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Abstract: Non-aqueous biocatalysis has attracted broad interest recently due to its differences from
traditional aqueous catalysis and increased substrate solubility, which reduces feedback inhibition,
improving enantiomer selectivity and completing synthesis reactions that cannot be performed in an
aqueous solution. This approach shows remarkable application value in producing natural products,
chemical products, pharmaceutical intermediates, and foods. This study aims to provide a concise
overview of the current state of non-aqueous biocatalysis and its sustainability, summarizing the
mechanism of non-aqueous biocatalysis and recent progress using immobilization technology. It
includes different non-aqueous systems, such as organic phase systems, two-phase systems, ionic
liquid systems, deep eutectic solvent systems, and non-solvent systems. Finally, this manuscript
illustrates the challenges of non-aqueous catalysis and the prospects of the future areas of non-
aqueous catalysis research.
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1. Introduction

Biocatalysis, a green technology in synthetic organic chemistry, offers a novel method
for synthesizing products in an environmentally friendly way. Because enzymes have spe-
cific active centers, they can provide chemoselectivity, regioselectivity, or stereoselectivity for
products more easily than chemical catalysis. Biocatalysis can accomplish transformations that
cannot be performed by chemical methods [1–4]. These advantages have made biotransforma-
tion increasingly popular in synthesizing natural products, chemicals, pharmaceuticals, and
foods [5–9]. Because water is a natural solvent, most current research on targeted biosynthesis is
usually founded on aqueous solutions [10]. However, not all reactions can be performed in an
aqueous environment. For example, when some drugs or chemicals are utilized as hydrophobic
substrates, the aqueous phase system will cause the enzyme to separate from the substrate, thus
hindering reaction progress.

Therefore, non-aqueous phase biocatalysis, as an emerging area in industrial production,
has been proposed to overcome such problems. Aqueous phase catalysis can result in costly
purification processes because water has a higher boiling point and lower vapor pressure.
In addition, biocatalytic reactions in the aqueous phase produce undesirable side reactions,
including hydrolysis, racemization, polymerization, and decomposition, which are detrimental
to process production and economic efficiency.

In the mid-1980s, Klibanov discovered that enzymes retain their catalytic function even
in highly dehydrated organic solvents. Notably, some enzymes, including lipase and esterase,
may have higher catalytic activity in organic solvents relative to aqueous environments. Over
the next two decades, non-aqueous enzyme-catalyzed reactions rapidly emerged and found
diverse applications. These studies have uncovered numerous advantages of enzyme-catalyzed
reactions in non-aqueous phase systems. They enhance the solubility of organic substrates,
allowing for more efficient reactions. Additionally, they alter the equilibrium direction of the
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reaction, driving it toward the desired products and increasing the stereoselectivity of the
reaction, leading to the formation of specific products with precise configurations. Furthermore,
non-aqueous enzyme-catalyzed reactions inhibit side reactions involving water and readily
eliminate substrate and product inhibition.

Except for some lipases and esterases, other enzymes are highly sensitive to organic
solvents and less stable in organic media than in aqueous environments. Therefore, to improve
the catalytic efficiency and recovery of enzymes, some modifications are often made to the
enzymes. The enzyme can be genetically engineered, as Cai et al. obtained recombinant
methanol-stabilized esterase by gene engineering. In his study, the Bacillus subtilis DSM13552
gene estGSU753 was cloned, sequenced, and overexpressed in Escherichia coli BL21. The new
gene had an open reading frame of 753 bp and encoded a 250 amino acid esterase. The esterase
retained 50% of its original activity even after 35 h of incubation in 90% methanol. In addition,
modified enzymes can synthesize short-chain flavor esters and a more than 99% conversion
rate is obtained within 6 h [11].

Enzymes can be modified with materials to improve their stability. Enzyme immobiliza-
tion has been an extraordinary approach for large-scale applications because of the ease of
catalyst recycling, continuous operation, enzyme separation, diverse choice of reactors, easy
product purification, and low downstream processing costs [12,13]. Researchers have examined
various enzyme immobilization strategies, including affinity adsorption, covalent binding,
cross-linking, anti-micelle, and capture/encapsulation in emulsions, as well as organic polymers
like polyallylamine, activated charcoal, and chitosan and inorganic polymers such as nano
graphene oxide, nano-silica, iron oxide, and nano-gold [14]. Golombek et al. entrapped the
solvent-sensitive enzyme mandelate racemase in (cross-linked) polymersomes to protect it from
the organic phase. Mandelate racemase in (cross-linked) polymersomes remained active in
highly dispersed biphasic systems for over 24 h. The free enzyme, in contrast, was completely
inactivated within 1 h, illustrating the potential of polymersomes as nano-reactors in biphasic
reaction setups. This is because the covalent cross-linking of individual chains of the block
copolymer poly (2-methyloxazoline) 15-poly (dimethylsiloxane) 68-poly (2-methyloxazoline)
15 via terminal methacrylates leads to enhanced membrane stability, higher mass transfer, and
faster conversion [15].

