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Abstract: In the development of Smart Cities, efficient waste collection networks are crucial, especially
those that consider recycling. To plan for the future, routing and depot location techniques must han-
dle heterogeneous cargo for proper waste separation. This paper introduces a Mixed-Integer Linear
Programming (MILP) model and a three-level metaheuristic to address the Periodic Location Routing
Problem (PLRP) for urban waste collection. The PLRP involves creating routes that ensure each
customer is visited according to their waste demand frequency, aiming to minimize logistical costs
such as transportation and depot opening. Unlike previous approaches, this approach characterizes
each type of customer considering different needs for waste collection. A total of 25 customer types
were created based on mixed waste demands and visit frequencies. The proposed algorithm uses
Variable Neighborhood Search (VNS) and Local Search heuristics, comprising three neighborhood
generation structures. Computational experiments demonstrate that the VNS algorithm delivers
solutions seven times better than exact methods in a fraction of the time. For larger instances, VNS
achieves feasible solutions where the MILP model fails within the same time frame.

Keywords: location and routing; VNS; sustainable development; PLRP; selective waste collection

1. Introduction

Recycling is an efficient and popular remedial measure to control the volume of
waste in cities. Over the past 65 years, 8.3 billion tons of plastic have been produced,
where over 70% ended in landfills, uncontrolled dumpsites, and oceans, and only 9% is
recycled [1]. However, waste utilization and management depend on source and transport
separation, both of which are essential elements to improve a recycling culture. In particular,
in Latin America, recycling behavior has a strong relationship with the availability and
reliability of a waste management system. As a result, Non-Governmental Organizations
and lawmakers have made efforts to organize network infrastructures for appropriate
waste disposal. They intend to retrieve some value from discarded products through
recycling and reinserting them back into the supply chain [2]. Proper waste collection
and management generate significant environmental and social benefits. It can reduce
environmental pollution by optimizing waste collection routes and categorizing different
waste types, thereby minimizing greenhouse gas emissions and fuel consumption. It can
also prevent soil and water contamination and conserve natural resources. The optimization
models lower operational costs for companies and the economic burden on society for
waste treatment, while enhancing community health and safety. On the contrary, inefficient
waste collection can lead to negative effects in cities: excessive air and noise pollution,
traffic congestion, and the surge of illegal dumping [3]. Such localized environmental
decay factors are associated with high health risks. For example, there has even been a
link determined between cancer mortality and the level of pollution caused by inadequate
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waste control in critical contexts of illegal dumping [4]. The United Nations has included
this issue in its Sustainable Development Goals (SDGs) [5]; specifically, target 12.5 aims to
minimize the volume of landfills by promoting recycling.

The waste collection problem accounts for up to 70% of the total waste management
cost [6]; therefore, optimizing transportation improves the whole system considerably. This
problem is often approached as a Vehicle Routing Problem (VRP) [7]. In the literature,
applications are found in the health sector solving the healthcare waste transportation
problem [8]. Other works consider the sustainable recycling of solid [9] or hazardous
waste [10], and there are even studies focused on the management of medical waste
resulting from the COVID-19 pandemic [11]. Nevertheless, existing literature suggests that
the Facility Location Problem (FLP) for waste depots and the VRP for collection should
not be treated as separate problems, since the decisions are affected by both systems [12].
For example, Rabbani et al. describe an industrial waste transportation system in the
automotive industry, proposing a capacitated location-routing model with a heterogeneous
fleet of vehicles, focusing on a case from the SAIPA company in Iran [13]. This holistic view
of waste management involves urban planning as well, because the increasing population
and growth of cities require waste collection facilities to be located in accessible areas. These
depots should be placed closest to every customer of the waste collection network. Thus,
the overall costs of the waste collection improve not only by better routing, but also by
shorter distances because of the closer depot location. The decision of location is a strategic
one that endures over a long period of time, whereas routing is an operational decision that
can be modified frequently over a short time frame. When examining cost-effectiveness
for waste collection in the long term, short-term (operative) solutions impact long-term
benefits (optimal arrangement). This problem is referred to in the literature as the Periodic
Location-Routing Problem (PLRP) [14]. Traditional approaches to waste collection and
transportation, such as using fixed routes and schedules, can lead to inefficiencies and
fail to address the complex dynamics of urban waste management [15]. For example, it is
common that not all customers have the same collection demand.

In order to solve this problem more realistically, in this paper, a Mixed-Integer Linear
Programming (MILP) model is presented; it includes the waste customer-type dimension,
which considers the separation of unmixed waste types during the transportation to the
landfill or depot, where the recycling process can be continued unpolluted. Some of
the types of waste considered relevant for re-utilization in the literature, and which are
highly produced in the urban waste context of Latin America, are organic, plastic, paper
and cardboard, glass, and waste from electrical and electronic equipment (WEEE). These
were the five selected types of waste for the problem characterization. The MILP solution
can also take into account factors such as changing waste volumes between customers
by improving distances traveled and operating costs. However, the drawback of exact
methods is the huge amount of time it requires to reach optimal solutions. In order to
reach feasible solutions in NP-hard problems such as this one within a more suitable time
frame, a Variable Neighborhood Search greedy metaheuristic is also proposed. It has three
searching levels, each with its own criteria: a random key re-ordering for prioritizing
customer visit sequences, a relocate-shift operator to exchange the sequence of visiting
days, and a combinatorial opening of depots. Considering the complexity of the problem,
the designed metaheuristic hereby operates under a series of assumptions that allow
finding near-optimal solutions without relaxing constraints, contrary to previous studies
in the literature [16]. The proposed models are tested in adapted instances; results show
that regarding the mathematical model, the VNS obtained results 7 times better in one
ten-thousandth of the time.

The remainder of this paper is organized as follows. Section 2 presents a literature
review. Section 3 describes in detail the assumptions and characterization of the problem.
In Section 4, the proposed MILP formulation is presented. Section 5 presents the proposed
metaheuristic and the search strategies are detailed. In Section 6, the computational results
are displayed. Finally, Section 8 states the conclusions.
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2. Literature Review

The classical VRP is a relevant combinatorial optimization problem in transportation
and logistics that involves finding routes for a given set of customers. It was introduced
by Dantzig and Ramser more than 80 years ago and was typically formulated as a cost
minimizing problem with capacity and time constraints [17]. In recent decades, literature
has not only focused on studying methods for solving this complex problem but has also
defined different variants aimed at creating more realistic systems [18]. Beltrami and
Bodin were among the first to introduce the periodicity of visits, resulting in a routing
system over a planned time horizon in the context of waste collection [19]. In recent years,
the problem has gained attention with its many variations when dealing with real-world
problems and application of solutions. Such is the case of Christofides and Beasly, which
presented the first mathematical formulation and an interchange heuristic for PVRP [20].
Additionally, Cordeau et al. were the first to propose a Tabu Search (TS) algorithm for the
PVRP and Multi-Depot VRP (MDVRP) [21]. Salhi and Nagy formulated the problem as a
Mixed-Integer Programming (MIP) model and presented an adaptative clustering method
based upon genetic algorithms to solve it optimally [22]. However, their algorithm did
not improve the benchmark distances, although it reduced the number of trucks needed.
In 2001, Drummond et al. proposed an asynchronous parallel metaheuristic for solving
the Periodic Vehicle Routing Problem (PVRP) [23]. The solution was based on a TS with
multiple parallel search processes running asynchronously and exchanging information
periodically. The same year, solutions were already being implemented in cities, as did
Teixeira et al. when incorporating the waste collection for recycling (glass, paper, and P/M)
in Portugal, and they developed a TS for the PVRP [24]. Regarding the development of
VRP variants, we highlight the reviews proposed by Irnich, Toth, and Vigo [25].

