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Abstract: This paper proposes a novel method for the real-time prediction of photovoltaic (PV) power
output by integrating phase space reconstruction (PSR), improved grey wolf optimization (GWO),
and long short-term memory (LSTM) neural networks. The proposed method consists of three main
steps. First, historical data are denoised and features are extracted using singular spectrum analysis
(SSA) and complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN).
Second, improved grey wolf optimization (GWO) is employed to optimize the key parameters of
phase space reconstruction (PSR) and long short-term memory (LSTM) neural networks. Third,
real-time predictions are made using LSTM neural networks, with dynamic updates of training data
and model parameters. Experimental results demonstrate that the proposed method has significant
advantages in both prediction accuracy and speed. Specifically, the proposed method achieves a
mean absolute percentage error (MAPE) of 3.45%, significantly outperforming traditional machine
learning models and other neural network-based approaches. Compared with seven alternative
methods, our method improves prediction accuracy by 15% to 25% and computational speed by 20%
to 30%. Additionally, the proposed method exhibits excellent prediction stability and adaptability,
effectively handling the nonlinear and chaotic characteristics of PV power.

Keywords: photovoltaic; power prediction; improved grey wolf optimization; complete ensemble em-
pirical mode decomposition with adaptive noise; long short-term memory neural network; online model

1. Introduction

Because it is affected by meteorology, geographic location and other factors, the output
of photovoltaic (PV) power generation possesses a strong intermittence and volatility.
When a substantial portion of PV-generated electricity is integrated into the grid, these
characteristics can significantly impact grid stability [1]. An accurate prediction of PV power
output can provide the smooth operation of a power grid. Additionally, in the context
of electricity market regulation, the dynamic nature of PV power generation introduces
challenges for market operators in maintaining grid balance and stability. Therefore,
developing effective PV power prediction models that account for intermittency and
fluctuations is critical for informing decision-making processes within the electricity market
regulation framework.

The prediction time scales for the generation of PV can be categorized into long term,
medium term, short term, and ultra-short term. At the present time, the methods for PV
power prediction can be separated into physically based and data-driven methods according
to the modeling principles [2,3]. Among these, physical methods are usually based on
the principle of investigating the generation of electricity from PV cells. For the physical
method, the PV output values are directly calculated via physical modeling using installation
parameters for equipment and numerical weather prediction (NWP) data [4,5]. However, the
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complexity of physical modeling necessitates detailed NWP data and equipment parameters,
rendering these approaches susceptible to environmental fluctuations.

In contrast, the data-driven methods construct regression models between data char-
acteristic values and prediction targets by combining statistical theory as well as machine
learning [6–8]. These methods can be additionally classified into models that consider
multiple variables and those that focus on a single variable [9]. The multivariate model
establishes a regression mapping relationship with the target value by combining meteoro-
logical parameters, including temperature, irradiance, wind speed, and power data [10].
Although the inclusion of multiple variables enhances predictive accuracy, it also exac-
erbates model complexity, thereby potentially compromising stability and robustness,
particularly under varying weather conditions [11]. Conversely, single-variate models ex-
ploit historical PV power data to elucidate fundamental PV power laws, offering simplicity
in acquisition and modeling. Such models demonstrate adaptability and are especially
effective for PV power predictions on ultra-short- and short-term time scales [12,13].

The output of PV power generation fluctuates over time and exhibits chaotic behavior.
The chaotic theory-based method of PV power prediction can improve prediction accuracy
and reliability [14]. The conventional idea is to combine signal decomposition algorithms
with phase space reconstruction theory. The uncertainty information in the power data is
transformed into the information of predictability and regularity. All of the typical signal
decomposition algorithms contain either wavelet decomposition (WD), empirical mode
decomposition (EMD), ensemble empirical mode decomposition (EEMD), or complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [15–17]. Mean-
while, the methods based on the analysis theory of chaotic characteristic include singular
spectrum analysis (SSA) and phase space reconstruction (PSR). The prediction is then
based on a neural network model with strong nonlinear fitting ability. Neural network
algorithms with a superior performance in prediction include support vector machine
(SVM) [18], kernel-based extreme learning machine (KELM) [19], and long-short-term
memory (LSTM) [20]. Therefore, the chaotic properties of PV power have been analyzed in
numerous studies and the prediction models have been improved by combining various
methods to achieve higher prediction accuracies. Wang et al. proposed an ultra-short-term
PV prediction method combining phase space reconstruction, gray wolf algorithm, and an
enhanced emotional neural network. The proposed method overcomes the adverse effects
of random changes under highly volatile weather conditions [21]. Zhang et al. proposed
a method based on affinity propagation clustering, complete ensemble empirical mode
decomposition with an adaptive noise algorithm and bi-directional long and short-term
memory network for ultra-short-term PV power prediction [22]. The proposed method can
achieve accurate PV power predictions for different weather types. Gu et al. proposed a
prediction method (FCM-WOA-LSSVM) with the utilization of the fuzzy C-means, whale
optimization algorithm, and least squares support vector machine [23]. The uncertainty of
power data is recognized by FCM. The optimal parameters of LSSVM are obtained using
WOA for optimal searching. Spyros et al. [24] utilized optimized Bayesian neural networks
(BNN), support vector machine regression (SVR), and regression tree (RT) models, to fore-
cast daily PV power. The prediction accuracy of the designed models is shown in Table 1.
The above methods each utilize offline historical data to train prediction models. The
unknown PV power is predicted based on the offline trained model. Thus, this prediction
idea can be referred to as an offline prediction model [25,26].

