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Abstract: Activated carbon monoliths with developed porosity, high surface area and excellent ad-
sorption properties were successfully prepared from resorcinol-formaldehyde resins using a physical
activation method. The primary objective of this study was to examine the impact of key parameters,
namely hexamethylenetetramine content (0.08–0.2 g), pyrolysis heating rate (5–20 ◦C/min) and acti-
vation time (1–7 h), on the final characteristics of the activated carbon in order to identify the optimal
operating conditions to achieve the desired properties. All the cured resin samples were pyrolyzed at
900 ◦C under a nitrogen atmosphere, while the activation process took place in the presence of CO2.
The evaluation of the activated carbon materials was based on the CO2 adsorption capacity and BET
surface area, micropore area and total pore volume, which were employed as the criteria for selecting
the optimal activated carbon. The synthesized porous carbon monoliths exhibited good properties:
high BET surface area (900 m2/g), high CO2 adsorption capacity (5.33 mmol/g at 0 ◦C and 1 bar,
3.8 mmol/g at 25 ◦C and 1 bar) and good CO2 selectivity for CO2/N2 and CO2/CH4 mixtures. These
results were obtained with a pyrolysis heating rate of 5 ◦C/min and a 3 h activation period.

Keywords: resorcinol-formaldehyde resin; porous carbon monolith; physical activation; CO2 adsorption;
CO2 selectivity

1. Introduction

The growing concentration of greenhouse gases in the atmosphere, particularly carbon
dioxide (CO2), has raised significant concerns about global warming and climate change [1].
To address this issue, numerous research studies in the world are actively engaged in
the development of efficient sorbent materials for CO2 capture. Various materials, such
as porous carbons, zeolites, porous organic polymers (POPs), metal–organic frameworks
(MOFs) and porous silica, are being extensively studied for this purpose [2–4].

Porous carbon-based materials have recently garnered significant attention owing to
their competitive advantages, such as high adsorption capacity, large surface area, facile
synthesis methods, tunable pore structure, high thermal stability, fast regeneration, low cost
and wide availability [5–11]. These materials have also found use in several applications,
such as catalysis supports, pollutant removal, energy storage, water and air filtration, as
well as natural gas sweetening (CO2/CH4 separation) [2,12–14]. Consequently, sorbents
based on porous carbons hold great promise in addressing the issue of CO2 capture.

Over recent years, numerous studies have focused on carbonaceous adsorbents de-
rived from various sources for CO2 adsorption. These include activated carbons [3,6,15],
biomass-derived porous carbons [16,17], metal–carbon composites [18,19], nitrogen-doped
carbons [11,12,20–22] and engineered carbon nanomaterials [14,23]. These studies have
explored different strategies to enhance CO2 adsorption capacity, particularly through sur-
face modification, incorporation of heteroatoms (mainly N-containing groups in carbons)
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and activation processes. An activated porous carbon (APC) is a solid material with high
internal surface area and porosity developed through the carbonization of a precursor and
subsequent activation methods, leading to the creation of micro- and mesopores in order
to obtain materials capable of adsorbing significant amounts of compounds of diverse
chemical natures contained in liquids or gases [24].

Activated carbons are manufactured from carbon-rich raw materials through car-
bonization (thermal treatment in an inert atmosphere), followed by an activation process,
which can be accomplished through chemical activation or physical (or thermal) activation.
Chemical activation involves treating the starting material with a concentrated solution of
activating agents (KOH, ZnCl2, H3PO4, HNO3, etc.), followed by an exhaustive washing
step for chemical contaminants removal. Physical activation is a process by which the
carbonized material develops more porosity and a large surface area by eliminating tarry
products through heat treatment at temperatures around 800–1000 ◦C in the presence of
oxidizing reactants, such as carbon dioxide, air, steam or mixtures of them [25,26].

In recent years, there has been a growing interest in incorporating nitrogen-containing
groups into the framework of activated porous carbons to enhance their CO2 adsorption ca-
pacity and selectivity [5,11,12,20,27–29]. It is believed that the presence of N-functionalities
in carbon augments its ability to adsorb CO2 thanks to the promotion of hydrogen bonding
and acid–base interactions between CO2 molecules with acidic properties and the carbona-
ceous material [22,30]. However, it should be noted that the impact of N-functionalities
on the adsorption performance is not the only factor that needs to be considered. Other
factors, such as pore volume and surface area, also play a significant role. For example,
Sevilla et al. [31] evaluated the effect of microporous size and N-content on CO2 adsorption
capacity and found that the presence of N-heteroatoms did not have a significant influence
on CO2 adsorption performance.

