of Ca-based nanoparticles on the biochars’ surface did not contribute to
the clogging of the biochars’ pores. This can be explained by the fact that all the biochars
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have mesoporous structures with average pore sizes varying in the range of 2 and 50 nm
(Table 2). However, it is clear that the biochars’ average pore sizes have decreased with
the increase in temperature, tending to be microporous (Table 2). A comparable trend
was observed for biochars derived from the co-pyrolysis of commercial wood biochar and
Ca(OH)2 at 100 and 300 ◦C [29]. However, some other studies have underlined that at high
pyrolysis temperatures, biochars’ structure may collapse, which can result in a significant
decrease in the BET surface areas and the total pore volumes [44,45]. The enhanced textural
properties of our Ca-rich biochars, especially Ca-B-900, may contribute to better AMX
removal through physical adsorption processes [46].
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Figure 2. N2 adsorption and desorption isotherms of the three synthesized Ca-rich biochars.

Finally, the pyrolysis temperature has an important effect on the surface chemistry of
the synthesized biochars. Indeed, the FTIR spectra of these biochars (Figure 3) showed that
they contain various functional groups such as hydroxyl, ketones, and carboxylic [26,40,45].
Furthermore, for all the synthesized biochars, Ca–O functional groups were observed at
wavenumbers of 712, 875, and 2510 cm−1 [40,47]. This confirms the synthesized biochars
richness in calcium that was observed in XRD (Figure 1) and XRF analyses (Table 2).
Moreover, a narrow and strong peak of –OH groups was observed for Ca-B-800 and Ca-
B-900 at 3643 cm−1 [31] (Figure 3) [48,49]. This observation confirms the XRD results,
which indicated that Ca(OH)2 nanoparticle formation was detected for only Ca-B-800 and
Ca-B-900 [31] (see Figure 1). Such a peak was reported for Ca-rich biochars produced at
800 ◦C from the co-pyrolysis of bagasse waste mixed with marble powder [40] and also
peanut shells mixed with oyster shells at 800 ◦C [43]. Finally, FTIR analyses showed the
presence of P–O peaks at 566 and 1047 cm−1 [18], which confirms the high P contents
(9.4–12.4 mg g−1) observed with XRF analyses (see Table 2). The functional groups richness
of the three synthesized biochars may favor the AMX adsorption through a complexation
mechanism [50].

Moreover, the values of the pHzpc were evaluated to 10.89, 13.30, and 13.46 for Ca-
B-700, Ca-B-800, and Ca-B-900 [31], respectively. The relatively high values observed
at temperatures of 800 and 900 ◦C confirm the high transformation rates of WMP into
CaO and Ca(OH)2 that were pointed out by the XRD analyses. This indicates that the
synthesized biochars surface will be positively charged for a large aqueous pH interval
(lower than the corresponding pHzpc) and may retain negatively charged pollutants
(i.e., AMX) through electrostatic interactions [50]. High alkaline pH values (11.9–12.0)
were reported for Ca(OH)2-modified biochars produced at temperatures varying between
100 and 500 ◦C [29].
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3.2. Batch Adsorption Study
3.2.1. Impact of Contact Time—Kinetic Study