To provide researchers in biology, chemistry, pharmacy, and medicine with a quicker
and more up-to-date understanding of non-aqueous phase biocatalysis in recent years, we
identify that biocatalysis shows remarkable value in the aqueous phase system, organic phase
system, ionic liquid system (IL), two-phase system, deep eutectic solvent system (DES), and
non-solvent system (Figure 1). Specifically, we summarize the properties of five non-aqueous
catalytic reaction media, focusing on their mechanisms. Then, we introduce the immobilized
enzyme catalysis in different types of solvents. Finally, we outline the current challenges the
non-aqueous phase catalysis faces and propose future directions.
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operate in organic solvents. Some micro-organisms from Bacillus sp., Rhodococcus sp., and 
Staphylococcus sp. are more tolerant to organic solvents [19,20] and their extracellular li-
pases have better stability in organic solvents, often used in industrial production [21]. 
Senaite Leykun et al. successfully isolated a thermophilic lipase SHI-160, an organic sol-
vent-tolerant lipase from Bacillus subtilis, from a hot spring in the Rift Valley, East Africa. 
SHI-160 can catalyze the reaction at an optimal temperature of 65 °C and retain over 90% 
of its activity after incubation at 70 °C for 1 h. The enzyme could catalyze both polar and 
non-polar reactions at high temperatures. The enzyme is stable in both polar and non-
polar organic solvents. This suggests the potential of lipase SHI-160 to catalyze reactions 
in non-aqueous media for synthesizing valuable compounds [22]. 

While organic solvents disrupt the integrity and stability of cell membranes [23–25], 
some organic-solvent-tolerant bacteria can still thrive in toxic environments. Because 
whole-cell catalysts benefit from protecting the cellular matrix, enzymes in crude extracts, 
especially when purified, may be more fragile than whole-cell catalysts. Therefore, re-
searchers determined that the tolerance of purified enzymes to organic solvent toxicity 
can be enhanced by protein engineering and physicochemical methods such as immobi-
lizing enzymes through modification or embedding [26–28], which can attain higher cat-
alytic efficiency. Iuliano et al. reported the use of waste fish oil as a raw material for wax 
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2. Organic Phase System

Biotransformation that takes place in a completely pure organic phase offers significant
advantages. For instance, it will increase the solubility of non-polar substrates, reverse
the thermodynamic equilibrium of the hydrolysis reaction, inhibit the water-dependent
side reactions, alter the substrate specificity, and eliminate microbial contamination. It has
greatly facilitated the use of organic solvents in industrial production. Enzymatic reactions
are carried out in the organic phase, which not only offers the benefit of being able to
solubilize hydrophobic substrates but also avoids emulsions generated by a two-phase
aqueous/organic solvent system. As two-phase emulsion makes product separation and
post-processing more challenging, when pure organic media are used, downstream process-
ing and unit operation steps can be simplified via simple filtration or decantation [16,17]. It
will make biocatalysis of organic phases ideally suited for producing bulk chemicals [18].

However, the application of enzymes in organic media is limited because the majority
of enzymes are less active and less stable in organic solvents and not all enzymes can
operate in organic solvents. Some micro-organisms from Bacillus sp., Rhodococcus sp., and
Staphylococcus sp. are more tolerant to organic solvents [19,20] and their extracellular
lipases have better stability in organic solvents, often used in industrial production [21].
Senaite Leykun et al. successfully isolated a thermophilic lipase SHI-160, an organic solvent-
tolerant lipase from Bacillus subtilis, from a hot spring in the Rift Valley, East Africa. SHI-160
can catalyze the reaction at an optimal temperature of 65 ◦C and retain over 90% of its
activity after incubation at 70 ◦C for 1 h. The enzyme could catalyze both polar and non-
polar reactions at high temperatures. The enzyme is stable in both polar and non-polar
organic solvents. This suggests the potential of lipase SHI-160 to catalyze reactions in
non-aqueous media for synthesizing valuable compounds [22].

While organic solvents disrupt the integrity and stability of cell membranes [23–25],
some organic-solvent-tolerant bacteria can still thrive in toxic environments. Because
whole-cell catalysts benefit from protecting the cellular matrix, enzymes in crude extracts,
especially when purified, may be more fragile than whole-cell catalysts. Therefore, re-
searchers determined that the tolerance of purified enzymes to organic solvent toxicity can
be enhanced by protein engineering and physicochemical methods such as immobilizing
enzymes through modification or embedding [26–28], which can attain higher catalytic
efficiency. Iuliano et al. reported the use of waste fish oil as a raw material for wax ester pro-
duction by esterification [29]. They proposed an approach to catalyze emollient synthesis
using immobilized lipase in the presence of oleol alcohol. Through ion exchange, interfacial
activation, and covalent anchoring, they immobilized lipase from Candida acuraculus on
a magnetic amino-functionalized super-cross-linking resin. They not only successfully
achieved a 90% immobilization rate but the yield reached 94% at 45 ◦C after 12 h. Table 1
summarizes the literature on the catalysis of immobilized enzymes in the organic phase
and their properties.