Various polymeric precursors, such as polyamide, polyetherimide, polyacrylonitrile,
poly (acrylonitrile–divinylbenzene), sulfonated poly (styrene–divinylbenzene) and phenolic
resins, have been studied for the development of APC by means of pyrolysis [32–36].
Among these, phenolic resins have garnered significant attention as a polymeric precursor
due to several advantages, such as easy preparation, very low ash content, low impurities
(depending on the synthesis process), relatively low cost, high char yield after carbonization
and the ability to be processed into several physical forms, including fibers, spheres, beads,
granular structures and even monoliths [35–37]. As depicted in Table 1, several types of
activated carbons have been successfully synthesized from phenolic resins, showcasing
excellent CO2 adsorption performance ranging from 1.6 to 8.5 mmol/g at 25 ◦C and 0 ◦C.

Table 1. Comparison of CO2 sorption of different porous carbon materials from the literature.

Author Morphology SBET (m2/g)
CO2 Sorption Capacity (mmol/g)

0 ◦C, 1 bar 25 ◦C, 1 bar

Present work Monolith 908 5.33 3.80
Zhang [36] Microspheres 1803 - 4.53

Du [8] Monolith 683 4.01 2.94
Liu [38] Nanocomposite 442 1.95 1.60

Whang [6] Nanospheres 1235 7.34 4.83
Wickramaratne [10] Nanospheres 2930 8.05 4.55

Sevilla [31] Microspheres 1920 6.25 3.85

To date, most research on the development of CO2 adsorbents has focused on enhanc-
ing certain adsorbent characteristics, including nitrogen functionalities, ordered structures,
polymer precursors and activation methods, with the goal of increasing CO2 adsorption ca-
pacity. However, optimizing certain carbonization and activation process variables—such
as temperature, inert gas flow, heating rate and time—can also enhance the material’s
adsorption performance [39]. Consequently, from an engineering standpoint, fine-tuning
the parameters related to carbonization and activation conditions can not only enhance
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textural and adsorption properties but also result in a reduction in fabrication time. This
optimization may also minimize energy consumption, leading to a more sustainable and
economically viable overall process.

With these considerations in mind, we propose a scalable and straightforward method
for preparing activated carbon monoliths with hierarchical porosities using a resorcinol-
formaldehyde resin (RF) obtained through a sol–gel process. The process involves introduc-
ing a soft template (Pluronic F127) and hexamethylenetetramine (HMTA) as cross-linking
agents and nitrogen sources. The monolith is then solidified at 75 ◦C, carbonized and
thermally activated. The key to this process is the use of HMTA, which decomposes upon
heating into ammonia and formaldehyde, aiding in cross-linking and providing a sufficient
nitrogen source.

Therefore, the aim of this study is to develop an activated porous carbon monolith
from RF resin and enhance its properties, including surface characteristics and adsorption
capacity, by optimizing the amount of HMTA, heating rate and activation time. The final
goal is to identify the optimal conditions for producing activated carbon monoliths with
well-developed porosity and higher yield, following the workflow illustrated in Figure 1.
Afterward, the objective is also to characterize the optimal activated carbon material in
terms of selectivity, considering the separation of CO2 from a flue-gas stream on the one
hand (CO2/N2 separation) and natural gas sweetening on the other hand (CO2/CH4
separation). Finally, the adsorption/desorption cyclability of the optimal activated carbon
material is characterized.
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2. Materials and Methods
2.1. Materials

Resorcinol (99.0%), hexamethylenetetramine (HMTA, 99.5%), Pluronic F127 and forma-
lin (37 wt % in water) were purchased from Sigma–Aldrich Corp (Saint-Quentin-Fallavier,
France). Ethanol (99.9%) was purchased from Carlo Erba reagents (Val-de-Reuil, France).
All chemicals were used as received.
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2.2. Synthesis of Porous Carbon Monoliths