The AMX removal efficiency by the three synthesized Ca-rich biochars (Figure 4)
shows that it is highly dependent on the contact time. Indeed, three kinetic phases can be
distinguished. A first phase, where the kinetic rate is relatively rapid (until 8 h), followed
by a slower one (until 20 h), then an equilibrium phase (between 20 and 24 h), where the
AMX removed amounts remain quasi-constants. These three phases correspond to [34,51]:
(i) diffusion through the boundary layer around the biochars particles, (ii) intraparticle
diffusion where AMX is removed inside the mesoporous structure of the biochars, and
(iii) the active sites of the biochars are saturated with AMX and no further adsorption is
possible. For all biochars, the first phase seems to be the limiting step in the overall process
because, for all the synthesized biochars, the corresponding diffusion coefficients (Df) are
lower than those of the intraparticle diffusion (Dip) (Table 3). Similar findings were reported
in previous studies related to pharmaceuticals removal by sludge-derived biochars [34,52].
The time required to reach the equilibrium state is evaluated to be around 20 h which
is equivalent to those reported for sludge-derived biochars post-treated with Al, Fe, or
Mn [53]. However, this time is higher than those reported for biochars generated from
the pyrolysis of modified lignocellulosic biomasses such as a KOH-pretreated-cellulose
fibers rejects (2 h) [54], a Zn-pretreated ginger waste (5 h) [46], and a Zn-pretreated corn cob
(5–6 h) [51]. It is worth mentioning that the use of long contact times is not recommended
in real applications due to the related high energetic expenses (i.e., pumping). In our
case, a contact time of only 8 h can be suggested since it permits a relatively high removal
percentage (Figure 4). Moreover, the PSO model fits better the experimental data for both
Ca-B-800 and Ca-B-900 with rate constants of 2.2 × 10−4 and 4.6 × 10−4 g mg−1 min−1,
respectively (Table 3). Indeed, this model presents higher correlation coefficients and
lower MAPE between the experimental and theoretical kinetic curves (Table 3). This
suggests that the AMX removal process by these two biochars may involve chemical
processes [53]. A similar finding was reported for AMX removal by biochars derived from
sewage sludge [53] and from corn cobs [51]. The Ca-B-700 kinetic experimental data were
better fitted with the PFO model, suggesting that the adsorption rate is mainly controlled
by the diffusion process [55]. Additionally, the Ca-B-900 exhibits higher AMX removal
efficiency in comparison with Ca-B-800 and Ca-B-700 (Figure 4). This is mainly attributed
to its improved physico-chemical properties [29].
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Table 3. Parameters of the PFO and PSO kinetic models used for the AMX removal by Ca-rich
biochars produced at 700, 800, and 900 ◦C.

Parameter Ca-B-700 Ca-B-800 Ca-B-900

PFO model

qe,exp (mg g−1) 6.4 8.0 15.1

k1 (min−1) 0.0009 0.0016 0.0096

R2 0.991 0.989 0.813

MAPE (%) 18.0 26.7 43.1

PSO model

k2 (g mg−1 min−1) 0.00019 0.00022 0.00046

qe,pred (mg g −1) 8.8 10.5 15.9

R2 0.978 0.975 0.928

MAPE (%) 21.7 20.5 28.9

Diffusion model

Df (×10−13 m2 s−1) 0.39 0.52 1.45

R2 0.948 0.931 0.960

Dip (×10−13 m2 s−1) 1.56 1.87 1.57

R2 0.957 0.990 0.960

3.2.2. Impact of pH

The effect of pH on AMX removal by the three synthesized biochars was investigated
for pH values varying between 4 and 10 while maintaining the contact time, the initial
concentration, and the adsorbent dosage constants at 24 h, 100 mg L−1, and 1 g L−1,
respectively. This wide pH interval was chosen because the electrical properties of both
the adsorbent and the AMX are dependent on the aqueous pH values. Indeed, the AMX
has three pKa values depending on its three possible ionizable forms [56]: carboxylic acid
(pKa1 = 2.7), primary amine group (pKa2 = 7.5), and hydroxyl group (pKa3 = 9.63). AMX is
positively charged, zwitterionic (exists in two ionic forms AMX±), and negatively charged
for pH values lower than pKa1, between pKa1 and pKa2, and higher than pKa3, respectively.
Regarding our synthesized biochars, the Ca-B-700, Ca-B-800, and Ca-B-900 have pHzpc
values of 10.89, 13.30, and 13.46 (see Table 2), indicating that for the studied pH range, their
surface will be positively charged. Therefore, the adsorption of the negatively charged
forms of AMX (observed for pH values higher than pKa1) will be well favored across the
whole pH range studied through electrostatic interactions. In our case, for all the biochars,
the AMX adsorbed amounts were almost constant for the tested pH range (Figure 5). The
average AMX removed masses were quantified to 6.6, 8.4, and 15.3 mg g−1 for Ca-B-700,
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Ca-B-800, and Ca-B-900, respectively. Relatively similar behavior was observed for AMX
removal by a biochar derived from palm oil bunch waste [57].
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3.2.3. Impact of Adsorbent Dose