The Periodic Location-Routing Problem (PLRP) is one of these latest variants where
a fleet of vehicles must visit a set of customers with known demand at fixed locations
over a planning horizon of several periods. Prodhon introduces the PLRP, proposing a
Randomized Extended Clarke and Wright Algorithm (RECWA); the metaheuristic iterates
local searches each day and throughout the horizon, arriving at the first PLRP solutions [12].
Shortly after, Prodhon and Prins developed a PLRP solution with a memetic algorithm
with population management in 2008 [12], arguing that strategic decisions (depot location
problem) should include feedback from periodic operations. Later, an Evolutionary Local
Search (ELS) on assigned visit days and a Path Relinking hybrid were implemented [26].
Other authors such as Pirkwieser and Raidl also presented hybrid solutions; aiming for
better results, their heuristic was based on VNS and a Very Large Neighborhood Search
combination (VLNS) [27]. In general, research over the past couple of decades has focused
on developing new algorithms that can reach Best Known Solutions (BKSs) in shorter
computational times. However, few works have delved into solutions adapted to the needs
of selective recycling when collecting waste.

Vidal et al. proposed a hybrid genetic algorithm for solving the multi-depot and
periodic vehicle routing problems in 2012 [28]. The algorithm integrates two different
types of operators: local search operators that exploit the characteristics of the problem and
genetic operators that ensure a global search of the solution space. Hemmelmayr proposed
in 2014 a Sequential and Parallel algorithm to solve the PLRP [29]. This approach used
a Large Neighborhood Search (LNS) to generate a set of solutions that exhibit superior
quality and an average execution time of 91.1 s. In 2017, Hemmelmayr et al. used exact
and heuristic solutions to solve the PLRP, motivated by collaborative recycling efforts in
non-profit agencies [16]. The models focus on deciding which depots to open, their capacity,
and the frequency of visits to design collaborative collection networks. Subsequently, Koç
proposes a new metaheuristic algorithm, called the Unified-Adaptive Large Neighborhood
Search (UALNS), to solve the PLRP. The UALNS algorithm operates iteratively with
removal and insertion procedures, which achieve highly competitive results [30]. Other
authors, such as Yu et al., tackled the heterogeneous fleet for a variant of the VRP known as
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the Green Vehicle Routing Problem (GVRP) using a branch-and-price algorithm. In their
approach, the primary objective was to minimize the total carbon emissions [31].

As the PLRP continues to be applied in various contexts and with different vari-
ations, researchers have faced challenges in identifying the most appropriate heuristic
method based solely on literature-based results. Nonetheless, the specific characteristics
and constraints of each real-world case should be considered when selecting a suitable
heuristic approach. Aringhieri et al. proposed a mathematical model and a VNS with
a perturbation procedure over its initial solution to solve a real case of the PLRP with
waste disposal [32]. Other authors have worked with the PLRP for waste collection with
heterogeneous cargo and found out that even when total distance and time increase, the
costs per customer are lower in relation to waste transport without selective collection [33].
Later, Flores-Carrasco et al. proposed a greedy constructive heuristic where customers are
identified by type of waste and the feasible days to be served for the Periodic Location-
Routing with Selective Recycling Problem (PLRPSRP); this variation of PLRP in a recycling
context is the basis of this work [34].

Table 1 summarizes the latest work which combines some of the main characteristics
needed for a PLRSRP: Multi-Depot (MD), Waste Collection (WC), Heterogeneous (unmixed)
Cargo (HC), Heterogeneous Demands (thus, visit frequencies) from the customers in the
network (HD), periodicity (P), and the Location-Routing Problem (LRP). Regarding the
solution methods, the following are commonly used: LNS (Large Neighborhood Search),
ALNS (Adaptive Large Neighborhood Search), B&P (Branch and Price), NS (Neighborhood
Search), MILP (Mixed-Integer Linear Programming), and H (heuristic).

Table 1. Most relevant features in the literature on location-routing problems.

Paper Problem Solution Approach MD WC HC HD P LRP

[29] PLRP LNS ✓ ✓ ✓ ✓
[16] PLRP ALNS ✓ ✓ ✓ ✓ ✓
[30] PLRP ALNS ✓ ✓ ✓
[31] GVRPTW B&P ✓
[32] VRP NS ✓ ✓
[33] VRP MILP ✓ ✓
[34] PLRP MILP & H ✓ ✓ ✓ ✓ ✓
[35] RLN * MILP & H ✓ ✓

This paper PLRP MILP & VNS ✓ ✓ ✓ ✓ ✓ ✓
* RLN: Recycling Logistics Network.

This classification of customers and their heterogeneous demand for waste is advan-
tageous because it incorporates recycling into the modeling of the solution, in a way that
can also be applied in different contexts. Based on the literature review, only a few papers
can be found proposing metaheuristics designed to solve the PLRP considering all the
characteristics listed above, and customers’ different needs of waste collection in a recycling
network context. Some authors have even mentioned the importance of incorporating both
environmental and economic factors in the network design for solving location-routing
problems [35]. In this paper, the PLRP is addressed from a selective recycling view, where
heterogeneous waste production from each customer is a key consideration. Identifying
frequencies and demands for each type of waste and determining feasible sequences for
each customer by characterizing its customer type restrains the optimization of distances
and transportation costs to a practical waste collection solution.

On the other hand, the selection of the solution method includes a Mixed-Integer Lin-
ear Programming (MILP) model and a Variable Neighborhood Search (VNS) algorithm. Its
choice is based on the fact that VNS has proven to be an effective tool in solving a wide array
of optimization problems [36,37], particularly in the context of vehicle routing and its more
complex green variants. For instance, García-Vasquez et al. demonstrated the application of
a VNS-based three-phase algorithm to effectively address the pollution traveling salesman
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problem, showing the algorithm’s robustness and adaptability [38]. Similarly, Ferreira et al.
employed a VNS for the green vehicle routing problem with two-dimensional loading
constraints and split delivery; results show its capability to handle complex multi-constraint
scenarios efficiently [39]. İslim and Çatay utilized a matheuristic approach incorporating
VNS for the electric traveling salesperson problem with time windows and battery degra-
dation [40]. Su et al. employed a lightweight genetic algorithm with VNS for multi-depot
vehicle routing problems with time windows [41]. Additionally, VNS has been used in
vehicle routing problems with time windows and carbon emissions, emphasizing its utility
in environmentally focused logistics problems [42,43]. It has also been applied in strategic
decision-making levels such as facility location [44,45]. Furthermore, VNS has been suc-
cessfully used in vehicle routing problems that integrate scheduling components [46–48].
Thus, the justification for using a VNS in this paper ensures an optimal balance between
performance and adaptability to the unique constraints of the problem.