The resorcinol-formaldehyde resin was synthesized via a sol–gel process, schematically
represented in Figure 2, according to the procedure used by Hao et al. [29] with some
modifications. In a typical procedure, HMTA (0.57 mmol, 0.08 g) was dissolved in 9 mL
of deionized water in a 250 mL flask with magnetic stirring at room temperature. To this
solution, ethanol (11.4 mL), Pluronic F127 (1.25 g) and resorcinol (27.3 mmol, 3 g) were
added and stirred continuously for 10 min until a homogeneous solution was obtained.
The pH of the solution was set around 6.5. Subsequently, formaldehyde (54.5 mmol, 1.63 g)
was added quickly to the solution and stirred until the solid was completely dissolved. The
resulting clear solution was then transferred to a 25 mL plastic syringe, which was placed
vertically in an oven at 75 ◦C for 24 h. Afterward, the syringe plunger was removed, and the
syringe barrel was placed back in the oven at the same temperature for an additional 48 h.
The resulting orange polymer monolith was then extracted from the syringe barrel and
carbonized in a tubular furnace (24 mm internal diameter) at 900 ◦C under a nitrogen flow
rate of 200 cm3/min. Thermal activation was carried out using a gas mixture of CO2/N2
(20/80 molar%) as the activating agent at the same temperature and flow rate for different
activation times, and therefore, different activation progresses. Notably, activation with
CO2 was selected, as it promotes the formation of micropores, which are desirable for CO2
adsorption operations (compared to H2O activation, which also promotes less desirable
mesopores) [40,41]. Instead of pure CO2, a gas mixture of CO2/N2 (20/80 molar%) was
used in the present study to ensure a homogeneous activation in the longitudinal and radial
directions of the carbon monolith. The use of this same gas mixture composition is also
reported and discussed in the literature [42].

Processes 2024, 12, x FOR PEER REVIEW 4 of 18 
 

 

2. Materials and Methods 
2.1. Materials 

Resorcinol (99.0%), hexamethylenetetramine (HMTA, 99.5%), Pluronic F127 and for-
malin (37 wt % in water) were purchased from Sigma–Aldrich Corp (Saint-Quentin-
Fallavier, France). Ethanol (99.9%) was purchased from Carlo Erba reagents (Val-de-Reuil, 
France). All chemicals were used as received. 

2.2. Synthesis of Porous Carbon Monoliths 
The resorcinol-formaldehyde resin was synthesized via a sol–gel process, schemati-

cally represented in Figure 2, according to the procedure used by Hao et al. [29] with some 
modifications. In a typical procedure, HMTA (0.57 mmol, 0.08 g) was dissolved in 9 mL 
of deionized water in a 250 mL flask with magnetic stirring at room temperature. To this 
solution, ethanol (11.4 mL), Pluronic F127 (1.25 g) and resorcinol (27.3 mmol, 3 g) were 
added and stirred continuously for 10 min until a homogeneous solution was obtained. 
The pH of the solution was set around 6.5. Subsequently, formaldehyde (54.5 mmol, 1.63 
g) was added quickly to the solution and stirred until the solid was completely dissolved. 
The resulting clear solution was then transferred to a 25 mL plastic syringe, which was 
placed vertically in an oven at 75 °C for 24 h. Afterward, the syringe plunger was removed, 
and the syringe barrel was placed back in the oven at the same temperature for an addi-
tional 48 h. The resulting orange polymer monolith was then extracted from the syringe 
barrel and carbonized in a tubular furnace (24 mm internal diameter) at 900 °C under a 
nitrogen flow rate of 200 cm3/min. Thermal activation was carried out using a gas mixture 
of CO2/N2 (20/80 molar%) as the activating agent at the same temperature and flow rate 
for different activation times, and therefore, different activation progresses. Notably, ac-
tivation with CO2 was selected, as it promotes the formation of micropores, which are 
desirable for CO2 adsorption operations (compared to H2O activation, which also pro-
motes less desirable mesopores) [40,41]. Instead of pure CO2, a gas mixture of CO2/N2 
(20/80 molar%) was used in the present study to ensure a homogeneous activation in the 
longitudinal and radial directions of the carbon monolith. The use of this same gas mix-
ture composition is also reported and discussed in the literature [42]. 

 
Figure 2. Schematic of the experimental protocol for activated carbon preparation. 

2.3. Optimization Procedure 
The carbonization process involves the removal of non-carbon components (specifi-

cally oxygen, hydrogen and nitrogen) from the precursor materials, resulting in a carbon 
skeleton with a rudimentary pore structure known as char [25,43]. However, the final 
characteristics of the activated carbon depend on several experimental parameters, such 
as carbonization temperature, time, flow rate of inert gas and heating rate [44]. According 
to Kwiatkowski [39], higher temperatures during carbonization reduce the non-carbon 
elements in the char and enhance its quality by increasing the surface area and pore vol-
ume of the carbon adsorbent. However, this also leads to a reduction in the char yield. 

Figure 2. Schematic of the experimental protocol for activated carbon preparation.

2.3. Optimization Procedure

The carbonization process involves the removal of non-carbon components (specifi-
cally oxygen, hydrogen and nitrogen) from the precursor materials, resulting in a carbon
skeleton with a rudimentary pore structure known as char [25,43]. However, the final
characteristics of the activated carbon depend on several experimental parameters, such as
carbonization temperature, time, flow rate of inert gas and heating rate [44]. According
to Kwiatkowski [39], higher temperatures during carbonization reduce the non-carbon
elements in the char and enhance its quality by increasing the surface area and pore volume
of the carbon adsorbent. However, this also leads to a reduction in the char yield. During
carbonization, the flow of inert gas over the raw material helps prevent carbon burn-off
and removes volatile gaseous products from the precursor surface.