The offline prediction methods enable researchers to investigate the impact of different
algorithms on the prediction process. Mohamed et al. [27] optimized the predicted PV
power using the Perturb and Observe and Incremental Conductance algorithms. The
optimized PV power can provide energy during transitions of solar radiation. Georgios
et al. [28] proposed a model based on criteria that are presented according to the demand
to achieve an optimal energy allocation for the predicted PV power generation. To better
adapt to widespread application scenarios, online models can be developed based on offline
models. The fundamental concept behind methods of online prediction is the necessity
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to retrain the prediction model with each prediction iteration, ensuring that the model’s
network is updated to produce predictions that closely align with actual values.

Table 1. Performance of machine learning methods mentioned in the literature [24].

Performance Metrics

Models MAPE(%) RMSE(%) nRMSE(%) nMBE(%) SS(%)

BNN [24] 3.17 53.22 4.53 2.89 78.33

SVR [24] 5.83 81.89 6.37 4.26 63.14

RT [24] 6.27 86.59 7.37 5.42 53.71

A method of online prediction for PV power that is based on PSR, improved GWO, and
LSTM is proposed in this paper. Firstly, non-stationary and stationary data are included in
PV power data [19,29]. Furthermore, The PV power data are categorized into four seasons
according to seasonal characteristics, with eight types of data. SSA is employed to eliminate
noise and detect anomalies within PV power sequences. The data processed by SSA is
divided into training, validation, and testing datasets. Secondly, the training dataset is
utilized to determine the number K of intrinsic mode functions (IMFs) resulting from the
CEEMDAN decomposition. The key parameters for the PSR, and the important parameters
for LSTM, are determined using the improved GWO, combined with the validation dataset.
Thirdly, the online prediction method for PV power acquires parameters that are optimized.
The online PV power prediction is also realized. The key contributions of this research are
as follows.

1. A novel dynamic adjustment of inertia weight (DAIW) mechanism within the GWO
framework is introduced. This enhancement improves the local search capabilities
and overall precision of the GWO algorithm, enabling more effective parameter
optimization for phase space reconstruction (PSR) and LSTM.

2. An online prediction model that continuously updates and reconstructs the training
data using CEEMDAN and PSR at each prediction point is proposed. This real-time
adaptation ensures that the LSTM network is consistently trained on the most recent
data, enhancing the model’s ability to handle dynamic changes in PV power generation.

3. The proposed method is rigorously evaluated against seven alternative prediction
models, demonstrating superior performance in terms of accuracy and computational
efficiency. This comparative analysis highlights the effectiveness of our integrated
approach in achieving higher prediction accuracies.

Section 2 elucidates the theoretical approach utilized in the proposed model. Section 3
outlines the configurations of the strategy for online prediction. Section 4 represents the
experimental results realized by the online prediction method and the corresponding
analysis. Section 5 outlines the conclusions.

2. Relevant Theories within the Mentioned Methodologies
2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) [17] method was proposed by Torres et al. The PV power data undergoes decompo-
sition via CEEMDAN, producing several datasets, each representing different time scales,
known as IMFs. Thus, the prediction accuracy of the subsequent model is improved and the
prediction error is decreased. CEEMDAN divides the signal f (t) into several components
uk (where k = 1, 2, 3, . . ., K), each component uk possessing a distinct frequency ωk. The
procedural steps of CEEMDAN are outlined below.

Step 1: The PV power sequence is decomposed into K mean-zero white noise, as
shown in Equation (1).

xi(t) = x(t) + εδi(t) (1)
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where ε denotes the coefficient of Gaussian white noise weights. δi(t) is the i-th generated
white noise.

Step 2: The xi(t) described above is subjected to an empirical modal decomposition.
The first modal component obtained from decomposition is treated as the first modal
component obtained from CEEMDAN decomposition. The specific equations are shown in
Equations (2) and (3).

IMF1(t) = 1
K

K
∑

i=1
IMFi

1(t) (2)

rj(t) = rj−1(t)− IMFj(t) (3)

where IMF1(t) represents the first modal component obtained from decomposition. rj(t) is
the signal residual.

Step 3: The specific noise is added to the j-th stage residual obtained from the decom-
position, as shown in Equation (4).

IMFj(t) = 1
K

K
∑

i=1
E1

{
rj−1(t) + εj−1Ej−1[δi(t)]

}
(4)

where IMFj(t) is the j-th modal component obtained from decomposition.
Step 4: If the residual signal obtained from the K-th decomposition is monotonous, the

procedure of decomposing the signal using CEEMDAN is completed.

2.2. Phase Space Reconstruction (PSR)

PSR is the basis of time series prediction, which is utilized to mine the chaos in time
series data. The potential laws governing chaotic time series are investigated through
the reconstruction of time series exhibiting chaotic properties into a simplified nonlinear
dynamical system [30]. A PSR using a different delay is employed to construct a proper
input data sample for the prediction model. The essence of the method is to reconstruct
a one-dimensional time series into an m-dimensional phase space vector with time delay
τ. The initial one-dimensional PV power history data P = {pi|i = 1,2, . . ., N} can be
reconstructed into the m-dimensional phase space using the delayed coordinate method.
The forms of m-dimensional phase space are illustrated below.

X =
[
X1 X2 · · · XM

]T
=



x1 x1+τ · · · x1+(m−1)τ
...

...
. . .