The impact of the synthesized Ca-rich biochars in removing AMX from aqueous
solutions was carried out for an initial concentration of 100 mg L−1, a natural pH of
6.8 (without adjustment), and a contact time of 24 h. Results (Figure 6) show that for
all biochars, the AMX removal yields increase with the increase of the adsorbent dose.
Indeed, for a small dose of 0.1 g L−1, the AMX removal yields were assessed to be only
3.7%, 6.4%, and 11.3% for Ca-B-700, Ca-B-800, and Ca-B-900, respectively. These yields
gradually increase with the increase of the dose to reach quasi-constant performances, with
the highest removal yields evaluated to be 68.6%, 86.7%, and 94.7% for Ca-B-700, Ca-B-800,
and Ca-B-900, respectively. This behavior is due to the presence of more active adsorption
sites for increased doses that can react with AMX molecules. In addition, as specified above,
owing to its better physicochemical properties, the Ca-B-900 exhibits the highest AMX
removal yield for the lowest required dose (10 g L−1) to reach the performance plateau.
For Ca-B-700, a much higher dose (30–40 g L−1) is needed to reach this state (Figure 6).
Similar trends were observed in numerous previous studies dealing with AMX removal by
engineered biochars [34,46,54].
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Figure 6. Effect of the tested biochars dose on AMX removal from aqueous solutions.
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3.2.4. Impact of Ionic Strength

Since actual wastewater usually contains various ions at different contents, we studied
the effect of the presence of dissolved NaCl and Na2SO4 on AMX removal for an initial
AMX concentration of 100 mg L−1, a non-adjusted pH, and a contact time of 24 h. Results
(Figure 7a,b) show that adding Na2SO4 at concentrations varying between 1 and 5.2 mM
significantly increased the AMX removed amounts (Figure 7a). The largest increase was
observed for the highest Na2SO4 concentration of 5.2 mM and was evaluated to be 4.1%,
22.3%, and 11.1% for Ca-B-700, Ca-B-800, and Ca-B-900, respectively (Figure 7a). A similar
trend was also observed when adding NaCl at concentrations in the range of 14–42 mM.
The highest increase of AMX removed amount (30.8%) was observed for Ca-B-900 for a
NaCl concentration of 42 mM (Figure 7b). This result indicates that the presence of Na+ and
Cl- has favored the adsorption of AMX by the synthesized Ca-rich biochars. This finding
can be attributed to an improvement in the activity coefficient of AMX [58]. This leads to a
decline of AMX solubility and, therefore, can favor its adsorption by the Ca-rich biochars.
A comparable trend was reported by Varela et al. [51] when exploring AMX removal by
a Zn-modified biochar. These authors reported that increasing NaCl contents from 0.0 to
0.1 M raised the AMX removed amount by 14.9%. Contrarily, other previous studies have
shown that an important increase in the ionic strength may result in a non-negligible
decrease in AMX removal capacity [59,60].
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biochars.

3.2.5. Impact of Initial Concentration—Isotherm Study

The effect of the AMX initial concentration on its removal efficiency by the three
synthesized biochars is given in Figure 8. It clearly shows that the AMX adsorbed amounts
increase when the initial concentration is raised. The highest AMX removed amounts were
observed for an initial concentration of 100 mg L−1 and were assessed to 8.9, 15.5, and
27.8 mg g−1 for Ca-B-700, Ca-B-800, and Ca-B-900, respectively (Figure 8). This is attributed
to the fact that higher AMX initial concentrations result in larger concentration gradients
between the aqueous and solid media and consequently greater diffusion fluxes in the
biochars porosity and, thus, more chances for AMX to be removed [46]. The results of
the experimental data fitting to Langmuir, Freundlich, and D-R results are displayed in
Figure 8 and Table 4. For Ca-B-700 and Ca-B-800, the D-R and Langmuir models fit the best
to the experimental data since the corresponding R2 and MAPE are respectively higher
and lower than those observed for the Freundlich model (Table 4). This suggests that the
adsorption of AMX molecules occurs on a monolayer at the surface of these adsorbents
with the presence of a finite number of energetically equivalent adsorption sites [49,53,54].
Regarding the Ca-B-900, the Freundlich model is the most suitable, with the highest R2