Table 1. Recent progress in organic phase-based immobilized enzyme catalysis.

Organic Phase
System Carrier Time (h) Catalyst Substrate Product Conversion (%) Reusability Ref.

Cyclohexane Super-
absorber 24 OxdB N-octanaloxime N-octanenitrile >99 - [30]

N-hexane Macro-porous
resin 10 Candida rugosa

lipase
Lauric acid
Phytosterol Phytosterol ester 96.6 6 [31]

N-hexane

Magnetic
amino-

functionalized
hyper-cross-
linked resin

12 Candida rugosa
lipase Waste fish oil Wax ester 94 10 [29]
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Table 1. Cont.

Organic
Phase

System
Carrier Time (h) Catalyst Substrate Product Conversion

(%) Reusability Ref.

Chloroform Acrylic resin - Novozym
435 lipase

Lactic acid
Ethanol Ethyl lactate 88 5 [32]

MTBE Acrylic resin 24 Novozym
435 lipase

N-trans-4-
coumaroyltyramine Coumaroyltyramine 65 - [33]

N-hexane

Iron
magnetic

nano-
particles

8
Candida

antarctica
lipase B

Butyric acid
Methanol Methyl butyrate 96.8 12 [34]

Tert-butanol Macro-
porous resin 3

Yarrowia
lipolytica

lipase

P-Nitrophenyl
laurate

Nitrophenol
Lauric acid - 5 [35]

N-heptane

Santa
barbara

amorphous-
15

3 Thermophilic
lipase QLM

Palmitic acid
2-ethyl hexanol

2-ethylhexyl
palmitate 99 10 [36]

Petroleum
ether

Macro-
porous
resin

HPD826

6
Candida

antarctica
lipase B

Vitamin A
acetate

Palmitic acid

Vitamin A
palmitate 84 15 [37]

2-methyl-2-
butanol Acrylic resin 24

Candida
antarctica
lipase B

Bixin
Sorbitol

Sorbitol ester
of norbixin 50 - [38]

Tetrahydrofuran Acrylic resin 72
Candida

antarctica
lipase B

3-(1-
acetoxyethyl)

phenyl acetate

(S) and (R)
enantiomers of 3-
(1-hydroxyethyl)

phenol

50 - [39]

3. Two-Phase System

Two-phase biocatalysis typically involves the use of two immiscible liquid phases,
often aqueous and non-aqueous. The non-aqueous phase contains organic solvents [40–42]
and ionic liquids [43,44], widely used for the transformation of non-hydrophilic substrates.
Two-phase is used narrowly to refer specifically to the aqueous-oil phase to distinguish it
from ionic liquid systems and low-eutectic systems. The advantages and disadvantages of
two-phase catalysis and its progress will be outlined.

Two-phase catalysis has various advantages, including the presence of water pro-
tecting the enzyme conformation and maintaining enzyme stability. Water is directly or
indirectly involved in all non-covalent interactions, maintaining the natural conformation
of the enzyme for catalysis [45,46]. If the enzyme possesses a completely anhydrous envi-
ronment for a long period of time, the spatial conformation of the enzyme will be distorted
and lead to inactivation. Therefore, the two-phase system is more rational because it can
overcome the problem of isolation and purification. Under the limiting conditions, once the
requirement for water is satisfied, the remaining water will not affect the enzyme activity,
even if it is replaced by an organic solvent.

As organic compounds only exhibit limited hydrophilicity, the load of the substrate in
biocatalytic transformations is usually restricted to the low millimolar range, which is far
lower than the titer required in industrial applications [47]. Various strategies and process
designs have been developed to enhance substrate concentration and limit solvent usage.
Enzymatic reactions typically occur in the aqueous phase at substrate concentrations near
the solubility limit, with the non-aqueous phase (usually the organic phase) operating
as a substrate reservoir, continuously delivering the substrate to the aqueous phase. Si-
multaneously, the non-aqueous phase is a product sink, removing reaction products from
the aqueous phase. In addition to achieving an extremely high substrate concentration,
two-phase biocatalysis offers several essential advantages, including preventing inhibition
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or changes in reaction equilibrium through continuous product removal and separating
products through phase separation [48].

Although oil–water systems are widely used in enzyme-catalyzed synthesis, it is
difficult for the enzyme to make contact with the substrate due to the large mass transfer
resistance in the two-phase system. It is often necessary to use co-solvents, surfactants,
or vigorous agitation. However, using co-solvents and surfactants can make it difficult to
separate and purify products. Additionally, intense stirring requires a significant amount
of energy and creates shear forces that can permanently alter the tertiary structure of the
enzyme, leading to a reduction in its activity or deactivation.