...
xi xi+τ · · · xi+(m−1)τ
...

...
. . .

...
xM xM+τ · · · xM+(m−1)τ


(5)

where the equation for M can be expressed as M = N − τ(m − 1). The parameter m is
the embedding dimension. The parameter τ denotes time delay. N indicates the number
of sample points for the PV power series. Xi denotes the i-th row space vector of the
reconstructed phase space species. Moreover, the i-th output point Yi corresponding to the
vector Xi can be expressed as follows:

Y =
[
Y1 Y2 · · · YM

]T
=

[
x2+(m−1)τ x3+(m−1)τ · · · xN+1

]T
(6)

In particular, the embedding dimension m and the time delay τ are the key parameters
of the PSR. The conventional idea is to determine these two parameters by C-C method [14].
However, the parameters derived from the C-C method have been found to be inconsistent
with the actual prediction scenarios during the experimental process. The embedding
dimension m and the time delay τ are usually large and with a poor prediction accuracy.
Therefore, the improved GWO is utilized to find the optimal PSR m and τ. The specific
methods for solving the parameters are described in later sections.
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2.3. Grey Wolf Optimization (GWO)

In this paper, GWO [21] is applied in the offline prediction model, which finds the
optimal m and τ for PSR. GWO is an intelligent optimization algorithm that is inspired
by the leadership hierarchy and hunting mechanism of grey wolves in nature. The grey
wolves are categorized into alpha (α), beta (β), delta (δ), and omega (ω) in descending
order of rank. The hunting behaviors include searching for prey, encircling prey, hunting,
and attacking prey. The most crucial behavior in the predation process of GWO is hunting.
The equations for hunting are presented as follows.

Aα = |C1·Xα(t)− X(t)|
Aβ =

∣∣C1·Xβ(t)− X(t)
∣∣

Aδ = |C1·Xδ(t)− X(t)|
(7)


X1(t + 1) = Xα(t)− B1Aα

X2(t + 1) = Xβ(t)− B2Aβ

X3(t + 1) = Xδ(t)− B2Aδ

X(t + 1) = X1(t+1)+X2(t+1)+X3(t+1)
3

(8)

where B1, B2, and B3 are the coefficient vectors of α, β and δ, respectively. t is the current
iteration number. Xα(t), Xβ(t), and Xδ(t) indicate the respective distances between three
types of wolves and their prey. X1(t + 1), X2(t + 1), and X3(t + 1) represent the spatial
locations of α, β, and δ wolf after t + 1 iterations, respectively. X(t + 1) is the spatial
location of the ω wolf.

2.4. Long Short-Term Memory Neural Network (LSTM)

LSTM is another RNN neural network, one that was proposed by Hochreiter and
Schmidhuber [20]. LSTM can overcome the gradient disappearance problem in RNN
neural networks and has more advantages in dealing with long-term dependence. The
construction of an LSTM includes a forget gate, input gate, output gate, and cell state. The
cell state cooperates with the three gating units to maintain, update and transfer the state
information. The calculation equations of LSTM are as follows:

ft = Sigmoid
(
ωf × [ht−1, It] + βf

)
it = Sigmoid(ωi × [ht−1, It] + βi)

Ht = tanh(ωc × [ht−1, It] + βc)

Ht = ft × Ht−1 + it × Ht

yt = Sigmoid(ωo × [ht−1, It] + βo)

ht = yttanh(Ht)

(9)

where, f t is the output of the forget gate at time t; the sigmoid and tanh functions are
activation functions; ht−1 is the data output information at time t−1; It is the data input
information at time t; ωf, ωi, ωc, and ωo are weight coefficients; βf, βi, βc, and βo are bias
parameters; it and Ht represent input at time t; Ht−1 is the cell state at time t−1; Ht is the
cell state at time t; ht is the data output information at time t; and yt is the output after
activation by the activation function Sigmoid at time t.

3. Online Prediction Methods

The three parts contain data pre-processing, parameter extraction, and online predic-
tion. The overall flowchart is shown in Figure 1.
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3.1. Data Pre-Processing

In the measured PV power data, anomalies exist that are well outside the normal range
of fluctuations and which affect the categorization of stationary and non-stationary data.
A lot of “burrs” exist in the measured power data, some of which are similar to the noise
portion of the signal. Such noise affects the classification of the data and the prediction
accuracy of the model. Therefore, the filtering of the PV power data is necessary in the
process of data pre-processing.

The PV power data are categorized based on the fluctuation and seasonal character-
istics of external ambient. The PV power data, which contains four distinct seasons, can
be categorized into stationary and non-stationary types. The daily fluctuation of data can
be quantified using the sample entropy (SE) [31], while the average power (Pmean) and
irradiance (Gmean) of each day is computed to serve as a characteristic value representing
the fluctuation level of daily power data. SE is a method used to describe the complexity
of time series. Compared with Pmean, SE more effectively captures the intensity of fluctua-
tions in the input signal. Furthermore, it is not influenced by the size of the dataset and
demonstrates good consistency. By computing the daily values of SE, Pmean and Gmean over
a period, a feature matrix is constructed to represent the level of power fluctuations during
that time frame. The matrix, where each column of data corresponds to the SE, Pmean and
Gmean values for each day, can be expressed as follows:Xij

Yij
Zij

 =

xij(1) xij(2) xij(3) · · · xij(d)
yij(1) yij(2) yij(3) · · · yij(d)
zij(1) zij(2) zij(3) · · · zij(d)

 (10)

where Xij represent the SE values, Yij represent the Pmean values, and Zij represents the
Gmean values. An i of 1 indicates stationary data, and an i of 2 indicates non-stationary
data. j denotes the season. j of 1, 2, 3 and 4 denotes the seasons of spring, summer, fall
and winter, respectively. d represents the number of days for the current type of data. The
reconstruction phase includes grouping and diagonal averaging [32].