(0.962) and the lowest MAPE (7.9%) (Table 4). This indicates that AMX adsorption onto
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this adsorbent occurs heterogeneously and on multilayers [61,62]. In addition, for the three
biochars, the AMX adsorption is favorable since all the calculated Langmuir’s constants

(RL =
1

1 + KL∗C0

) were lower than 1, and the Freundlich coefficient (n) is higher than

1 (Table 4). The Langmuir’s adsorption capacities of AMX onto Ca-B-700, Ca-B-800, and
Ca-B-900 were assessed to be 13.6, 46.8, and 56.2 mg g−1. The increase of this parameter
with the rising pyrolysis temperature is mainly ascribed to the enhancement of the textural
properties of the biochars. For instance, the BET surface area of the Ca-B-900 was evaluated
to be 14.1 and 3.1 times higher than those of Ca-B-700 and Ca-B-800 (see Table 2).
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Figure 8. Isotherm experimental data of AMX removal by the synthesized Ca-rich biochars and their
fitting with Freundlich, Langmuir, and D-R models.

Table 4. Calculated isotherms parameters for AMX removal by the synthesized Ca-rich biochars.

Isotherm Parameter Ca-B-700 Ca-B-800 Ca-B-900

Langmuir

KL (L mg−1) 0.019 0.007 0.0136

qm,L,pred (mg g−1) 14.6 46.8 56.2

R2 0.982 0.975 0.962

MAPE (%) 9.8 12.1 11.4

Freundlich

n 1.38 1.10 1.31

KF 0.409 0.346 1.134

R2 0.941 0.947 0.962

MAPE (%) 13.7 14.8 7.9

D-R

qm,D-R,pred (mg g−1) 13.6 26.3 37.1

E (kJ mol−1) 4.75 4.24 4.96

R2 0.986 0.998 0.941

MAPE (%) 6.0 4.3 13.8

It is important to underline that the adsorption capacity of Ca-B-900 is about 1.8 and
1.5 times larger than those given for biochars produced from the pyrolysis of Zn-modified
sludge [34] and olive stone waste [63] (Table 5). It is comparable to the efficiency of a
H3PO4-modified biochar from waste coffee grounds [61]. However, the Ca-B-900 effi-
ciency is much lower than biochars derived from the pyrolysis of KOH-modified sludge:
204.0 mg g−1 [64], a KOH-pretreated sludge: 305.0 mg g−1 [65], and NaOH-pretreated
guava seeds: 570.5 mg g−1 [66] (Table 5). These latter materials have more interesting
physico-chemical properties than our Ca-rich biochars. For instance, the synthesized
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NaOH-guava seeds-derived biochar has exceptionally high BET surface area and total pore
volume of 2573.6 m2 g−1 and 1.26 cm3 g−1 [66].

Table 5. Comparison of AMX removal capacity of the Ca-rich biochars with other engineered biochars
(T: pyrolysis temperature; G: heating gradient; t: residence time; RT: room temperature; -: not given).

Feedstock,
Provenance Pretreatment Pyrolysis

Conditions Post-Treatment
Adsorption

Experimental
Conditions

Langmuir’s
Adsorption

Capacity (mg g−1)
Reference

Vine wood, Iran - T = 600 ◦C; G = -;
t = 2 h

Impregnation
with NaOH at a
mass ratio of 5%

C0 = 20–200 mg L−1;
pH = 2; D = 0.4 g L−1;

t = 8 h; T = 25 ◦C
2.7 [67]