Pickering emulsions (PEs) can be widely cited in the field of biocatalysis as an excellent
system for catalytic hydrophobic substrates. PE was first proposed by Ramsden in the
20th century [49]. In the system, the use of surfactants was abandoned and some solid
particles were used as emulsifiers to stabilize the whole system. After the emulsifier enters
the oil–water phase, the irreversible adsorption of these solid particles at the oil/water
interface forms a dense film at the interface, blocking the collision between the two-phase
molecules; in addition, the surface adsorption of granulation will also increase the repulsion
between the emulsion droplets, which are also the stabilizing mechanisms of the currently
accepted PE. In Xu’s research [50], Candida antarctica lipase B modified with a metal-organic
framework operated as biphasic biocatalysts, which can prepare oil-in-water (o/w) PE with
an oil/water volume ratio of 3 by homogenizing p-nitrophenyl palmitic acid n-heptane
solution into a ZIF-8@CALB aqueous dispersion. The enzyme-catalyzed reaction had a
conversion rate of up to 48.9% within 0.5 h, while the p-NPP n-heptane solution system
containing free CALB only achieved a stable product conversion rate of 6.8%. In all
eight cycles, the hydrolytic equilibrium conversion rate of p-NPP was maintained at 40%,
reflecting the high catalytic efficiency and enzyme reuse ability of the PE [50]. This study
offered a new opportunity for practical application of the design of enzyme-MOFs-based
Pickering interface biocatalysts.

In addition, Pickering emulsions can be used to solve the problems caused by stirring
mentioned above. For the first time, Yang et al. used a non-stirring Pickering emulsion as a
reaction platform to overcome the problem of inefficient enzymatic reactions in organic-
aqueous systems [51]. In Yang’s experiment, a silica nano-sphere was used as the emulsifier
and Candida antarctica lipase B as the catalyst. The experimental results show that the
reaction efficiency of the Pickering emulsion reaches the maximum value without stirring.
This result shows that in PEs, due to the large interface generated by the emulsifier, the
enzyme and the substrate can easily contact and react at the interface and the catalysis of
the aqueous solution can protect the activity of the enzyme well, so the factor affecting
the reaction efficiency is not the stirring rate but the size of the droplet. Although the
Pickering emulsion system achieves good substrate utilization and high enzyme recovery,
the problem of two-phase separation complicating the formation of a stable emulsion
should also be considered [52]. Advances in two-phase-based biocatalysis are listed in
Table 2.

Table 2. Recent progress in two-phase-based immobilized enzyme catalysis.

Two-Phase System Ratio Carrier Catalyst Substrate Product Conversion
(%) Ref.

N-heptane/Water 3 ZIF-8 Candida antarctica
Lipase B Cinnamic acid Benzyl cinnamate 48.9 [50]

Methanol/Water 4:1
(v/v)

Nano-fibrous
membrane

Candida antarctica
lipase B

2-Bromoethyl ketone
Salicylaldehyde

Benzofuran-2-yl
(phenyl)

methanone
88 [53]

Acetonitrile/DMSO 3:2 XAD1180 resin Lipase UM1 Dihydromyricetin Vitamin E succinate 99 [54]
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Table 2. Cont.

Two-Phase System Ratio Carrier Catalyst Substrate Product Conversion
(%) Ref.

Dichloromethane/Water -
Metal-

surfactant
nano-capsules

Phospholipase
D Phosphatidylcholine Phosphatidylserine 91.9 [55]

Ethyl
acetate/Water 1:1 Mesoporous

silica cube
Phospholipase

D Phosphatidylcholine Phosphatidylserine 91.2 [56]

Castor oil/Water 1.60:1 Fe3O4@chitosan Candida rugosa
lipase Castor oil Ricinoleic acid 46.8 [57]

Paraffin oil/Water 1:1
(v/v)

Lignin/Chitosan
nano-particles

Candida rugosa
lipase

P-nitrophenol
palmitate

Nitrophenol
Palmitic acid 100 [58]

Hexane/Water 3:2 Coffee ground Candida rugosa
lipase

4-Nitrophenol
palmitate 4-nitrophenol 74 [59]

Ethyl
acetate/Sodium

acetate
1:1 Sodium

Alginate β-glucosidase Genipin Geniposide 47.81 [60]

4. Ionic Liquid System

Ionic liquid (IL) systems have been among the most widely researched fields in the
past decade [61,62]. The traditional definition of ionic liquids is a class of fluid at low
temperatures due to the formation of bulky chloroaluminate or chlorozincate ions at
eutectic compositions of the mixture; however, ionic liquids are now commonly referred to
as solvents composed of ions only. The traditional definition was first employed to describe
ionic liquids based on chloroaluminate salts. The first generation of ionic liquids were those
derived from organic cations with AlCl3 and ZnCl2 [61]. Such ionic liquids are fluid at low
temperatures due to large volumes of chloroaluminate or chlorozincate ions in the eutectic
components of the mixture. This reduces the charge density of the ions, which reduces the
lattice energy of the system, producing a lower freezing point. The second generation of
ionic liquids consists of discrete ions instead of the complex eutectic mixtures of ions that
are found in first-generation ionic liquids.