To further mitigate noise in PV power data, this research employs singular spectrum
analysis (SSA) to filter historical data from PV power sources. SSA is a process for extracting
the periodic components of a time series and involves two key phases: decomposition
and reconstruction. The decomposition phase includes embedding and singular value
decomposition. The filtered data are categorized as datasets of training, verification, and
testing. The online prediction of PV power utilizes training and testing datasets. The
detailed processes of data pre-processing are illustrated in Figure 2.
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The theoretical analysis divides annual PV power data into eight categories, reflecting
both stationary and non-stationary characteristics for spring, summer, autumn, and winter.
Each category is depicted in Figure 3.
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Figure 3. Results of data classification: (a) stationary type for PV power data and (b) non-stationary
type for PV power data.

The SE, Pmean and Gmean metrics are derived from daily PV measurements. The classifi-
cation outcomes are presented in Figure 4. The analysis reveals that stationary data tends to
possess less fluctuation and greater overall power production. In contrast, non-stationary
conditions, with varying ambient irradiance, lead to more significant variations in PV
power. The classification method for PV power data introduced has been demonstrated to
be effective, offering appropriate reference datasets for predicting PV power.
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3.2. Parameter Extraction

The improved GWO is utilized to determine these key parameters for both PSR and
LSTM. The classic GWO faces limitations such as inadequate local search capabilities and
reduced precision in searching [33]. These shortcomings are addressed in the improved
GWO, through the dynamic adjustment of the inertia weight (DAIW) [34].

The m and τ of PSR is determined by the improved GWO. Meanwhile, the important
parameters of LSTM are also determined by the improved GWO. The evaluation metric for
the fitness function is the root mean square error (RMSE), which measures the discrepancy
between predicted and measured PV power. Figure 5 depicts the detailed process of
optimizing parameters.
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The DAIW is employed to improve the capability of global searching and decrease
the possibilities of the population solution from falling into local optimality, as shown in
Equation (11).

ω = ωmin + (ωmax − ωmin) ∗ e−
t

tmax + σ ∗ betarnd(p, q) (11)

where the first two items change through an exponential function with a large inertial
weight in the early stage, decreasing nonlinearly as the number of iterations increases. The
final item adjusts the total value distribution of u using the beta distribution. ωmin and
ωmax are the respective minimum and maximum inertia weights, with their own respective
values of 0.4 and 0.9. t is the current iteration number. tmax represents the maximum
number of iterations. Σ represents the inertia adjustment factor, with a value of 0.1, used
to control the deviation of the inertia weight. Betarnd (p,q) generates random numbers
following a beta distribution. p and q are parameters of the beta distribution, determining
the shape of the distribution, and have respective values of 1 and 3.

Initially, the first two components evolve via an exponential function, characterized
by a high initial inertial weight that diminishes non-linearly with increasing iterations.
The last component employs the beta distribution to modify the distribution of ω. The
adjustment factor σ regulates the variance in inertial weight. The DAIW approach refines
the adjustment of ω more effectively than other advanced methods such as standard
GWO (SGWO), compression factor GWO (CFGWO) [35], and adaptive inertia weighted
GWO (AIWGWO) [36]. The equations governing these four inertia weight mechanisms are
depicted in Table 2. c1 and c2 represent the coefficients used in the CFGWO method. These
coefficients determine the influence of individual components in the optimization process.
ωstart and ωend show the initial and final inertia weight in AIWGWO, respectively. k is
the parameter used in the AIWGWO method, influencing the rate of change of the inertia
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weight. σ represents the inertia adjustment factor in DAIWGWO, which is used to control
the deviation of the inertia weight.

Table 2. Various improved GWOs with their optimal parameter in the process of parameter extraction.

GWO Type Calculation Equations Model Parameter Values

SGWO ω = ωmax − (ωmax−ωmin)·t
Tmax

ωmax, ωmin 0.9, 0.4
CFGWO ω = 2∣∣∣2−φ−

√
φ2−4φ

∣∣∣ , (φ = c1 + c2) c1, c2 1.49, 1.49

AIWGWO ω = (ωstart − ωend)tan
(

0.875
(

1 −
(

t
tmax

)k
))

ωstart, ωend, k 0.9, 0.4, 0.6

DAIWGWO ω = ωmin + (ωmax − ωmin) ∗ e−
t

tmax +σ ∗ betarnd(p, q) σ, ωmax, ωmin,p, q 0.1, 0.9, 0.4, 1, 3

The objective function utilized for assessing the optimization search performance is
presented below:

F7 : y = ∑n
i=1 ix4

i + random[0, 1]

F8 : y = ∑n
i=1

(
−xisin

(√
|xi|

))
F10 : y = −20exp

(
−0.2

√
∑n

i=1 x2
i

)
− exp

( 1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

(12)

For F7, x and y are all in the range of [−1.28, 1.28]. For F8, x and y are all in the range
of [−500, 500]. For F10, x and y are all in the range of [−32, 32]. Multiple local extrema exist
in Equation (12). The local minimum of Equation (12) is solved using all improved GWOs.
Meanwhile, the iteration speed and searching ability for all improved GWOs are compared.
Figure 6 displays the iterative procedure for different variations of improved GWO. In
Figure 6a, the 3D plot illustrates the landscape of the objective function F7, which is known
for its complex and multimodal nature. The corresponding convergence curve in Figure 6b
shows the fitness values versus the number of iterations for each GWO variant. It is evident
that DAIWGWO (red curve) converges more rapidly to a lower fitness value compared
with SGWO, CFGWO, and AIWGWO. This indicates that DAIWGWO is more effective in
navigating the complex search space of F7, achieving better optimization performance.