For this study, the carbonization temperature (900 ◦C), hold time (2 h) and inert gas
flow rate (200 mL/min) were selected based on preliminary tests and information available
in the literature [9,38,45]. Nonetheless, other variables, such as HMTA content, heating rate
and activation progress, were found to be more relevant and were consequently evaluated
during the optimization process. By carefully considering these factors, it was possible to
produce high-quality activated carbon with optimized properties.
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For this purpose, the carbon samples obtained at each stage were characterized, and
several criteria were considered. The CO2 adsorption and surface characteristics, including
specific surface area, micropore area and pore volume of the produced carbon, were used
as primary indicators to select the best conditions. In addition, the char yield and burn-off,
after the pyrolysis and activation stages, respectively, were also considered. By evaluating
these factors, the aim was to produce an activated carbon monolith with maximum CO2
adsorption capacity and favorable textural properties, optimal char yield and minimum
burn-off. These criteria were essential in establishing the optimal protocol, as they directly
impact the performance of the activated carbon materials.

In this study, three parameters were successively investigated to define the optimal
experimental conditions and thus obtain the optimal activated carbon, as outlined in
Figure 1. Each stage was evaluated based on the established criteria, and the experimental
conditions leading to the best performance were selected for the subsequent stage.

• Stage 1: In the first stage, the effect of HMTA on the surface properties and CO2
adsorption capacity of the resulting material was evaluated. For this purpose, various
monoliths were prepared by using different amounts of HMTA (0.08, 0.12, 0.16 and
0.2 g). These monoliths were subsequently carbonized (at 900 ◦C, 5 ◦C/min and 2 h)
and characterized. The produced carbon materials were labeled as CRF-x, where
“x” represents the amount of HMTA added. The amount of HMTA leading to the
best porous carbon performance was used for the subsequent stage (according to the
above-mentioned criteria).

• Stage 2: In the second stage, the effect of different heating rates (5, 10, 15 and
20 ◦C/min) during carbonization (900 ◦C, 2 h) was evaluated. The obtained car-
bonized materials were designated as CHR-y, where “y” indicates the value of the
heating rate employed during carbonization. Again, the carbonization heating rate
leading to the best porous carbon performance was used for the subsequent stage.

• Stage 3: Finally, in the third stage, the optimal carbon material obtained from Stage 2
underwent activation for different durations (1, 3, 5 and 7 h). The activated carbons
thus produced were denoted as ACR-z, where “z” refers to the applied activation
progress. In all these tests, the activation temperature was increased at a heating
rate of 20 ◦C/min under nitrogen until it reached 900 ◦C. Subsequently, the gas flow
was switched from nitrogen to a gas mixture of N2/CO2, with a total flow rate of
200 mL/min for the selected activation time. Nitrogen was finally used for cooling
down to room temperature.

2.4. Materials’ Characterization

Fourier transform infrared (FT-IR) spectra of the RF resins and porous carbons were
obtained utilizing a Thermo Scientific Nicolet iS5 with iD1 transmission FT-IR spec-
trometer (Thermo Scientific®, Waltham, MA, USA) at room temperature in the range
of 400–4000 cm−1 at a resolution of 4 cm−1, with a KBr pellet. The surface morphology
of the samples was analyzed via scanning electron microscopy (SEM) images, with a
FEI Quanta 3D FIB FEG instrument (Richland, WA, USA) operated at 20 kV. Elemental
analysis was performed on a Thermo Scientific Flash 2000 CHNS/O Analyzer (Thermo
Fisher Scientific, Waltham, MA, USA). The textural properties of all activated carbons were
determined by N2 adsorption/desorption at −196 ◦C using a Micromeritics 3Flex sorption
analyzer (Micromeritics, Norcross, GA, USA) with nitrogen of 99.998% purity. Prior to each
measurement, all samples were degassed under vacuum at 220 ◦C for at least 20 h. The
specific surface area (SBET) was calculated from the N2 adsorption isotherm by using the
Brunauer–Emmett–Teller (BET) method. Pore size distribution (PSD) was estimated by
using the Horvath–Kawazoe (HK) model. The total pore volume (Vtotal), micropore surface
area (Smic) and micropore volume (Vmic) were calculated using the t-plot method. The CO2
adsorption capacity of samples was also evaluated using a Micromeritics 3Flex sorption
analyzer. Adsorption experiments were conducted at two different temperatures (0 ◦C and
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25 ◦C) in the pressure range of 0–1 bar. Prior to each adsorption experiment, the samples
were degassed at 220 ◦C for at least 6 h.