Wilkes and Zaworotko, using alkyl imidazolium salts, found that air- and moisture-
stable liquids could be synthesized by replacing AlCl3 in low eutectic ionic liquids with
discrete anions (tetrafluoroborate and acetate). HF is a useful tool for synthesizing low
eutectic ionic liquids [63]. Several studies have observed that exposure to moisture could im-
pact some chemical and physical properties. Water content increases as HF is produced [64].
The stability of ionic liquids can be improved by the addition of more hydrophobic an-
ions, such as trifluoro thanesulfonate (CF3SO3−), bis (trifluoromethane sulphonyl) imide
[(CF3SO2)2N−], and tris (trifluoromethane sulphonyl) methide [(CF3SO2)C−] [40,64,65].
These systems have the additional benefit of large electrochemical windows, allowing less
noble metals, inaccessible from chloroaluminate liquids, to be electrodeposited [64].

ILs have the potential to be versatile solvents and can be easily adapted to specific
applications. Firstly, ILs are widely utilized in the synthesis of biodiesel. Lozano et al.
reported a straightforward strategy using a mixture of the hydrophobic [C16mim] [NTf2]
with the hydrophilic [Bmim] [Cl] as a solvent to extract algae triglycerides and biotransform
them into biodiesel. After reacting for 2 h at 60 ◦C, a 100% biodiesel yield was attained.
Furthermore, the unique sponge-like [C16mim] [NTf2] permits clean separation of the
biodiesel product easily (via cooling or centrifugation) as well as the recovery and reuse
of the biocatalyst and IL system. Combining the unique properties of ionic liquids with
biocatalysts provides a sustainable solution for the synthesis of biofuel and enhances
the possibility of developing green industrial processes [66]. Fan et al. also studied
the hydroxyl-functionalized ionic liquid [C1C3OHPyr]NTf2 and used it as a medium for
lipase to produce biodiesel by transesterification. Furthermore, recycling ILs and lipase is
relatively easy via water and acetone washing, respectively [67].
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Additionally, ILs can operate as bifunctional solvents. This indicates that IL operates
as both a solvent and a catalyst. Chen et al. developed a novel, efficient, and simple
method for the synthesis of benzothiazoles under solvent-free conditions. They utilized
[Bmim] PF6 as a catalyst and 2-aminobenzenethiols and aldehydes as raw materials. In
this reaction, there is no requirement for additional organic solvents and it has a wide
substrate scope and excellent yield [68]. In Wei’s study, the synthesis of sulfonic acid
(-SO3H) and sulfhydryl group (-SH) bifunctional was designed in ionic liquids. The BFIL
catalyst could attain nearly 100% conversion of 9-fluorenone and high selectivity (95.2%) for
9,9-bis (4-hydroxyphenyl) fluorene. As a solvent, IL does not have an advantage over other
non-aqueous catalysis and developing its new applications is an urgent problem. However,
ILs did improve the reaction efficiency and solve the problems of enzyme production as
well as recycling. A summary of ILs is presented in Table 3.

Table 3. Recent progress in IL-based immobilized enzyme catalysis.

Ionic Liquid
System Carrier Catalyst Substrate Product Conversion (%) Ref.

[Bmim] PF6 Acrylic resin Novozym 435 lipase ε-caprolactone Poly (ε-caprolactone) 97 [69]

[EMIM] Ac
/[BMIM] [BF] Acrylic resin Novozym 435 lipase Chitosan Long-chain chitosan ester - [70]

[Bmim] [Tf2N] Acrylic resin Novozym 435 lipase Ethyl ferulate
Phosphatidylcholine

Feruloylated
lysophospholipids 50.79 [71]

[EMIM] [BF4] Santa Barbara
Amorphous-15 Mucor miehei lipase

Licylaldehyde
Indole

cyclohexane-1,3-
dione

Indolyl 4H-Chromenes 98 [72]

[Bmim] [TfO]
/[Bmim] [Tf2N] Acrylic resin Novozym 435 lipase Glucose

Fatty acid Glucose fatty acid ester 55 [73]

[Bmim] [PF6] Acrylic resin Novozym 435 lipase Palmitic acid
Glucose Glucose palmitate - [74]

[C16mim] [NTf2]
/[Bmim] [Cl] Acrylic resin Novozym 435 lipase Algal oil Biodiesel 100 [66]

[C16tma] [NTf2] Acrylic resin Novozym 435 lipase Aliphatic acids
Alcohol Flavor ester 100 [75]

[Emim] [Tf2N] Acrylic resin Novozym 435 lipase Caffeic acid
Phenylethanol

Caffeic acid
Phenethyl ester 63.75 [76]