3. Problem Description

In general terms, the Periodic Location Routing Problem (PLRP) extends the traditional
Location Routing Problem (LRP) by incorporating a multi-period planning horizon. On
the other hand, the LRP is the result of uniting the Facility Location Problem (FLP) and
Vehicle Routing problem (VRP). Both are NP-hard problems; therefore, the LRP is NP-hard
as well [12]. The PLRP involves deciding the locations of facilities, the assignment of
vehicles to serve customers (forming routes), from these facilities over multiple periods,
and ensuring that each customer’s demand is met while respecting vehicle capacities and
the maximum number of facilities that can be opened. The objective of the PLRP is to
open a set of facilities and establish vehicle routes during a planning horizon in a way that
minimizes the logistical costs of the system. These costs consist of fixed costs for opening
facilities (depots) and the transportation costs of the vehicle routes in all periods.

In this paper, five types of residuals, and two dimensions of customers (organic and
non-organic) are considered. The type of waste corresponds to: (1) organic, (2) plastics,
(3) paper and cardboard, (4) glass, (5) metal and WEEE. Without loss of generality, it
is considered that customers can recycle a maximum of three different types of waste,
resulting in a total of 25 types of customers, as detailed in Table 2. Each customer has an
associated set of day combinations to be processed based on the frequency of customer
visits. Complete feasible combinations are shown in Table 3.

The collection frequency of the customer type depends on the type of waste to be
recycled. For example, for a customer who is type one, organic waste will be collected three
times (from a combination of 22 to 28), and no other waste will be collected. On the other
hand, for another customer, a type seven, organic will be collected three times a week (from
a combination of 22 to 28) and paper and cardboard will be collected twice a week (from
a combination of 8 to 21). The specific days are not assigned yet, but the customer type
determines the frequency of visits per type of waste. In this previous example, a customer
of type seven will have his non-organic waste collected independently from the organic
waste, in an order that means different trucks visiting, which could coincide on the same
day, but it is not mandatory. On the other hand, the depots correspond to the collection
centers in charge of recycling, where each depot will be assigned a set of vehicles in charge
of the collection.

Despite focusing on the recycling problem context in Chile, this work can be considered
a general framework for addressing the PLRP with selective recycling. This is because
most of the assumptions considered also apply in other contexts. Specifically, the Chilean
context was used to define customer types (Table 2), user requirements, and feasible visit
frequencies depending on waste types (Table 3). The main assumptions considered are
described below:

• Each route must start and end at the same depot.
• Plastic waste, paper and wood, glass, metal, and electronic waste can all be transported

in the same non-compartmentalized vehicle, since these wastes can be mixed.
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• Organic-type waste must be transported by a single vehicle without being mixed with
other types of waste due to the potential harm it may cause to others.

• A customer may be visited more than once a day depending on the type of waste
to collect.

• A customer cannot be visited two days in a row (there must be at least one intermediate
day so bins may re-fill).

• There is a set of depots that can be opened to receive customer waste.
• The Euclidean distance was considered for cost estimation.

Table 2. Types of waste for each type of customer.

Type Organic Plastic Paper and Cardboard Glass Metal and WEEE

1 1
2 1
3 1
4 1
5 1
6 1 1
7 1 1
8 1 1
9 1 1

10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
15 1 1
16 1 1 1
17 1 1 1
18 1 1 1
19 1 1 1
20 1 1 1
21 1 1 1
22 1 1 1
23 1 1 1
24 1 1 1
25 1 1 1

Table 3. All feasible combinations of visit days.

Combinations Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1 1
9 1 1

10 1 1
11 1 1
12 1 1
13 1 1
14 1 1
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Table 3. Cont.

Combinations Monday Tuesday Wednesday Thursday Friday Saturday Sunday

15 1 1
16 1 1
17 1 1
18 1 1
19 1 1
20 1 1
21 1 1
22 1 1 1
23 1 1 1
24 1 1 1
25 1 1 1
26 1 1 1
27 1 1 1
28 1 1 1

4. Proposed Mathematical Model

The Mixed-Integer Linear Programming (MILP) model proposed to solve this problem
is presented below. It was based on the model proposed by Flores-Carrasco et al. [34],
but includes four main new features: (1) the classification of customer types (25 in total),
considering that each customer may have a combined demand for several types of waste;
(2) the demand of each customer is subject to the waste type that requires the highest
collection visit rate; (3) vehicle capacities have separate compartments depending on the
compatible waste type; and (4) the periodic routing component is considered independently
for each waste type, so the number of collection visits can be fulfilled with different vehicles
on different days. Initially, the sets, parameters, and decision variables are presented,
followed by the objective function and respective constraints.

4.1. Sets

• U = {1, . . . , N}, set of all customers, where N is the maximum number of customers.
• T = {1, . . . , H}, set of days, where H is the maximum number of days in planning

horizon.
• W = {1, 2}, set of waste type (1: organic, 2: non-organic).
• D = {0}∪ {N + 1, . . . , N′}, set of depots, where (N′−N + 1) is the maximum number

of depots.
• K = {1, . . . , 10}, set of vehicles.
• R = {1, . . . , 28}, set of available sequences (Table 3).
• TC = {1, . . . , 25}, set of customer type (Table 2).
• RS(tc,w) ∈ R, set of sequences for customer tc ∈ TC type and its waste w ∈W.
• A = {(i, j) : i, j ∈ U ∪ D, i ̸= j}, set of feasible arcs between all nodes.
• AA = {(i, j) : i, j ∈ U, i ̸= j}, set of feasible routes between customers.
• AJ = {(i, j) : i, j ∈ U, i ̸= j}, set of feasible routes between depots and customers or

between customers.

4.2. Parameters

• CapDep: capacity of depots [md3].
• CapVeh: capacity of each vehicle [md3].
• PropDepw: proportion of capacity of each depot to store waste type w ∈W [%].
• Demu,w: customer demand u ∈ U for collection of each type of waste w ∈W [md3].
• Disa: distances for each arc a ∈ A [km].
• DTCi: customer type to the customer i ∈ U. The possible results are stored in the

set TC.
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• TF(DTCi ,w): number of days for waste w ∈W collection required by customer i ∈ U.
• Combr,t: binary matrix relating the feasibility of sequence r ∈ R to day t ∈ T.
• SiOrgi,w: auxiliary binary matrix that defines if customer i ∈ U has waste type w ∈W.
• CKM: cost per traveled kilometer [USD/km].
• CFd: fixed cost of opening a depot d ∈ D [USD].