2.5. Char Yield, Burn-Off and Available Adsorption Capacity

The char yield refers to the amount of carbon obtained after the carbonization process,
expressed as a percentage of the initial mass of the precursor material. It is a measure of
the efficiency of the carbonization process and indicates the extent of conversion of the
precursor into carbon [46]. The char yield was calculated based on the following equation:

Char yield (%) =
wc

w0
× 100 (1)

where w0 (g) and wc (g) are the initial mass of the precursor and mass of the carbon material
after pyrolysis, respectively.

The burn-off determines the activation progress and corresponds to the percentage
of mass lost during the activation process of carbon materials [39]. Burn-off is calculated
using the following formula:

Bo(%) = Burn − o f f (%) =
wc − wa

wc
× 100 (2)

where wa (g) is the mass of carbon material after activation.
The activation process leads to a higher surface area but also a higher mass loss of the

activated product [25,26]. Thus, determining the optimal balance between CO2 adsorption
performance and the available mass of activated carbon is imperative. For this purpose, the
concept of “available CO2 adsorption capacity”, expressed in mmol of CO2/g of pyrolyzed
material, is introduced. This requires the conversion of CO2 adsorbed per unit mass of
activated material (noted as Ac) into CO2 adsorbed per unit mass of pyrolyzed material.
The available CO2 adsorption capacity is calculated as

Available CO2 capacity = Ac
(

1 − Bo(%)

100

)
(3)

where Ac (mmol of CO2/g of activated material) is the CO2 adsorption capacity of the
activated material, and Bo is the burn-off (%) during activation.

2.6. Selectivity and Adsorption/Desorption Cyclability of the Optimal Porous Carbon Material

To characterize the selectivity of the optimal activated carbon material (ACR-3), CO2,
N2 and CH4 isotherms were measured at 0, 25 and 50 ◦C, for pressures ranging from 0 to
1 bar using the 3Flex sorption analyzer (Micromeritics, Norcross, GA, USA). Based on these
isotherms and using the ideal adsorbed solution theory (IAST) [3,30], the selectivity Sads
was estimated using the following equation:

Sads =
q1/q2

P1/P2
(4)

where qi is the amount of gas i adsorbed (mmol/g), and Pi is the partial pressure (bar) of
gas i in the mixture.

In the present study, the selectivity of the optimal porous carbon material (ACR-3)
was estimated considering two typical separation cases:

• Separation of CO2 from a flue-gas stream, i.e., the separation of a (15:85) CO2/N2 mixture;
• Natural gas sweetening, i.e., the separation of a (50:50) CO2/CH4 mixture.

Additionally, to assess the cyclability of the optimal activated carbon (ACR-3), 10 con-
secutive adsorption–desorption cycles were performed on the same sample. In these cycling
experiments, the CO2 adsorption test was conducted at 0 ◦C and 1 bar, while during the
desorption stage, the saturated carbon was heated under vacuum at 130 ◦C to desorb CO2.
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3. Results and Discussion
3.1. Characterization of the Synthesized Carbon Monoliths

A polymeric resin from HMTA, resorcinol, formaldehyde and Pluronic F127 was
successfully synthesized through the sol–gel method. A representative example of an
RF resin monolith and its carbonized product are shown in Figure 3a, while Table 2
summarizes the material characterization results. In the photographs in Figure 3a, it is
possible to observe that the solid carbon monolith obtained exhibited a uniform shape,
similar to that of the RF resin, with a volumetric shrinkage of 55–60% after carbonization
(relative to the molds) for all conditions studied. The FT-IR spectrum of the RF resin is
presented in Figure 3b. The band at 3425 cm−1 was assigned to the N–H and/or OH groups,
while the vibrations in the region from 2960 to 2850 cm−1 were associated with the C–H
bond. Furthermore, the bands observed at 1631 cm−1 and 1599 cm−1 were assigned to the
characteristic absorbance of the aromatic C–H and aromatic C–C stretch, respectively. The
band at 1461 cm−1 was attributed to CH2 deformation, and the band observed at 1082 cm−1

corresponds to the C–N vibration. Generally, the FT-IR spectrum obtained from the RF
resin confirms the presence of characteristic bands typically associated with phenolic resins.
These results are also comparable to those obtained by Zhang et al. [36] and Lui et al. [38],
who prepared carbonaceous materials from similar phenolic resins. Figure 3b also shows
the FT-IR spectrum of the activated carbon (ACR-7), for which several weak bands can be
observed. The weak band around 3425 cm−1 is attributed to residual N–H and/or OH
groups. The weak peaks in the region from 2960 to 2850 cm−1 are associated with C–H
bonds remaining in the carbon network.
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activated carbon monolith.