[Bmim] [PF6] Acrylic resin Novozym 435 lipase Sterol
(1R,3R)-N-(3-hydroxy-1-

hydroxymethyl-3-
phenylpropyl) dodecanamid

23 [77]

[C1C3OHPyr] NTf2 Acrylic resin Novozym 435 lipase Soybean oil Biodiesel 82.4 [67]

5. Deep Eutectic Solvent System

To further develop green manufacturing and protect the environment, a deep eutectic
solvent system (DES), a new generation of green solvents, has shown great potential for
application across many fields [78–82]. DES are two- or three-component sub-eutectic
mixtures of hydrogen bond acceptors (HBAs) (quaternary salts) and hydrogen bond donors
(HBDs) (amines, carboxylic acids, alcohols, and carbohydrates) with a specific stoichiometry,
and a freezing point significantly lower than the pure substance [83–85]. To understand the
properties of DESs, Abbott et al. categorized DESs into four types: Type I (quaternary salt
and metal halide), Type II (quaternary salt and hydrated metal halide), Type III (quaternary
salt and hydrogen bond donor), and Type IV (metal halide and hydrogen bond donor) [84].

Compared to traditional solvents, DES is greener, biodegradable, and has higher substrate
solubility. Additionally, the majority of DES preparation is easier and cheaper [86,87]. DES has
gained wide attention and application as an alternative solvent to ionic liquid systems [88–90].
Many researchers have focused on using DES as a replacement for conventional solvents
in enzyme-dependent biocatalytic synthesis. In 2003, Abbot et al. obtained DES via the
interaction of choline chloride (melting point 302 ◦C) with urea (melting point 133 ◦C). This
combination of solids yielded a low eutectic mixture that was liquid at ambient temperatures,
exhibiting unusual solvent properties [84]. Hydrogen bonding and van der Waals forces can
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interfere with the ability of the initial compound to crystallize. HBA can shield the charge
when near certain HBDs and obtain DES [91].

To minimize the environmental impact of this process, as green co-solvents, the use of
natural deep eutectic solvents (NADES) in enzymatic conversions has attracted attention.
Mero et al. developed a sustainable biorefinery approach that combines the use of NADESs
for recovering polyphenolic compounds and bio-based ionic liquids to treat and convert
the remaining lignocellulosic residue into an ionogel. They evaluated the efficiency and
selectivity of different types of NADESs by changing both the hydrogen bond acceptor
HBA and the hydrogen bond donor HBD. Compared to traditional solvents, the majority of
ChCl-based DESs improve the total phenol extraction up to twofold and possess excellent
catalysis behavior. As a solvent, DES activates the proteins and improves the efficiency
of enzymatic reactions [92]. In Zhao’s study, newly synthesized eutectic ILs derived from
choline acetate or choline chloride were documented and coupled with biocompatible
hydrogen-bond donors, such as glycerol. According to experiments, these eutectic solvents
have favorable properties, including low viscosity, high biodegradability, and excellent
compatibility with Novozym 435 lipase. Additionally, they reached high conversion (97%)
of the triglyceride obtained within 3 h under optimal conditions, suggesting that these novel
eutectic solvents are worthy of further exploration as putative mediums in the enzymatic
production of biodiesel [93]. Table 4 presents further examples of the application of DES to
enhance production.

DES plays a key role as a reaction medium and has novel applications in many fields.
Firstly, DES is widely used in high-purity extraction and separation. Qi et al. designed
and synthesized different types of DESs to separate DMC-MeOH binary azeotropes. They
reported that the intermolecular hydrogen bond between ChCl-urea and DMC was the
strongest, performing better in isolation and purification [94]. Many studies have applied
DES as an additive to extract and isolate polysaccharides or other bioactive compounds
from natural products [95]. Moreover, DES has been used to modify some materials
(polymers or silica) [96]. These materials have been utilized for extraction and separation.
The physical properties of materials govern their potential applications. For instance, DES
with very low surface tension can be employed as a binder or wetting agent. DES with
high electrical conductivity can be utilized in the electrochemical industry [97].

Table 4. Recent progress of DES-based immobilized enzyme catalysis.

Deep Eutectic
Solvent System Molar Ratio Carrier Catalyst Substrate Product Conversion

(%) Ref.