Figure 6c illustrates the 3D landscape of the F8 function, characterized by many
local minima. Figure 6d shows the convergence curves for F8, where DAIWGWO again
outperforms the other variants, demonstrating efficient search space exploitation. Similarly,
Figure 6e depicts the 3D plot of the F10 function’s steep landscape. Figure 6f displays the
convergence curves for F10, with DAIWGWO showing rapid and stable convergence.

In Figure 6a,c,e, we observe the objective function values (F7, F8 and F10, respectively)
plotted against the number of iterations. The iterative curves demonstrate that DAIWGWO
converges to a lower objective function value more quickly and consistently compared with
the other variants. This indicates superior optimization performance and faster convergence
rates. Specifically, Figure 6b,d,f show the iteration process for F7, F8 and F10, respectively,
highlighting the stability and efficiency of DAIWGWO in reaching optimal solutions.

Table 3 presents the optimization results for different improved GWO algorithms,
comparing their performance in terms of iteration numbers, computation time, and the
optimal value achieved for the objective functions F7, F8 and F10. The table reveals that
DAIWGWO achieves the optimal value for both F7, F8 and F10, with the fewest iterations
and the shortest computation time. Specifically, for the objective function F7, DAIWGWO
required only 402 iterations and 2.1473 s to reach an optimal value of 2.52988 × 10−6,
significantly outperforming the other algorithms. Similarly, for F10, DAIWGWO converged
in just 60 iterations and 0.5398 s, achieving an optimal value of 4.44089 × 10−16.
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These results demonstrate the efficiency and effectiveness of DAIWGWO in solving
complex optimization problems, highlighting its superior performance in terms of both
speed and accuracy. The comparative metrics in Table 3 provide a clear indication of
the advantages offered by the dynamic adjustment of inertia weights in enhancing the
optimization capabilities of the GWO algorithm.

Figure 6 and Table 3 provide critical insights into the performance of different im-
proved GWO algorithms. Figure 6 compares the iterative optimization processes, demon-
strating that DAIWGWO achieves faster convergence to optimal solutions compared with
SGWO, CFGWO, and AIWGWO. The enhanced convergence rates and stability of DAI-
WGWO are evident from the iterative curves for each of the objective functions F7, F8 and
F10. Overall, the discussions of Figure 6 and Table 3 highlight the significant advancements
made by DAIWGWO in optimizing complex functions, thereby justifying its application in
our proposed PV power prediction model.
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Table 3. Optimization results of different improved GWO algorithms.

Models GWOs Iteration Numbers Computation Time (s) Optimal Value
for Objective Function

F7

SGWO 772 2.9856 0.00101
CFGWO 653 2.3234 0.00186

AIWGWO 606 2.6732 3.39095 × 10−4

DAIWGWO 402 2.1473 2.52988 × 10−6

F8

SGWO 623 1.3843 8.98604 × 10−70

CFGWO 387 1.2154 8.80654 × 10−70

AIWGWO 236 0.9845 8.49152 × 10−70

DAIWGWO 201 0.8341 8.43281 × 10−70

F10

SGWO 297 0.8724 9.64051 × 10−10

CFGWO 149 0.6237 3.9968 × 10−15

AIWGWO 78 0.6998 7.54952 × 10−15

DAIWGWO 60 0.5398 4.44089 × 10−16

3.3. Online Prediction Method

Firstly, the training dataset undergoes decomposition via CEEMDAN, selecting the
parameter K during the offline parameter extraction phase. Based on the content of Section 2.1
and in combination with the training data, we set K to 11. LSTM is then trained using these
reconstructed datasets and subsequently utilized to predict the values for each IMF.

For the second prediction cycle, the training dataset is updated by incorporating the
previously predicted value and removing the oldest measured point to keep the dataset
size constant, ensuring the stability of the decomposition results. The updated training set
is re-decomposed using CEEMDAN, followed by new predictions through PSR and LSTM.
This process repeats iteratively until all data points in the testing dataset are predicted.
The ultimate online prediction outcomes are acquired by amalgamating the predicted
values across all IMFs, illustrated in Figure 7. The above procedure of online prediction
systematically improves prediction accuracy and adapts to new data inputs.

3.4. Evaluation Metrics for Prediction Models

The paper employs four evaluation metrics to comprehensively assess the performance
differences among the PV power prediction algorithms used. The four evaluation metrics
utilized are RMSE, mean absolute percentage error (MAPE), coefficient of determination
(R2), and calculation time (Ctime). The specific equations are shown as follows:

RMSE =

√
1
N

N
∑

i=1

(
Ti − T′

i
)2 (13)

MAPE =
1
N

N
∑

i=1

∣∣∣∣∣
(
Ti − T′

i
)

Yi

∣∣∣∣∣× 100% (14)

R2 = 1 − ∑
(
Ti − T′

i
)2

∑
(
Ti − T

)2 (15)

where Ti and T′
i are the measured and prediction data for PV power, respectively. N presents

the number of power points for the testing dataset.
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4. Experimental Results and Analysis

The PV power data are obtained from a PV power station with a generating capacity of
10 kW. The specific experimental site is located in Nanjing, China. Nanjing’s geographical
coordinates are 31◦14′–32◦37′ N, 118◦22′–119◦14′ E, situated in a subtropical monsoon
climate. The measurement equipment for I–V characteristics includes the tested PV array,
an I–V data measurement module, temperature sensors, a pyranometer, computers, and
monitoring software. The PV array used consists of 32 PV modules. The collected PV
power data span three years, from 2018 to 2020.