4.3. Decision Variables

• Xijwkt :


1, if the arc (i, j) ∈ A transporting w ∈W is traveled by vehicle k ∈ K

in day t ∈ T
0, otherwise

• fiwdt :


1, if the customer i ∈ U with waste type w ∈W is assigned to depot

d ∈ D for day t ∈ T
0, otherwise

• yd :

{
1, if depot d ∈ D is opened
0, otherwise

• bbiw,(RS(DTCi ,w))
:


1, if customer i ∈ U type DTCi ∈ TC for waste type w ∈W

is assigned to sequence r ∈ RS
0, otherwise

• uiwk: order of the sequence in which customer i ∈ U with waste type w ∈ W is
attended by vehicle k ∈ K.

4.4. Proposed MILP Model

minimize z = ∑
(i,j)∈A

∑
w∈W

∑
k∈K

∑
t∈T

Xijwkt · Disij · CKM + ∑
d∈D

CFd · yd (1)

subject to
∑

(d,j)∈A
∑
k∈K

Xdjwkt ≤ yd · |K|, ∀t ∈ T, ∀d ∈ D, ∀w ∈W (2)

∑
(i,d)∈A

∑
k∈K

Xidwkt ≤ yd · |K|, ∀t ∈ T, ∀d ∈ D, ∀w ∈W (3)

∑
j∈U

Demjw · fiwdt ≤ CapDep · PropDepw · yd, ∀t ∈ T, ∀d ∈ D, ∀w ∈W (4)

∑
(i,j)∈A

Xijwkt = ∑
(i,j)∈A

Xjiwkt, ∀t ∈ T, ∀k ∈ K, ∀w ∈W, ∀j ∈ U (5)

∑
(i,j)∈A

∑
k∈K

Xijwkt ≤ 1, ∀t ∈ T, ∀w ∈W, ∀j ∈ U (6)

Xjdwkt ≤ f jwdt, ∀d ∈ D, ∀w ∈W, ∀k ∈ K, ∀t ∈ T, ∀j ∈ U (7)

∑
(i,j)∈A

∑
k∈k

∑
t∈T

Xijwkt = TF(DTCj ,w), ∀w ∈W, ∀j ∈ U (8)

uiwk − ujwk + CapVeh · Xijwkt ≤ CapVeh− Demjw, ∀t ∈ T, ∀k ∈ K, ∀w ∈W, ∀(i, j) ∈ AA (9)

uiwk ≥ Demi,w, ∀k ∈ K, ∀w ∈W, ∀i ∈ U (10)

uiwk ≤ CapVeh, ∀k ∈ K, ∀w ∈W, ∀i ∈ U (11)

∑
(i,j)∈AJ

Xijwkt · Demjw ≤ CapVeh, ∀t ∈ T, ∀k ∈ K, ∀w ∈W (12)

∑
r∈RS(DTCi ,w)

bbiwr = SiOrgiw, ∀w ∈W, ∀i ∈ U (13)
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bbjwr · TF(DTCj ,w) ≤ ∑
(i,j)∈A

∑
k∈k

∑
t∈T

Xijwkt · Combrt, ∀r ∈ RS(DTCi ,w), ∀w ∈W, ∀j ∈ U (14)

∑
w∈W

∑
d∈D

fiwdt ≤ 1, ∀w ∈W, ∀j ∈ U (15)

∑
i∈U

∑
w∈W

∑
t∈T

fiwdt ≤ yd · N, ∀d ∈ D (16)

∑
(d,o)∈A

Xdowkt + ∑
(o,j)∈A

Xojwkt ≤ 1 + f jwdt, ∀t ∈ T, ∀d ∈ D, ∀k ∈ K, ∀w ∈W, ∀j ∈ U (17)

Xijwkt ∈ {0, 1}, ∀t ∈ T, ∀k ∈ K, ∀w ∈W, ∀(i, j) ∈ A (18)

fiwdt ∈ {0, 1}, ∀t ∈ T, ∀d ∈ D, ∀w ∈W, ∀i ∈ U (19)

yd ∈ {0, 1}, ∀d ∈ D (20)

bbiwr ∈ {0, 1}, ∀w ∈W, ∀i ∈ U, ∀r ∈ RS(DTCi ,w) (21)

uiwk ∈ {0, 1}, ∀k ∈ K, ∀w ∈W, ∀i ∈ U (22)

The mathematical model was designed to obtain the optimal solution for the problem
through an exact method. This model aims to minimize the costs of operating trucks
through distances around the network and the fixed costs of opening an available depot.
Equation (1) shows the objective function adding variable and fixed costs of operation. The
former refers to those costs that depend on the routes of each vehicle, while the latter refers
to the opening costs.

Constraints (2) and (3) limit the maximum number of vehicles that leave and enter
each opened depot (yd) each day of the planning horizon. Constraints (4) limit the amount
of each type of waste collected per day without exceeding the capacity of the opened depot.
Constraints (5) represent each vehicle’s well-known balance constraints, stipulating that if
a vehicle visits a customer (node), the same vehicle must leave it. Constraints (6) limit a
customer to being visited only once by a vehicle each day. Constraints (7) establish the rela-
tionship between the variables xjdwkt and f jwdt, in order that if a customer is not assigned to
a depot, they cannot finish their route by returning to that depot. Constraints (8) ensure that
the number of visits required by customers is met according to the collection frequency of
each type of waste. Constraints (9)–(11) are responsible for eliminating sub-tours, adapted
from the Miller–Tucker–Zemlin (MTZ) formulation of the VRP. Constraints (12) guarantee
that each route does not exceed the vehicle’s capacity. The constraints (13) ensure that the
visit sequences assigned to each customer correspond to the respective type of waste; thus,
for example, if a customer has a requirement for organic waste collection, they can only be
assigned to sequences that have three visits per week. The constraints (14) establish the
collection compliance for each customer, considering the assigned visit sequence and the
type of customer; continuing with the previous example, these constraints ensure that this
customer is visited three times in the week by any vehicle. The constraints (15) allow at
most one depot per type of customer on a given day. The constraints (16) allow customer
assignments to depots only when they are open, establishing the relationship between the
variables fiwd f and yd. The constraints (17) specify that a customer can only be assigned to
a depot if there is a route connecting them. Finally, the constraints from (18)–(22) determine
the binary nature of the decision variables.

5. Proposed Variable Neighborhood Search

Neighborhood search-based approaches, like the Variable Neighborhood Search (VNS),
have been widely recognized as an effective metaheuristic for solving complex combinato-
rial optimization problems, including various routing problems [27,49–51]. For instance,
Wang et al. demonstrated the efficacy of VNS in solving the two-echelon capacitated vehicle
routing problem, achieving significant improvements in solution quality and computational
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efficiency compared to traditional heuristics [52]. Additionally, de Melo and Boaventura-
Netto proposed the Weight Evaluation Method (WOM), which is used to compare different
metaheuristic approaches for the Traveling Salesperson Problem (TSP), the Capacitated
Vehicle Routing Problem (CVRP), and other problems [53]. Their results demonstrate that
VNS obtained the best results in CVRP instances.

Mladenović and Hansen were the first to introduce the VNS [54]. It is an improvement
of the Local Search algorithm where the main objective is to find a better solution by
systematically changing the neighborhood structure within the search. VNS does not
follow a single path but rather explores different neighborhood structures seeking to
escape the local optima. In this section, all the proposed elements of the metaheuristics
are described.