SEM images were employed for the morphological analysis of the carbon materials.
Figure 4 displays representative images of the cured resin, as well as carbonized and
activated materials. The microspheres in all products exhibited regular and interconnected
structures with smooth surfaces. Furthermore, the SEM images also allowed the mean
diameter of the individual spheres to be determined (based on 25 measurements). For
the RF resin, the particle diameter was measured to be 4.8 ± 0.7 µm, while for both non-
activated and activated carbons, the diameter remained similar and close to 2.0 ± 0.6 µm.
This reduction in particle diameter suggests that the mass loss during activation primarily
resulted from the elimination of residual organic molecules and gaseous products within
the bulk of the raw material. Sevilla et al. [31] reported similar observations, where the
diameter of resorcinol-formaldehyde-based carbon microspheres remained practically
unchanged between non-activated and activated carbons.
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Table 2. Adsorption parameters of the porous carbon samples.

Sample HMTA a

(g)
Ramp b

(◦C/min)
Activation

Time (h)
Char
Yield
(%)

Burn-
Off (%)

N2 Sorption CO2 Sorption
(mmol/g) Elemental Analysis (wt %)

SBET
c

(m2/g)
Smicro

d

(m2/g)
Vtotal

e

(cm3/g)
Vmic

f

(cm3/g)
0 ◦C 25 ◦C N C H O

CRF-1 0.08 5 - 40.5 NA 353 333 0.18 0.17 3.69 0.53 95.66 0.44 1.40
CRF-2 0.12 5 - 42.3 NA 372 367 0.19 0.19 3.72 0.87 94.74 0.45 1.68
CRF-3 0.16 5 - 42.1 NA 408 382 0.19 0.19 3.76 0.97 94.03 0.42 1.58

CRF-
4/CHR-05 0.20 5 - 41.6 NA 450 418 0.21 0.21 4.07 3.17 1.11 94.45 0.42 2.08

CHR-10 0.20 10 - 41.0 NA 412 312 0.21 0.19 3.65 1.00 94.87 0.45 2.04
CHR-15 0.20 15 - 41.6 NA 387 383 0.19 0.19 3.65 1.08 94.44 0.44 2.36
CHR-20 0.20 20 - 41.1 NA 357 330 0.17 0.17 3.62 1.09 95.25 0.46 1.45

ACR-1 0.20 5 1 XX 6 510 473 0.24 0.24 4.62 1.17 92.91 0.42 1.59
ACR-3 0.20 5 3 XX 12 640 600 0.30 0.30 4.99 3.40 1.04 92.85 0.35 1.51
ACR-5 0.20 5 5 XX 16 815 757 0.38 0.38 5.16 1.21 90.27 0.33 1.26
ACR-7 0.20 5 7 XX 22 908 835 0.42 0.42 5.33 3.80 1.19 93.77 0.31 1.16

a HMTA content; b Heating rate for carbonization; c BET specific surface area obtained from the adsorption data in the
P/P0 range from 0.05 to 0.2; d Microporous specific surface area obtained using the t-plot method; e Total pore volume
at a relative pressure of 0.99. f Micropore volume. Elemental analysis shown as mean values (n = 3 replicates).
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3.2. Effect of HMTA

In this study, HMTA was utilized as a cross-linker and nitrogen source during the
preparation of RF resins [47]. Therefore, the initial focus was to assess the influence of
HMTA quantity on the textural properties and CO2 adsorption performance of the resulting
carbon material. To achieve this, a series of RF resins with different amounts of HMTA were
synthesized (ranging from 0.08 to 0.2 g) and then carbonized at 900 ◦C in order to obtain
different carbon monoliths. The obtained data are summarized in Table 2 and include
textural characteristics, CO2 adsorption characteristics and elemental analysis.

The elemental analysis revealed an increase in nitrogen content with the addition
of HMTA, ranging from 0.53 to 1.11 wt %. This trend was expected, considering that
the increase in added HMTA could generate more NH3 as the principal nitrogen source.
Furthermore, the surface characteristics showed a slight increase in the specific surface
area (SBET), micropore surface area (Smic) and total pore volume (Vtotal) by increasing the
HMTA feed. The highest values of SBET, Smic and Vtotal were all obtained at maximum
HMTA content and were equal to 683 m2/g, 418 m2/g and 0.23 cm3/g, respectively. This
suggests that HMTA, as a precursor, positively influenced porosity development during
carbonization. This finding aligns partially with the observations made by Pajak et al. [9],
who found that a certain amount of HMTA used in the initial curing of a cross-linked
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Novolac resin had a positive effect on the porosity of the carbonized material (900 ◦C, 1.5 h,
N2 flow rate of 200 cm3/min) and the resulting activated product (900 ◦C, 2.5 h, CO2 flow
rate of 200 cm3/min). However, the authors also reported that a higher HMTA content in
Novolac resin led to an increase in char yield, but excessive cross-linking had a negative
influence on porosity. Hence, it is essential to strike a balance between HMTA content and
the desired porosity levels.