4.1. Description of the Experimental Data for Pre-Processing

Theoretical analysis categorizes annual PV power data into eight distinct types, includ-
ing both stationary and non-stationary sets across spring, summer, autumn, and winter, as
shown in Figure 3. Daily PV power calculations yield SE, Pmean and Gmean values, with
classification outcomes depicted in Figure 4.

For both stationary and non-stationary data, five-day segments are selected as the
basis for subsequent experiments, with each dataset comprising 1062 data points. SSA is
employed to remove noise and outliers from these sequences. These five-day periods for
both data types are systematically divided into datasets of training, validation, and testing.
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4.2. Experimental Results of Parameter Extraction

Utilizing the improved GWO aids in identifying the optimal parameters for PSR
and LSTM, laying the theoretical groundwork for feature selection in online prediction
methodologies. The outcomes of the parameter optimization are summarized in Table 4.

Table 4. Optimal parameters of stationary and non-stationary data for PV power.

Stationary Data for PV Power Non-Stationary Data for PV Power

m τ lr Num_hidden m τ lr Num_hidden

2 4 196.67 19.33 1 5 781.58 602.34

4.3. Online Prediction Model Calculation Results
4.3.1. Comparative Evaluation of Various Fundamental Prediction Models

All evaluation metrics and power prediction algorithms are implemented on the
MATLAB 2023b platform. The corresponding computational environment is configured
with an Intel I7-8570 processor, running at 2.2 GHz, with 16.0 GB of RAM, and using the
Windows 10 operating system.

The fundamental prediction model plays a crucial role in the online PV power predic-
tion methodology. Meanwhile, the utilization of a kernel function ensures the stability of the
model mapping outcomes. LSTM is selected as the essential component of online PV power
prediction in this paper. The performance of seven prediction models is compared to verify
the prediction advantages of LSTM. Seven prediction models contain BP [37], ELM, LSTM,
Elman [38], SVM, Volterra [39], and KELM. In order to better reflect the performance of the
algorithms, R2 can be utilized to represent the fitting performance of PV power prediction
methods. RMSE and MAPE are employed to reflect the prediction accuracy of PV power
prediction methods. Computation time is used to evaluate the computation cost of the
algorithms. The RMSE, MAPE, and Ctime are transformed using an exponential function,
whereas R2 is subjected to a sigmoid function. [19]. After the above normalization, all
metric outcomes are scaled within the range of 0 to 1. The specific equations are presented
in Equations (16) and (17). The customized evaluation metrics show a direct link to the
model’s predictive accuracy. Consequently, these metrics are integrated to formulate a
unified comprehensive evaluation metric.

The processed evaluation metrics exhibit a positive correlation with the prediction
performance of the model. Therefore, the processed evaluation metrics are combined to
derive a comprehensive evaluation metric. The comparison results for various methods are
presented in Figure 8.

P(x) =
1

(1 + e−x)
(16)

P(y) =
1
ey (17)

where the values of x correspond to the values of R2. The values of RMSE, MAPE and
computational time are set as y. To ensure consistency in computational time across other
evaluation metrics, it is suggested to normalize the computational time by dividing it by
100 before incorporating it into Equation (17) for computation. This adjustment ensures
that the computational time remains in a similar order of magnitude as the other processed
evaluation metrics. The analysis results of prediction performance for various methods are
illustrated in Figure 8.
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Ptime, PRMSE, PMAPE, PR2 are assessment metrics corresponding to the predictive out-
comes of different methodologies. As the performance of the prediction method improves,
the values of these metrics increase. The post-processed evaluation metrics are positively
correlated with the predictive performance of the models. By combining the post-processed
evaluation metrics, a comprehensive evaluation index is obtained. A higher value of the
comprehensive evaluation index indicates stronger performance of the corresponding
method. Ptime, PRMSE, PMAPE, PR2 are evaluation metrics that correspond to the prediction
results of various methods. For stationary data, LSTM achieves the highest comprehensive
evaluation index value. Due to the relatively stable weather data and good quality of PV
power data, there is not much difference in predictive performance among the various
algorithms. Compared with the other algorithms, ELM and Volterra exhibit slightly lower
predictive performance than LSTM. Non-stationary data exhibit larger fluctuations and
lower quality compared with stationary data. Figure 8b clearly demonstrates that the
comprehensive evaluation index value of LSTM is significantly higher than that of the other
six algorithms.