5.1. Encoding Phase

A data structure was defined to generate an encoding of the data. This structure is
composed of three levels: customer type for the assignment of visit sequences, a random key
value assigned to the customers by the type of waste (which will generate a prioritization
of the nodes), and how depots are opened.

In the first level, the type of customer allows identifying the feasible visit sequences
that the customer can choose and it depends on the type of waste that the customer has
assigned. For example, if a customer has organic and not organic, the frequency of visits
would be in the group of visit sequences with three days per week (Table 3). In the second
level, each customer node has a random key value for each type of waste that the customer
has (this is a number between zero and one that represents a way of prioritizing the route
of visit). Finally, for the last level, there is a binary variable that establishes which depot
is opened. It is important to clarify that the sequence of visits is different to the route
sequence. The first is a set of days where a customer can be visited and the second is how
the customers are visited in a day.

Table 4 presents an example of encoding used for a metaheuristic. The <RKOrg> row
displays a random key that represents the priority order of customers for sequencing visits
specifically for customers with organic waste. Similarly, the <RKNoOrg> row represents
the priority order for customers with non-organic waste. The <SecOrg> row contains
values corresponding to the valid sequence of visits for organic waste customers, while
the <SecNoOrg> row does the same for non-organic waste customers. The <depot> row
indicates the depot locations, with numbers signifying different depots. Lastly, the <Status>
row is a binary indicator that shows which depot is currently open, where a value of
1 means the depot is open and 0 means it is closed. This encoding structure helps in
organizing and sequencing customer visits based on the type of waste and the status
of depots.

Table 4. Example of encoding for a metaheuristic.

Customer 1 2 3 4 5

RKOrg 0.78 0 0.42 0.57 0
RKNoOrg 0 0.61 0.8 0.12 0.3

SecOrg 27 15 8 2 27
SecNoOrg 18 10 2 2 27

Depot 0 1 2 3 4

Status 1 0 0 0 0

5.2. Decoding Phase

In this stage, when all information of the feasible solution is given, the data are
translated into (a) customers assigned to each day of visit according to the priority dictated
by the random key, (b) the routes that each vehicle will follow (according to the number
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of open depots and its fleet of vehicles), (c) the assignment of routes to the depots, (d) the
calculation of the distances traveled on each route, and (e) the calculation of the total costs.

First, depending on how many depots were opened, the algorithm sets the number of
vehicles. Then, 14 days are defined for planning: 7 days for collecting organic waste and
7 days for collecting non-organic waste. In total, it is one week of 7 days, where both types
of waste must be collected simultaneously. For each day, it evaluates if the node can be
assigned this day depending on its visit sequence and its random key value (because the
random key is equal to zero, it means that the customer does not have that waste). When
the customers are grouped into each day, they are divided into car routes (considering
the capacity and the random key value) and the distance traveled between the nodes is
calculated. Finally, considering the nodes in each route, the centroid of all its nodes is
calculated. It allows sorting the depots from the shortest distance to the longest distance for
each route’s centroid, and the algorithm chooses the first depot (the shortest distance) until
its capacity is full then it chooses the next depot. Figure 1 shows an example of centroid
calculation in a system with eight nodes, where nodes 8 and 7 are depots. Additionally,
there are two routes: 1-3-6 and 4-5-2. Regarding the centroid of the first route, depots 7 and
8 are at distances of 40 km and 70 km, respectively. Therefore, depot 7 would be chosen
for this route. Similarly, for the second route, depot 7 is again the chosen one. After this, it
sums the distance from the first node and last node of the route to the depot. The process
finishes by calculating the total cost. A pseudocode of the decoding phase is shown in
Algorithm 1.

Algorithm 1 Decoding Phase.
Input: feasible solution coding
Output: routes’ vehicles and cost

1: function DECODE(input solution, input data)
2: sort Nodes by RandomKey← List of nodes()
3: for each day in Days Planned do
4: assign node to the day← list of nodes()
5: end for
6: for each route in Route do
7: if vehicle capacity available > demand of node then
8: assign node to the route← list of nodes()
9: else

10: create New Route()
11: assign node to the route← list of nodes()
12: end if
13: end for
14: for each route in Route do
15: generate Centroid(coordinates of nodes)← list of nodes()
16: if depot = near depot then
17: assign depot to the route← list of routes()
18: end if
19: end for
20: for each route in Route do
21: calculate Distance← list of routes()
22: end for
23: calculate Total Cost← Solution(Distances, Depots)
24: end function
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Figure 1. An example of the centroid of two depots.

5.3. Initial Solution

In the initial solution generation stage, customers, demands, depots, and types of
customers are generated based on the data of the instance. Afterwards, the algorithm
assigns the sequences, random key values, and depot openings in a pseudo-random
manner with the Mersenne Twister MT19937 generator [55]. First, it evaluates the available
sequences to choose one according to the waste of the customer (organic or non-organic).
After, considering the types of waste that the customer has, it generates a number for both
organic and non-organic waste. Finally, a random number of open depots is generated and
selected at random.

5.4. Movement Rules: Three Generations of Neighborhoods

The proposed VNS considers three levels of decision making: route sequence, visit
sequence, and depot opening. Operators tailored to each level generate various neigh-
borhood structures. These rules affect customer prioritization and sequencing, providing
flexibility in visit scheduling to meet diverse visit type demands and allocate depots to
each customer. The movement rules are explained below:

1. Route Sequence Level: The exchange operator is used in this level. It consists of
choosing two nodes (they must have the same type of waste between organic and not
organic), and then their random key values are re-assigned. In Figure 2, nodes one
and four were chosen and their values were exchanged. This allows changes to be
made to the routes.

2. Visit Sequence Level: The Relocate and Shift operators were adapted. First, they
select one customer node and, depending on the type of customer, switch the visit
sequence of it (within the available sequences). This change can generate a different
visit route for the days where the customer was previously.

3. Depot Opening Level: Depending on the number of depots, all possible combinations
are established, considering openings from one depot up to the corresponding number.
Subsequently, the cost of each combination is evaluated, and the opening scheme
(number and location) with the lowest cost is selected.

For those levels, when the instance size is large, it is necessary to adapt the moves
to reduce the execution time. In these cases, the procedure consists of generating small
changes by creating a fixed number of neighbors (1000 in this work) that are random and
without repeating selections, allowing the search spaces to be traversed.
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Figure 2. An example of the exchange operator.

5.5. Stopping Criterion

Two types of stopping criteria are established. The first occurs when reaching an
execution time limit of 600 s. This value is defined in a general way, based on other
algorithms proposed in the literature related to vehicle routing [56,57]. The second occurs
when, after a complete iteration, searching among the three neighborhood structures (or
decision levels), the algorithm cannot find a solution that improves the current one.

6. Results

This section is divided into three subsections. The first details the adaptation of test
cases in which the proposed algorithms were executed, the second validates the use of
neighborhood structures in the search, and finally, the computational results are presented.