ChCl/Glycerol 1:2 XAD1180 resin MAS1 lipase Glycerol
n-3 PUFA Triacylglycerols 55.80 [98]

ChCl/Glc 1:2 Chitosan
micro-spheres β-D-glucosidase Tyrosol Salidroside >50 [99]

ChCl/Glycerol–
DMSO 1:2 PD-MNP Aspergillus niger

lipase Dihydromyricetin DMY-16-acetate 91.6 [100]

ChCl/Glyceeol 1:2 Cross-linking
aggregates

Pseudomonas
stutzeri lipase Benzoic acid Glyceryl

α-monobenzoate >20 [101]

ChCl/Glyceeol 1:3 Cross-linking
aggregates Lipase Benzoic acid Glyceryl

α-monobenzoate 50 [102]

ChCl/Urea 1:2 PA@MNCC Papain

N-
(benzyloxycarbonyl)-
alanyl methyl ester

(Z-Ala-OMe)

N-
(benzyloxycarbonyl)-

alanyl-histidine
68.40 [103]

ChCl/Glycol 7:3
(v/v)

Magnetic
nano-crystalline

cellulose
Penicillin acylase 7-ACCA Cefaclor 84 [104]

ChCl/Glycerol 1:2 Acrylic resin Novozym 435
lipase

Waste oil
Ethanol

Fatty acid
ethyl ester 93.33 [105]
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Table 4. Cont.

Deep Eutectic
Solvent System Molar Ratio Carrier Catalyst Substrate Product Conversion

(%) Ref.

(-)-
Menthol/Decanoic

acid
- Acrylic resin Candida antarctica

lipase B Glucose Glucose
monodecanoate - [106]

Chcl/Glycerol 1:2 Acrylic resin Novozym 435
lipase

Waste oil
Butyl-3-

Methylimidazolium
hexafluorophosphate

Biodiesel 44 [107]

Chcl/Glycerol 1:2 Acrylic resin Novozym 435
lipase Soybean oil Biodiesel 88 [108]

ChOAc/Glycerol 1:1.5 Acrylic resin Novozym 435
lipase Miglyol 812 Biodiesel 97 [93]

6. Non-Solvent System

Enzymatic reactions in organic media are separated into two systems: those in organic
solvent systems and those in non-solvent systems. In the non-solvent system, the reaction
mixture consists only of liquid organic substrates (such as liquid oil) without any organic
solvent. This system offers high volumetric performance and economic advantages over the
organic solvent system, especially for large-scale production. Therefore, the use of a non-
solvent system for enzymatic reactions offers higher volumetric performance and economic
advantages compared to organic solvent systems. This is also ideal for synthesizing food-
grade products, where stringent safety regulations must be observed [10].

Due to the specificity of the organic substrate, biological enzyme catalysis in non-
solvent systems is often propelled by lipase. Factors like tolerance to the substrate, sol-
ubility, and stability of the enzyme must be accounted for. To extend the advantages of
an economical and green biological system, these lipases are modified by materials such
as resins and gels. Venturi et al. used lipase B from Candida antarctica, immobilized on
acrylic resin. Using immobilized enzymes, the reaction was performed under optimized
conditions of 5 Å zeolite, 1:6 substrate molar ratio, 70 ◦C, reaching a 95% conversion rate
after 30 min. Moreover, the immobilized lipase exhibited a good reusability and recovery
rate, maintaining the same activity over five reaction cycles. These findings indicate that
microwave-assisted lipase-catalyzed transesterification reactions in solvent-free systems are
an excellent and sustainable catalytic approach for producing geranyl alcohol esters [109].

Jawale et al. analyzed the reaction kinetics and mechanism for the synthesis of propyl
benzoate in a non-solvent system. They used an embedding method to immobilize lipase
on a hydroxypropylmethylcellulose and polyvinyl alcohol polymer blend. Among the
different carriers, Candida-cylindrica-immobilized lipase showed outstanding activity, with a
loading efficiency of 94.56%. According to the study, the enzyme activity of the immobilized
enzyme (99% yield) was higher than the free enzyme (40% yield). The catalysts were
recoverable for up to four catalytic cycles and a 40% retention of activity was observed in
the fourth cycle [110].

In Cirillo’s study, cetyl palmitate was synthesized via esterification of cetyl alcohol
with palmitic acid in a non-solvent system. The Lipozyme RM IM was immobilized and the
reaction conversion only decreased by 6.8% after 15 uses. They proposed a novel kinetic
model based on the random-sequential bi-bi mechanism and experimentally demonstrated
that the substrate conversion rate could reach 100% at the optimal reaction conditions of
480 rpm, 70 ◦C, 1.0% enzyme, and 1:1 M ratio [111]. These findings show that the catalyst
can be reused and remains stable after being immobilized, increasing its attractiveness. As
no solvents are used in the reaction, it is a more environmentally friendly method of syn-
thesis and eliminates the drawbacks associated with flammability and toxicity. Therefore,
the entire process is environmentally friendly and economical in the non-solvent system, as
outlined in Table 5.
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Table 5. Recent progress in non-solvent-based immobilized enzyme catalysis.

Carrier Catalyst Substrate Product Conversion (%) Ref.