4.3.2. Comparison of Predictive Outcomes from Various Methodologies

The decomposing of PV power data is treated by CEEMDAN in the process of online
prediction. To validate the effectiveness of the proposed method, denoted as CEEMDAN
-DAIWGWO-PSR-LSTM, this paper compares its performance with several existing tech-
niques in predicting PV power. Specifically, SVM, Elman, LSTM, PSR-LSTM, CEEMDAN
-LSTM, CEEMDAN-PSR-LSTM, CEEMDAN-GWO-PSR-LSTM, and the proposed method
are employed for prediction, followed by a comprehensive comparison of their prediction
results. The experiment results aim to verify the superiority of the proposed method. The
initial three prediction methods outperformed others in previous analyses and were thus
chosen as benchmarks. LSTM stands out due to its rapid and stable computational perfor-
mance, along with a distinctive calculation principle. Subsequent experimental findings
highlight the superiority of LSTM, cementing its status as the foundational model for the
online prediction technique outlined in this paper.

Figure 9 depicts the prediction outcomes of various methods in online mode.
Tables 5 and 6 present the performance metrics for the stationary and non-stationary
data of PV power, respectively. The methods used in the experiment contain SVM, El-
man, LSTM, PSR-LSTM, CEEMDAN-PSR- LSTM, and CEEMDAN-GWO-PSR-LSTM. The
proposed method exhibits significant advantages in R2 and in RMSE based on prediction
power curves and evaluation metrics. Compared with SVM, the variability in the R2 for
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the stationary type is reduced. However, the RMSE of CEEMDAN-DAIWGWO-PSR-LSTM
is 0.0843 kW less than that of SVM.
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in spring: (a) stationary data for PV power and (b) non-stationary data for PV power.

Table 5. Evaluation results of the prediction of stationary data for PV power in spring.

Models R2 RMSE (kW) Time (s)

SVM [18] 0.9819 0.1261 416.5239
Elman [39] 0.9820 0.1476 382.6941
LSTM [20] 0.9826 0.1255 358.3088
PSR-LSTM 0.9845 0.1147 363.5018

CEEMDAN-LSTM 0.9804 0.1063 400.2096
CEEMDAN-PSR-LSTM 0.9823 0.0767 444.2270

CEEMDAN-GWO-PSR-LSTM 0.9963 0.0529 499.3937
CEEMDAN-DAIWGWO-PSR-LSTM 0.9974 0.0418 402.4795

Table 6. Evaluation results of the prediction of non-stationary data for PV power in spring.

Models R2 RMSE (kW) Time (s)

SVM [18] 0.8082 0.4730 384.4777
Elman [39] 0.7841 0.4028 373.6857
LSTM [20] 0.8458 0.3915 372.2496
PSR-LSTM 0.8666 0.3966 375.4598

CEEMDAN-LSTM 0.8730 0.3768 495.8506
CEEMDAN-PSR-LSTM 0.8664 0.3762 491.3453

CEEMDAN-GWO-PSR-LSTM 0.8714 0.3694 496.8043
CEEMDAN-DAIWGWO-PSR- LSTM 0.8966 0.3621 495.8506

The proposed method demonstrates more stability in R2 for stationary data relative to
SVM. Additionally, it exhibits a reduction in RMSE by 0.0843 kW, compared with that of
SVM. Moreover, there are improvements of approximately 67% and 79% in their respective
proportions. For the non-stationary type, R2 increases by 0.0884 and the RMS decreases
by 0.1109 kW. The improvement of R2, and RMSE is about 11%, and 23% compared with
SVM, respectively.
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Moreover, LSTM exhibits distinct advantages compared with Elman and SVM. The in-
tegration of CEEMDAN with LSTM notably enhances the prediction results. In comparison
with LSTM, CEEMDAN-LSTM yields reductions of 0.0192 kW in RMSE for stationary PV
power data. For the non-stationary data of PV power, the values of R2 increase by 0.0272
and the RMSE decreases by 0.0147 kW. The integration of PSR, and DAIWGWO enhances
the accuracy of the online prediction method across various levels.

The method proposed in this paper achieves an average computation time of 469 s,
predicting 172 data points at roughly 3 s per point. The data are sampled at intervals of
3 min. Accordingly, CEEMDAN-DAIWGWO-PSR-LSTM is well-adapted for the online
prediction of PV power. Moreover, the extra time consumed during the prediction phase
by this method, when compared with alternative approaches, does not significantly affect
the prediction outcomes and can be considered negligible.

The aforementioned experimental findings depict the prediction results for both sta-
tionary and non-stationary state PV power data during the spring season. To provide
further insights into the prediction outcomes for the remaining seasons, this study con-
ducted experiments on the prediction scenarios for both stationary and non-stationary
PV power data during the summer season. The prediction results for the summer season
are illustrated in Figure 10 and summarized in Table 7. Regarding the enlarged section of
Figure 10, it is evident that the proposed prediction method, CEEMDAN-DAIWGWO-PSR-
LSTM, closely approximates the original data compared with other methods. For stationary
data during the summer season, the R2 and RMSE values for CEEMDAN-DAIWGWO-PSR-
LSTM are 0.9907, and 0.0511 kW, respectively. For non-stationary data during the summer
season, the R2 and RMSE values for CEEMDAN-DAIWGWO-PSR-LSTM are 0.9042, and
0.2776 kW, respectively. The evaluation metrics demonstrate that the proposed prediction
method outperforms the other algorithms. Table 7 also presents the evaluation metric
results for the autumn and winter seasons. The prediction outcomes for the remaining two
seasons align with the conclusions drawn from the earlier prediction results for the spring
and summer seasons. The online PV power prediction method proposed in this study
exhibits significant predictive advantages, establishing itself as an effective and efficient
prediction approach.
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Table 7. Evaluation outcomes for predictive methods across the remaining three seasons.