6.1. Adaptation of the Instances

Since there is no existing database in the literature for the addressed problem with all
its characteristics, Cordeau’s library [21] was used as a base and the instances were adapted.
This library has 42 instances and has been widely used to validate the Multiple Depot
Vehicle Routing Problem and its main variants [49]. The Cordeau’s instances presented
the next characteristics: number of vehicles in the closed interval from 1 to 12, customer
quantity between 20 and 417, number of planned days from 2 to 10, loading capacity of
vehicles, and maximum route duration.

For the new instances, the following main types of waste were identified: organic,
plastic, cardboard and paper, glass, metal and WEEE. However, the types of waste are
classified as organic and non-organic to simplify the problem. Nodes were generated
randomly, taking into account the type of customers, the frequency of visits and their
respective feasible day sequences, the demand associated with the type of waste, and
location coordinates. The planning horizon is one week of 7 days, during which the
collection requirements for both types of waste must be met.

Specifically, evaluating data in the context of recycling in Chile and consulting with
experts, the instances were generated considering the following.

1. Each depot will have a maximum capacity of 180,000 dm3.
2. The number of depots available to open corresponds to 15% of the number of customers.
3. Using technical data sheets, it was determined that the capacity of the vehicles should

be 18,000 dm3. In relation to the weight capacity, in a variety of Volvo truck brands
with this volume, it was found that the standard load capacity is 28,000 kg.
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4. It was determined that there are 10 vehicles available for each depot that is opened.
5. The combination of waste demanded will be assigned to each customer randomly,

where each customer will recycle a maximum of three different types of waste out of
the five available.

6. The amount of waste produced by customers depends on the type of waste they
recycle. Likewise, the frequency at which the customer will be visited per week is also
assigned (also depending on the type of waste). See Table 5.

7. In relation to the combination of days available for waste collection, depending on the
frequency of each customer, the maximum frequency obtained by type of waste will
be chosen [58]. The combination of available days for waste collection will depend
on the size of its frequency.

8. The demand to be collected from each customer will be the consolidated demand
divided by the maximum frequency of visits depending on the types of waste each
particular customer has, based on the proposal by [58]. For example, if a customer
has organic, paper and cardboard, and glass waste, the maximum frequency that
predominates over the others is that of organic waste, with 3 days a week (paper and
cardboard have 2 and glass has 1). Thus, the demand is divided by 3 days and the
need for collection per visit day is generated. Since metal and WEEE were considered
to include electronic waste from appliances and electronic products, it is known that
these products contain a small amount of different metals (such as nickel, lead, tin,
and mercury) that do not represent a large weight when discarded. In fact, the densest
components, which are usually circuit boards, have a density of 1600 kg/m3, but they
represent a considerable volume of WEEE. If a vehicle were filled only with WEEE, it
should have an average density less than or equal to 1555 kg/m3.

Table 5. Demand and frequency parameters based on Chile context.

Type of Waste Demand (dm3) Frequency (Days)

Organic 200 3
Plastic 4500 3
Paper and Cardboard 4500 2
Glass 400 1
Metal and WEEE 120 1

6.2. Validate Neighborhood Structures

In this subsection, the results of executing the proposed algorithm are shown consid-
ering each of the three decision levels (Route Sequence Level (RSL), Visit Sequence Level
(VSL), and Depot Opening Level (DOL)) independently and comparing them with the
algorithm integrating all levels or neighborhood structures. The purpose is to demonstrate
that, independently, each level contributes to the search, but by combining the strategies,
the synergy among them allows for better results. A total of 15 instances with different
sizes (from 23 to 479 nodes) were executed, and 10 replicas were taken for each instance.

Figure 3 shows the average total cost produced (z) for each instance, where Sequence
Only, Depot Only, and Random Key Only correspond to the exclusive use of the VSL,
DOL, and RSL search levels, respectively. One of the first findings is that depot opening
is one of the most influential costs due to its magnitude. On the other hand, when the
algorithm uses only RSL or VSL, it maintains the number of depots from the initial solution
and improves the routing and sequence assignment of the vehicles. When the algorithm
uses only the DOL level, it prefers to open the minimum number of depots but sacrifices
transportation costs. Since depot opening cost has the greatest impact on total cost, this
level generates the lowest-cost solutions. For the execution of the complete algorithm,
it generates solutions with lower total costs than those generated using only one of the
decision levels in all sizes. Therefore, the results suggest that the combination of all levels
allows for better-performing solutions. Regarding the computational cost for each level,
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Figure 4 shows the average execution time in each case. The sudden change in time when
reaching 276 nodes is because, for these instances, each level performs an exhaustive search
of all neighbors; beyond this number of nodes, the search was limited to a maximum of
1000 neighbors.
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Figure 3. Average costs of each level and neighborhood structure.
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Figure 4. Average execution times of each level and neighborhood structure.

6.3. Computational Results

The mathematical model and the metaheuristic were carried out on a PC with a
2.10 GHz GFX AMD Ryzen 5, 3500 U processor and 12 GB of RAM. The proposed mathemati-
cal model was executed using CPLEX 22.1.1.0 solver on AMPL language and the metaheuristic
was developed on Microsoft Visual Studio using C++ programming language.

The proposed mathematical model did not obtain a feasible solution for any of the
instances due to the complexity and size of the instances, with an execution time limit of
600 s. However, the proposed VNS achieved feasible solutions for all instances within the
time limit. This comparison does not mean that the mathematical model is flawed; indeed,
it was tested with rather small instances and it could find the optimal solutions.
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The instances (Inst.) were divided into three groups: small instances, medium-sized
instances, and large instances. All tables use the following nomenclature: C: number of
customers, D: number of depots, V: number of vehicles available, Z: total cost (USD), St:
resolution status (411 for AMPL represents reaching the time limit and finding no solution,
and 1 for the proposed VNS represents that could find a feasible solution), t: time (s), d:
distance (km). Total cost and distances are expressed in thousands. For the proposed VNS
results, a distinction is made between finding a feasible solution and having enough time
to return the best solution found. In the first case, it is only verified that the constructive
algorithm executed correctly; in the second, it is understood that all search strategies are
executed at all decision levels and the stopping criterion is reached.

Table 6 depicts the results for small-sized instances. Here, the size of the problems
is between 20 and 60 customers. For all these instances, the algorithm reaches the best
solution found using less time than the time limit. Furthermore, the average execution time
was 44.84 s. In all instances of small size, only one depot was opened. The value of z is
composed of the transportation cost, dependent on the route, and the opening cost. The
latter was set at USD 500,000 for each opened depot.

Table 6. Small-sized instance results.