Industrial
sludge, Oman

-

T = 750 ◦C;
G = 5 ◦C min−1;

t = 2 h

- C0 = 20–120 mg L−1;
pH = 6.8 ; D = 1 g L−1;

t = 3 h; T = RT

22.6

[34]
Impregnation

with 1 M ZnCl2
31.9

Impregnation
with 1 M FeCl3

32.1

Olive stone, Tunisia

Impregnation
with phosphoric

acid (50%, by
weight) at 110 ◦C

for 9 h

T = 170 ◦C; G = -;
t = 0.5 h, then

T = 380 ◦C; G = -;
t = 2.5 h

-

C0 = 12.5–100 mg L−1;
pH = not adjusted;

D = 1 g L−1; t = 10 h;
T = 20 ◦C

38.7 [63]

Coffee grounds,
South Korea

Impregnation
with phosphoric
acid at 110 ◦C for

36 h

T = 600 ◦C; G = -;
t = 2 h -

C0 = 0–200 mg L−1;
pH = not adjusted;

D = 1 g L−1; t = 24 h;
T = RT

54.6 [61]

Paper mill
sludge, Portugal

Impregnation
with KOH at

a ratio
(KOH/sludge) of

1:5 (w/w), then
sonication for 1 h

in an
ultrasonic batch

T = 800 ◦C;
G = 15 ◦C min−1;

t = 20 min
-

C0 = 0–5 mg/L;
pH = not adjusted;

D = 15 mg L−1;
t = 15 h; T = 25 ◦C

204.0 [64]

Pulp and paper mill
sludge, Sweeden

Impregnation
with KOH at a

mass ratio of 1:1

T = 800 ◦C;
G = 10 ◦C min−1;

t = 3 h
-

C0 = 0–1000 mg L−1;
pH = 6; D = 1.5 g L−1;

t = 4 h; T = 25 ◦C
305.0 [65]

Guava seeds, Brazil -
T= 500 ◦C;

G = 20 ◦C min−1;
t = 2 h

Impregnation
with NaOH at a
mass ratio of 3:1

(NaOH/biomass),
then pyrolysis for:

T= 750 ◦C;
G = - ◦C min−1;

t = 1.5 h

C0 = 50–800 mg L−1;
pH = 4; D = 1 g L−1;

t = 4 h; T = 25 ◦C
570.5 [66]

Mixture of poultry
manure and date

palm waste, Oman

Mixing with
waste marble

powder

T = 700 ◦C;
G = 5 ◦C min−1;

t = 2 h -
C0 = 5–100 mg L−1;

pH = 6.8 ; D = 1 g L−1;
t = 20 h; T = RT

14.6
This

studyT = 800 ◦C; Idem. 46.8

T = 900 ◦C; Idem. 56.2

Additionally, for all tested biochars, the calculated free energy (E) by the D-R model
is lower than 8 kJ mol−1 (Table 4), suggesting that AMX adsorption would also involve
physical processes [66]. This result is in agreement with that presented by Meghani et al. [46]
and Varela et al. [51] regarding AMX removal by biochars derived from ginger waste and
corn cobs, respectively.

The main mechanisms involved in AMX removal by the Ca-rich biochars were ex-
plored by combining the experimental results (pH effect), the numerical studies (both
kinetic and isotherm), and previously published data. Indeed, on the basis of the pH effect
and the kinetic and isotherm studies, it seems that the AMX adsorption by the synthe-
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sized biochars involves both physical and chemical processes. The physical mechanisms
may include low-energy interactions such as pore filling, Van Der Waals, and hydrogen
bonds [36]. The chemical processes may encompass electrostatic interactions between the
positively charged biochars’ particles and the negative forms of AMX (above the pKa1 of
2.7). Moreover, according to FTIR spectra of the biochars before and after AMX adsorption,
only the hydroxyl groups might be involved in the adsorption process. Indeed, for all
biochars, the –OH, the narrow peak observed at 3643 cm−1 (see Figure 3), has completely
disappeared for the three biochars. Moreover, the second O-H peak observed before the
adsorption at 3427 cm−1 was shifted by +6, +5, and +20 cm−1 for Ca-B-700, Ca-B-800, and
Ca-B-900, respectively. Besides that, AMX adsorption could also involve π-π interactions
between π electrons existing in the aromatic rings of the biochars, the conjugated aromatic
rings of AMX [68].