Furthermore, there is a noticeable increase in CO2 adsorption capacity of the car-
bonized material as the HMTA content increases. Among all the samples, CRF-4 exhibited
the highest CO2 uptake of 4.07 mmol/g at 0 ◦C and 1 bar, which corresponded to improved
textural characteristics. The higher HMTA content resulted in a larger surface area, provid-
ing more sites for CO2 adsorption, and also contributed to a higher nitrogen content, which
probably further enhanced CO2 uptake. Importantly, the addition of HMTA did not signifi-
cantly affect the char yield obtained from the RF resin, which remained almost constant at
around 41 wt %. Overall, the increase in HMTA content in the RF resin within the examined
range resulted in a higher carbon porosity and enhanced CO2 adsorption capacity.

However, it should be noted that increasing the HMTA content beyond 0.2 g decreased
the mechanical resistance of the resin monolith, making it difficult to remove from the
syringe and manipulate without damaging it. Consequently, the maximum HMTA content
was set at 0.2 g. Considering the mechanical resistance aspects, as well as surface character-
istics and CO2 adsorption capacity, the CRF-4 sample was selected as the preferred sample
for the subsequent stages of the optimization procedure followed in this study.

3.3. Effect of Heating Rate

The heating rate during resin carbonization is an essential factor that significantly
impacts both the quality and yield of the final products. In this section, the heating rate
was varied within a range of 5 ◦C/min–20 ◦C/min to assess its impact on the surface
characteristics and adsorption properties of the resulting porous carbons. Table 2 provides
an overview of the changes in pore characteristics and CO2 adsorption capacity associated
with the different heating rates.

Interestingly, the char yield remained unaffected by the heating rate, with all samples
exhibiting similar values of char yield (~41% wt) and shrinkage (~60% vol). Similarly,
elemental analysis indicated no significant influence of the heating rates on the nitrogen
content of the chars. In contrast, increasing the heating rate had a negative effect on SBET,
Smic and Vtotal. Notably, the best results for pore characteristics were obtained at the lowest
heating rate (5 ◦C/min). Regarding the CO2 adsorption capacity, the heating rate seemed
to have no clear influence between 10 ◦C/min and 20 ◦C/min (around 3.65 mmol/g).
However, CO2 adsorption capacity was clearly higher for a heating rate of 5 ◦C/min
(4.07 mmol/g).

Several authors have provided insights into the potential effects of heating rate on the
process of carbonization. For instance, Lu and Do [48] have suggested that the heating rate
impacts not only pyrolytic reactions but also the rate of particle softening and swelling,
thereby affecting the evolution of pore structure. Similarly, Byrne and Nagle [49] have
argued that slower heating rates result in a prolonged material dehydration process and
may lead to increased cross-linking and cycloaromatization of decomposing polymers,
which reduces the production of organic gases and yields a higher char yield. Furthermore,
Cetin and coworkers [50] have reported that low heating rates tend to produce a carbon
material with a more microporous structure, while high heating rates tend to generate
macropores in the carbonized material. According to Tay et al. [51], a lower heating rate is
advantageous for pore formation by enabling a gradual release of gases without inducing
the collapse or distortion of the char structure. However, it should be noted that a slower
heating rate also promotes the shrinkage stage of carbonization, resulting in harder char
with reduced pore volume.

Based on these findings, it can be inferred that the impact of heating rate is more
significant on pore structure compared to other factors like char yield and shrinkage.
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Consequently, reducing the heating rate seems to facilitate the formation of improved
porous structures. As a result, the carbon sample (CHR-5) produced at a heating rate of
5 ◦C/min demonstrated superior CO2 adsorption capacity and favorable textural properties
compared to the higher heating rates evaluated in this work. As a consequence, a heating
rate of 5 ◦C/min was identified as the optimal condition for yielding a porous carbon with
the highest SBET, Smic and Vtotal. Therefore, this condition was selected for subsequent
experiments in order to evaluate the effects of the other parameters.