Inst. C D V
Mathematical Model Proposed VNS

Z [USD] St t [s] d [km] Z [USD] St t [s] d [km]

p14 20 3 30 - 411 600 - 500,072.2 1 0.9 2051.2
p15 38 5 50 - 411 600 - 500,201.8 1 17.9 5713
p17 40 6 60 - 411 600 - 500,114.6 1 20 3245.4
pr01 48 7 70 - 411 600 - 500,202.8 1 38.5 5742.4
p02 50 7 70 - 411 600 - 500,109.4 1 42.4 3098
p03 50 7 70 - 411 600 - 500,124.2 1 39.6 3517
p01 51 7 70 - 411 600 - 500,128.4 1 42.1 3638.4
p24 51 7 70 - 411 600 - 500,363.0 1 49.8 10,286.4
p25 51 7 70 - 411 600 - 500,321.6 1 41.2 9115
p26 51 7 70 - 411 600 - 500,338.6 1 51.7 9596.4
p16 56 8 80 - 411 600 - 500,383.6 1 82.2 10,866.4
p21 60 9 90 - 411 600 - 500,187.2 1 111.8 5296.8

Table 7 depicts the results for medium-sized instances. These instances have a consid-
erable number of nodes, increasing the resolution’s complexity. However, the algorithm
obtains a feasible solution for all instances and the best solution found for most cases,
except for the instances with more than 114 customers, where the execution time limit was
reached. In these instances, only one depot was also opened; therefore, the opening cost is
set at 500,000 and the average execution time was 328.19 s.

Finally, Table 8 depicts the results for the group of the largest instances; the algorithm
reaches the execution time limit for 10 of the 12 instances. It only obtains the best solution
found for p12 with 163 customers and p23 with 168 customers. Nonetheless, it obtained a
feasible solution for the other instances. Three of the solutions opened two depots (pr06,
pr10 and p13) due to capacity constraints; in these cases, the opening cost was 1,000,000
and the average time was 587.27 s.
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Table 7. Medium-sized instance results.

Inst. C D V
Mathematical Model Proposed VNS

Z [USD] St t [s] d [km] Z [USD] St t [s] d [km]

pr07 72 10 100 - 411 600 - 500,345 1 90.3 9777
p04 75 7 70 - 411 600 - 500,147 1 94.6 4179
p05 75 11 110 - 411 600 - 500,158 1 96.8 4483.5
p06 75 11 110 - 411 600 - 500,171 1 101.3 4844.5
p18 76 11 110 - 411 600 - 500,382 1 116.6 10,824.5
pr02 96 14 140 - 411 600 - 500,419 1 252.8 11,860
p07 100 15 150 - 411 600 - 500,208 1 250.6 5908
p08 100 15 150 - 411 600 - 500,330 1 600 9355
p09 100 15 150 - 411 600 - 500,207 1 269.2 5865
p10 100 15 150 - 411 600 - 500,209 1 324.9 5943.5
p27 102 15 150 - 411 600 - 502,294 1 324.5 64,977.5
p28 102 15 150 - 411 600 - 502,145 1 316.7 60,781
p29 102 15 150 - 411 600 - 502,148 1 293.6 60,846
p19 112 16 160 - 411 600 - 500,757 1 473.3 21,439.5
p22 114 17 170 - 411 600 - 500,546 1 502.3 15,475
p11 139 21 210 - 411 600 - 500,115 1 600 3266.5
pr03 144 21 210 - 411 600 - 500,778 1 600 22,052
pr08 144 21 210 - 411 600 - 500,675 1 600 19,125

Table 8. Large-sized instance results.

Inst. C D V
Mathematical Model Algorithm

Z [USD] St t [s] d [km] Z [USD] St t [s] d [km]

p30 153 23 230 - 411 600 - 508,364 1 600 236,954
p31 153 23 230 - 411 600 - 508,917 1 600 252,632
p32 153 23 230 - 411 600 - 509,685 1 600 274,363
p12 163 24 240 - 411 600 - 500,197 1 505.5 5595
p23 168 25 250 - 411 600 - 501,201 1 541.7 34,020
p20 184 27 270 - 411 600 - 502,081 1 600 58,947
pr04 192 28 280 - 411 600 - 500,945 1 600 26,786
pr09 216 32 320 - 411 600 - 501,361 1 600 38,561
pr05 240 36 360 - 411 600 - 751,313 1 600 37,231
pr06 288 43 430 - 411 600 - 1,002,100 1 600 59,455
pr10 288 43 430 - 411 600 - 1,002,290 1 600 64,906
p13 417 62 620 - 411 600 - 1,001,475 1 600 41,660

Figure 5 shows the summary of the total cost and distance. For instances with more
than 300 nodes, the algorithm always opens two depots due to capacity constraints. Conse-
quently, the cost increased by over 1 million, but this allows decreasing the total distance.
On the other hand, Figure 6 represents the average execution time for the instances. The
global average was 327.91 s, and for instances larger than 120 nodes, the time increases to
600 s in most cases. In both figures, unusual behavior is observed with the instances of
approximately 180 nodes. This is because, despite being of a medium-sized instance, the
parameter values (coordinates, demands, etc.) generate a special structure in the constraints
that increases the complexity of resolution. Therefore, the costs and computation times
are higher.
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Figure 6. Average execution time for the entire algorithm implementation.

Since the mathematical model was unable to solve any evaluated instances, new
smaller instances were generated, ranging from 10 to 12 nodes, which are referred to as
small-scale instances. These were also adapted from Cordeau’s library [21], and a total of
12 instances were randomly generated. Their results were compared with the proposed
VNP. The executions of the mathematical model were performed in Cplex and Gurobi.
Table 9 summarizes the results found in the executions, where the letter <a> in the instance
names indicates that they are the adapted ones. In all instances, both CPLEX and Gurobi
solvers did not find an optimal solution but reported the best solution found within the
time limit. The results show that the VNS algorithm not only finds a better objective
function compared to the CPLEX and Gurobi solvers but also achieves better results in
less time. The difference between the Cplex and Gurobi solvers did not present significant
variations in total costs, being favorable to Gurobi by an average of 0.003%. However, when
disaggregating the objective function and only considering transportation costs (since in all
cases, a single depot is opened with its associated cost due to the small size of the instances),
the difference rises to 7.16% in favor of Gurobi. On the other hand, the proposed VNS
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surpasses both solvers within the stipulated time limit, achieving an average improvement
of 0.064% compared to Gurobi for total costs and 557.007% for the disaggregated cost.

Table 9. Comparison of results among CPLEX, Gurobi, and the proposed VNS.

Inst.
AMPL CPLEX AMPL Gurobi Proposed VNS

t [s] Z [USD] d [km] t [s] Z [USD] d [km] t [s] Z [USD] d [km]

p01a 600 500,265 7513 600 500,202 5722 0.12 500,030 850
p02a 600 500,214 6068 600 500,188 5326 0.06 500,030 841
p04a 600 500,243 6881 600 500,187 5297 0.11 500,029 822
p07a 600 500,173 4901 600 500,175 4958 0.03 500,025 697
p14a 600 500,323 9150 600 500,321 9093 0.05 500,044 1244
p15a 600 500,561 15,895 600 500,538 15,241 0.08 500,080 2266
p16a 600 500,598 16,952 600 500,644 18,244 0.09 500,090 2555
p17a 600 500,332 9414 600 500,315 8924 0.20 500,047 1340
p21a 600 500,337 9538 600 500,333 9433 0.20 500,047 1326
pr01a 600 500,491 13,909 600 500,470 13,314 0.15 500,072 2040
pr02a 600 500,591 16,734 600 500,573 16,232 0.26 500,085 2399
pr07a 600 500,598 16,929 600 500,597 16,912 0.17 500,091 2564

7. Limitations and Future Work

Despite the significant contributions presented in this study, several limitations need
to be addressed in future research. Firstly, the proposed MILP model and VNS algorithm
were tested under specific conditions and assumptions, such as static waste generation rates
and fixed traffic conditions. This might limit the applicability of the model in real-world
scenarios where waste generation rates can vary dynamically and traffic conditions can
change unpredictably. Incorporating real-time data and adaptive mechanisms into the
model could enhance its robustness and applicability. Additionally, the model assumes
that each type of waste requires exclusive vehicle capacity, which may not be practical or
efficient in all contexts.