3.3. Challenges and Opportunities

This study shows that Ca-rich biochar may be considered an interesting material for
AMX removal from aqueous solutions under static conditions. The precise assessment
of AMX and other pharmaceuticals removal for wider experimental conditions under
dynamic mode (columns and reactors) is crucial for future work. These dynamic assays
have the main advantages of using large-scale plants where the pollutant can be contin-
uously injected through the adsorbent bed in column mode, and either the adsorbate
or the adsorbent can be continuously fed to the CSTR system. Such a study should be
compared with the related rare previous works [29,31]. Moreover, the management of
the pharmaceutical-loaded biochars is another challenge to be ascertained. Nowadays,
various chemical reagents have been tested for the effective regeneration of AMX-loaded
biochars. They showed that the regenerated biochars could be used for several cycles
without a significant decrease in their adsorption capacities [10,69]. The desorbed and con-
centrated solutions with AMX can be treated by using advanced oxidation processes [70].
Therefore, the optimization of the desorption process and the treatment of the desorbed
solution by adapted technologies (i.e., advanced oxidation processes) have to be intensively
investigated in the future. Besides these technical challenges, the economic side has to be
seriously considered. In this context, the energy consumption during the pyrolysis process
should be absolutely reduced. Moreover, important work has to be undertaken regarding
the social perception constraints of biochar production and use. Finally, policy challenges
concerning solid waste conversion into biochars and their use for wastewater treatment
have to be accounted for [71]. In this regard, the implementation of biochar use specific
incentives for concerned end users’ encouragement could significantly contribute to its
widespread application.

Nevertheless, biochar production and use is currently gaining high worldwide atten-
tion [15]. According to the latest report of the International Biochar Initiative (IBI), more
than 350,000 metric tons of biochar were produced in 2023, and a 91% compound annual
growth (CAGR) was estimated for 2021 [72]. Moreover, it is projected that by 2025, biochar
revenues will grow further to around USD 3.3 billion [72]. Biochar is usually presented as
an interesting alternative to activated carbons (for wastewater treatment) and synthetic
fertilizers (for agricultural soil amendment). In our case, the Ca-rich biochars production
and use for pharmaceuticals removal and nutrient recovery present remarkable advantages,
including (i) better management of huge amounts of poultry manure and date palm waste,
as well as industrial marble waste, (ii) preservation of surface water against pollution and
eutrophication due to the presence of high contents of nutrients and also pharmaceuticals,
(iii) greenhouse gases emission reduction, and (iv) promotion of sustainability and circular
economy concepts that is highly recommended by international initiatives such as the
United Nations Sustainable Development Goals and also specific future national visions in
several countries.
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4. Conclusions

This paper demonstrates that Ca-rich biochars generated from the co-pyrolysis of
poultry manure, date palm fronds, and waste marble powder can be considered promising
materials for amoxicillin removal under wide experimental conditions in batch mode. High
AMX removal ability can be obtained through the increase of the pyrolysis temperature,
which significantly improves the biochars’ structural, textural, and surface chemical prop-
erties. The highest AMX removal capacity was observed for Ca-B-900 (56.2 mg g−1), which
is relatively high in comparison with some other engineered biochars. The experimental
and modeling study shows that the AMX removal process may involve both physical and
chemical mechanisms, such as pore filling, π-π interactions, Van Der Waals and hydrogen
bonds, electrostatic interactions, and complexation with hydroxyl groups. Further dynamic
investigations using laboratory columns and/or reactors are needed in order to confirm
these results. Moreover, the management of the AMX-loaded biochars should be explored
in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr12081552/s1, Figure S1: SEM/EDS analyses of Ca-B-700 (a), Ca-
B-800 (b), and Ca-B-900 (c); Table S1: Kinetic and isotherm model equations used for the fitting of
experimental data.
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