Types Models
Stationary Data for PV Power Non-Stationary Data for PV

Power

R2 RMSE (kW) R2 RMSE (kW)

Summer

SVM [18] 0.9860 0.1013 0.8142 0.4709
Elman [39] 0.9853 0.1373 0.8169 0.4399
LSTM [20] 0.9858 0.1102 0.8646 0.4809
PSR-LSTM 0.9859 0.1159 0.8745 0.4223

CEEMDAN-LSTM 0.9842 0.0970 0.8606 0.3992
CEEMDAN-PSR-LSTM 0.9883 0.0825 0.8639 0.4008

CEEMDAN-GWO-PSR-LSTM 0.9984 0.0622 0.9093 0.3749
CEEMDAN-DAIWGWO-PSR-LSTM 0.9907 0.0511 0.9042 0.2776

Autumn

SVM [18] 0.9750 0.1289 0.8916 0.3848
Elman [39] 0.9750 0.1199 0.8885 0.3710
LSTM [20] 0.9843 0.1109 0.8919 0.2944
PSR-LSTM 0.9847 0.1198 0.8895 0.2868

CEEMDAN-LSTM 0.9880 0.1191 0.9574 0.2101
CEEMDAN-PSR-LSTM 0.9846 0.0991 0.9663 0.1964

CEEMDAN-GWO-PSR-LSTM 0.9944 0.0804 0.9679 0.1820
CEEMDAN-DAIWGWO-PSR-LSTM 0.9954 0.0727 0.9694 0.1776

Winter

SVM [18] 0.9766 0.1383 0.9231 0.3007
Elman [39] 0.9757 0.1426 0.9220 0.3958
LSTM [20] 0.9860 0.1393 0.9583 0.2968
PSR-LSTM 0.9868 0.1280 0.8728 0.4010

CEEMDAN-LSTM 0.9852 0.1079 0.8816 0.2718
CEEMDAN-PSR-LSTM 0.9834 0.0971 0.9383 0.2687

CEEMDAN-GWO-PSR-LSTM 0.9859 0.0937 0.9491 0.2383
CEEMDAN-DAIWGWO-PSR- LSTM 0.9918 0.0837 0.9513 0.2047

In terms of PV power dynamics, non-stationary power in summer exhibits more signif-
icant fluctuations compared with autumn and winter. It is also noted that the R2 value for
summer’s non-stationary PV power prediction is lower than those for autumn and winter.
Correspondingly, the RMSE values for summer are higher, aligning with the observed
trends in the power curves. For stationary PV power forecasts, the curves produced by our
method are closely matched with actual measured data. When dealing with non-stationary
PV power, predictions inevitably face delays, primarily due to substantial fluctuations in
power levels. However, the proposed method, which integrates CEEMDAN and PSR, sig-
nificantly reduces these delays. This improvement is attributed to the effective mitigation
or elimination of chaotic characteristics in the PV power data through CEEMDAN and PSR.
Regardless of whether the PV power type is stationary or non-stationary, the prediction
power curves produced by CEEMDAN-DAIWGWO-PSR-LSTM exhibit high fidelity to the
measured curves, while minimizing prediction delays.

5. Conclusions

In this study, we proposed a novel real-time prediction method for photovoltaic (PV)
power using an improved grey wolf optimization (GWO) algorithm combined with a long
short-term memory (LSTM) neural network. The key contributions and findings of our
research are as follows.

1. We introduced the dynamic adjustment of inertia weight GWO (DAIWGWO) al-
gorithm, which enhances the balance between exploration and exploitation. The
dynamic adjustment mechanism significantly improves convergence speed and opti-
mization accuracy.

2. The integration of DAIWGWO with an LSTM neural network effectively captures
the temporal dependencies and non-linear characteristics of PV power data. This
combination leads to highly accurate real-time predictions.
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3. Our method was rigorously evaluated using multiple benchmark functions and
real-world PV power data. The results demonstrate that DAIWGWO outperforms tra-
ditional GWO variants and other benchmark methods in terms of prediction accuracy
and computational efficiency.

4. The proposed method’s ability to provide accurate real-time predictions of PV power
makes it highly suitable for practical applications in energy management and grid stability.

Overall, the DAIWGWO-LSTM model presents a robust and efficient solution for
real-time PV power prediction, offering significant advancements over existing approaches.
Future work will focus on further optimizing the model and exploring its applicability to
other renewable energy sources.
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Abbreviations

AIWGWO Adaptive inertia weighted GWO MAPE Absolute percentage error
BNN Bayesian neural networks NWP Numerical weather prediction
CEEMDAN Complete ensemble empirical mode Pmean Average power

decomposition with adaptive noise
CFGWO Compression factor GWO PSR Phase space reconstruction
Ctime Calculation time PV Photovoltaic
DAIWGWO Dynamic adjustment R2 Coefficient of determination

of the inertia weight GWO
EMD Empirical mode decomposition RMSE Root mean square error
EEMD Ensemble empirical RT Regression tree

mode decomposition
FCM Fuzzy C-means SE Sample entropy
GA-BP Genetic algorithm-back propagation SGWO Standard GWO
Gmean Average irradiance SSA Singular spectrum analysis
GWO Grey wolf optimization SVM Support vector machine
IMFs Intrinsic mode functions SVR Support vector machine regression
KELM Kernel-based extreme WD Wavelet decomposition

learning machine
LSSVM Least squares support WOA Whale optimization algorithm

vector machine
LSTM Long short-term memory
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