Secondly, the study primarily focuses on the optimization of logistical costs, including
depot establishment, transportation, and operational costs. While these are crucial factors,
other important aspects such as the environmental impact of waste collection and recycling
operations, customer satisfaction, and the social implications of the waste collection process
could be considered. The model can also be expanded to include environmental factors,
such as carbon emissions and routing with electric vehicles, which would align with global
sustainability goals. Moreover, these extensions would not only improve the model’s
ecological impact but also enhance its relevance and applicability in modern logistics.

Thirdly, given the specific characteristics of the problem, no other metaheuristics were
found that address the problem in its entirety. Exploring the integration and comparison
of other advanced metaheuristic techniques, such as genetic algorithms or ant colony
optimization, may offer improvements in solution quality and computational time. Recently,
there has also been interest in integrating artificial intelligence tools, such as Reinforcement
Learning, with metaheuristics to guide neighborhood search based on data and the learning
from past solutions; this could be an opportunity to further improve the search.

8. Conclusions

The constant population growth, increased demand for products in emerging economies,
and global warming have significantly increased the consumption of goods, resulting in
large amounts of waste in both businesses and households. This has highlighted the need
to develop more efficient collection systems to mitigate negative effects in cities. This
paper addresses the Periodic Location Routing Problem (PLRP) with multiple depots. This
logistic problem integrates the location of distribution centers, vehicle route planning,
and periodic delivery scheduling to meet customer demands. An important feature is
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the integration of a periodic time horizon into the problem (e.g., weeks). The objective
is to minimize total costs, including depot establishment costs, transportation costs, and
operational costs, ensuring that each customer is served with the required frequency. This
paper considers a selective recycling context involving major waste materials: organic,
plastic, paper and cardboard, glass, and waste from electrical and electronic equipment
(WEEE). This inclusion introduces new decision levels, as customers may have multiple
types of waste, different recycling needs, and feasible visit frequencies that can also vary
among customers. Additionally, the vehicles collecting the waste must have the exclusive
capacity for each type of recycling.

To solve this problem, a mathematical model based on mixed-integer linear program-
ming was designed to minimize logistic costs, including depot opening costs and vehicle
kilometer costs. To validate the model, Cordeau’s library was adapted to the problem’s
context and the parameters of a case were applied in Chile. A total of 42 instances of various
sizes were generated: small (20 to 60 customers), medium (72 to 144 customers), and large
(153 to 417 customers). The results of the mathematical model showed that it not only failed
to reach an optimal value within a time limit of 10 min for any instance size but also failed
to find a feasible solution. Therefore, a metaheuristic based on Variable Neighborhood
Search (VNS) was designed with three neighborhood structures focused on each decision
level: Route Sequence Level, Visit Sequence Level, and Depot Opening Level. The first cor-
responds to the routing sequence of each vehicle, the second explores the possible feasible
combinations of days for recycling for each customer, and the third evaluates the number of
necessary depots. The results show that the VNS outperformed the mathematical model in
terms of time and solution quality in all cases. It was also demonstrated that the combina-
tion of the three neighborhood structures improved the performance of each individually,
despite the creation of neighborhoods being limited to exploring 1000 neighbors for large
instance cases. Finally, smaller test instances were generated to validate the proposed
mathematical model with different solvers (CPLEX and Gurobi) and the proposed VNS.
The results show that although feasible solutions were found with both solvers, the VNS
outperformed them by 557% concerning the disaggregated objective function value (only
transportation costs, since a depot was always opened).

In conclusion, the proposed Mixed-Integer Linear Programming (MILP) model and
the Variable Neighborhood Search (VNS) metaheuristic present significant advancements
in solving the Periodic Location Routing Problem (PLRP) for urban waste collection. Un-
like traditional methods, our approach characterizes 25 distinct customer types based on
heterogeneous waste demands and visit frequencies, ensuring tailored and efficient waste
management. The integration of selective recycling needs, combined with a three-level
decision-making structure (Route Sequence, Visit Sequence, and Depot Opening), provides
a comprehensive and practical solution. Computational experiments demonstrate the VNS
algorithm’s superiority, delivering solutions seven times better than exact methods in a
fraction of the time and achieving feasible results where the MILP model fails. This work
not only enhances logistical efficiency but also aligns with global sustainability goals by pro-
moting effective waste separation and recycling. The proposed model and metaheuristic are
based on real-world data and assumptions pertinent to the Chilean context. The customer
types, visit frequencies, waste demands, and vehicle capacities were all derived from actual
Chilean data. For instance, cost per distance was specifically considered, acknowledging
Santiago de Chile’s relatively flat terrain, which lacks pronounced slopes. Therefore, the
transportation cost largely depends on the Euclidean distance. These localized parame-
ters ensure that the model reflects the practical realities of waste management in Chile.
Given these considerations, the proposed model is feasible for implementation by relevant
Chilean authorities. Its design aligns with the geographical and operational characteristics
of Chile, offering a tailored solution that can effectively address the country’s urban waste
management challenges.
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35. Vidović, M.; Ratković, B.; Bjelić, N.; Popović, D. A two-echelon location-routing model for designing recycling logistics networks
with profit: MILP and heuristic approach. Expert Syst. Appl. 2016, 51, 34–48. [CrossRef]

36. Wang, L.; Zhao, X.; Wu, P. Resource-Constrained Emergency Scheduling for Forest Fires via Artificial Bee Colony and Variable
Neighborhood Search Combined Algorithm. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5791–5806. [CrossRef]

37. Meng, L.; Cheng, W.; Zhang, B.; Zou, W.; Duan, P. A novel hybrid algorithm of genetic algorithm, variable neighborhood search
and constraint programming for distributed flexible job shop scheduling problem. Int. J. Ind. Eng. Comput. 2024, 15, 813–832.
[CrossRef]

38. García-Vasquez, K.; Linfati, R.; Escobar, J.W. A three-phase algorithm for the pollution traveling Salesman problem. Heliyon 2024,
10. [CrossRef] [PubMed]

39. Ferreira, K.; de Queiroz, T.; Munari, P.; Toledo, F. A variable neighborhood search for the green vehicle routing problem with
two-dimensional loading constraints and split delivery. Eur. J. Oper. Res. 2024, 316, 597–616. [CrossRef]
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