Lewatit VP OC 1600 Novozymes eversa
transform 2.0

2-ethylhexyl alcohol
Palmitic acid 2-ethylhexyl palmitate 97 [112]

Polyacrylate beads Fermase CALBex 10,000 Polyethylene glycol 600
Stearic acid

Polyethylene glycol
stearate 86.98 [113]

Octyl agarose Candida rugosa lipase Glycerol
Ethylene carbonate Glycerol carbonate >99 [114]

Lewatit VP OC 1600 Novozym 435 lipase Borneol
Linoleic acid Bornyl linoleate 92.62 [115]

Acrylic resin Novozym 435 lipase Geranyl ester Polyhydroquinolines 95 [109]

Hydroxypropyl
methylcellulose Candida cylindracea lipase N-propyl alcohol

Vinyl benzoate Propyl benzoate 99 [110]

Lewatit VP OC 1600 Novozym 435 lipase Lauric acid
Pyridoxine Pyridoxine monolaurate 94.45 [116]

Acrylic resin Novozym 435 lipase Free fatty acids
Xylitol Xylitol fatty acid esters 95 [117]

Polyacrylate beads Fermase CALB™ 10,000 Levulinic acid
Amyl alcohol Amyl levulinate 73.20 [118]

Lewatit VP OC 1600 Thermomyces lanuginosus
Eversa lipase

Adipic acid
Isononyl alcohol Diisononyl adipate 100 [119]

Acrylic resin Novozym 435 lipase 2,5-bis-(Hydroxymethyl)
Furan

2,5-bis-(Hydroxymethyl)
Furan fatty acid 97 [120]

Acrylic resin Candida rugosa lipase Oleic acid Pine sterol ester 95.10 [121]

Acrylic resin Novozym 435 lipase Sucrose
Fructose Sugar ester 96.60 [122]

Macro-porous ionexchange
resin

Rhizomucor miehei
lipozyme RM IM

Cetyl alcohol
Palmitic acid Cetyl palmitate 100 [111]

Macro-porous resin Novozym 435 lipase Caprylic acid
N-butanol Butyl caprylate 92 [123]

Acrylic resin Novozym 435 lipase Eraniol
Ethyl acetate Geranyl acetate 83 [124]

Micro-porous resins Lipase NS 88,011 Oleic acid
Monoethylene glycol Ethylene glycol oleate 99% [125]

Acrylic resin Novozym 435 lipase Methanol phenylacetic
acid Methyl phenylacetate - [126]

Acrylic resin Novozym 435 lipase Vinyl methacrylate 5-O-methacryloylcytidine 36 [127]

Rice straw filaments Pseudomonas fluorescens
lipase

Citronellol
Vinyl acetate Citronelly acetate 99.8 [128]

7. Summary and Outlook

In this review, we summarize the recent advances in non-aqueous catalysis, including
the application of enzymes in non-aqueous catalysis and immobilized enzyme modification
methods. Additionally, the challenges of different non-aqueous catalytic systems, including
organic phase, oil-water two-phase, ionic liquid, deep eutectic solvent, and solvent-free
system, are also summarized.

With the promotion of the concept of green development, non-aqueous catalysis
should also develop in the direction of environmental friendliness. It is true that aqueous
catalysis is green, safe, and sustainable, but at present, there are some bottlenecks restricting
the development of aqueous catalysis. For example, hydrogen bonding and hydrophobic
interactions carried by water itself can have an impact on yield and chirality. Secondly,
when the properties of the water-soluble substrate are close to the product, it is difficult
to bypass the organic solvent to separate and extract the product. Thirdly, the reaction in
aqueous solution generally cannot be carried out out of pH. In addition, which is most
important, aqueous catalysis cannot solve the problem that the substrate is a hydrophobic
organic. Enhancing the hydrophobicity of the catalyst surface can improve the adsorption
capacity of the catalyst and organic matter but, to a certain extent, it will also cause the
catalyst to aggregate, affecting its dispersion and catalytic activity in the aqueous phase.
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Therefore, non-aqueous catalysis inevitably dominates the synthesis of some reactions that
use organic matter as substrates.

At present, catalysis for non-aqueous systems is also focused on how to be more
economical and environmentally friendly. Due to the features of non-aqueous biocatalysis,
it has been widely used in the production of natural products, chemical products, health
care products, and food. In this paper, we summarize some cases of using enzymes as
catalysts, which have high resistance to organic solvents and low demand for aqueous
solution. And some enzymes can be reused more than a dozen times. By modifying
enzyme and solvent systems, the requirements of various substrates and catalysts for
media diversity are met. In addition, the solvents used should also be screened, and it is
important to consider whether the benefits of using non-aqueous catalysis outweigh the
environmental impact and the potential safety of the solvent. This requires the continuous
upgrading of non-aqueous catalytic systems. It can be seen that the ionic liquid system is
gradually being replaced by the deep eutectic solvent system, which is a good phenomenon.
In conclusion, non-aqueous enzymatic reactions will progress green biocatalysis and open
up new methods for the preparation and production of drugs, foods, and materials.
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120. Lăcătuş, M.A.; Dudu, A.I.; Bencze, L.C.; Katona, G.; Irimie, F.D.; Paizs, C.; Toşa, M.I. Solvent-Free Biocatalytic Synthesis of
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