3.4. Effect of Activation Progress (Burn-Off)

The carbon materials obtained after carbonization of the resins were physically acti-
vated by gasification with CO2 at 900 ◦C in order to increase their surface area and enhance
the CO2 adsorption capacity. As expected, the activation progress (burn-off) increased with
activation time, ranging from 6% to 22% for activation times of 1–7 h. The effects of the
activation progress on pore characteristics and CO2 adsorption of the activated carbons are
depicted in Table 2, as well as Figures 5 and 6.
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Furthermore, the activated carbon monoliths obtained after the activation treatment
did not exhibit any significant physical modifications. Indeed, a very low thermal shrinkage
was observed for all the studied conditions (~5% vol). Similarly, there was no clear trend
observed in the elemental composition, particularly in terms of nitrogen content.

Regarding the textural characteristics, Figure 5 illustrates the N2 adsorption isotherms
of the activated carbons for different degrees of burn-off and the corresponding pore
size distributions. As can be seen, all samples in the study displayed a type I isotherm,
indicating the predominant microporous nature of these materials. Type I isotherms are
commonly observed in microporous solids, where the filling of micropores takes place
predominantly at quite low partial pressures (P/P0 < 0.1) and the adsorption process
reaches completion at approximately 0.5 P/P0 [39,43,52]. Moreover, these isotherms also
revealed a small hysteresis loop for non-activated carbon (CRF-4), which then gradually
decreased with the subsequent activation, showing that the presence of mesopores was
slightly more pronounced in the non-activated carbons compared to the activated samples.

By analyzing the data presented in Table 2, it becomes evident that all samples ex-
hibited a predominance of microporosity, as indicated by the narrow difference between
the specific surface area and microporous surface, as well as the close values of the total
pore volume and micropore volume. This observation is further supported by the pore size
distributions (Figure 5b), which highlighted the prevalence of micropores primarily in the
0.55–0.8 nm range, confirming the predominance of microporous structures in the carbons.

Additionally, it can be observed that the BET surface area, micropore area and total
pore volume showed a consistent increase with the activation progress. By varying the
activation time from 1 to 7 h, SBET increased from 510 to 908 m2/g, Smic from 473 to 835 m2/g
and Vtotal from 0.23 to 0.43 cm3/g. This behavior can be attributed to the extended exposure
time, which promotes greater pore development and a higher degree of burn-off, ultimately
enhancing the surface properties of the activated carbon. Notably, the activated carbons
exhibited significantly higher surface areas compared to the non-activated carbon. Indeed,
ACR-7 (7 h activation) demonstrated a surface area of 908 m2/g, while CRF-4 (no activation)
had a surface area of 450 m2/g, illustrating the improvement in the porous characteristics
of the activated material throughout the activation process.

On the other hand, the CO2 adsorption isotherms measured at 0 ◦C for the activated
carbons are shown in Figure 6. A significant increase in CO2 uptake was observed be-
tween non-activated and activated carbon samples. For instance, the CO2 adsorption
performance of CRF-4 was 4.07 mmol/g, while ACR-7 exhibited 5.33 mmol/g. This re-
markable difference highlights the effectiveness of the activation process in enhancing the
adsorption properties of the non-activated carbons. These results are in agreement with
the improvement observed in textural characteristics, particularly the specific surface area,
which exhibited a similar trend. Furthermore, it can be observed that the CO2 adsorption
capacity increased with the activation progress, although the rate of increase was less pro-
nounced at higher activation progress. In addition, it can also be seen in Figure 6 that the
resulting activated materials exhibited high adsorption capacities of up to 3.4 mmol/g at
25 ◦C. This indicates the suitability of the developed material for use in ambient conditions,
highlighting its potential for practical applications.

3.5. Production Yields of the Final Products

The primary objective of this study was to identify the optimal process parameters for
producing activated carbons with high product yields and maximum adsorption capacity.
To achieve this objective, various influential factors, such as HMTA content, heating rate
and activation progress, were systematically investigated. As mentioned earlier, when
comparing various activated materials, it was evident that both the textural properties
and adsorption capacity improved significantly with longer activation time. However, this
enhancement came at the expense of increased burn-off, resulting in a reduced amount
of effective material at the end of the process. Therefore, it becomes crucial to determine
the optimal conditions that yield an activated material with the best balance between
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adsorption capacity and the available mass of the activated material. The available CO2
adsorption capacity, previously defined in Section 2.5 (Equation (3)), allows the conversion
of CO2 adsorbed per unit mass of activated material to CO2 adsorbed per unit mass
of pyrolyzed material. Figure 7 provides a visual representation of the available CO2
adsorption capacity per unit mass of pyrolyzed carbon as a function of the burn-off degree.
Remarkably, the activated product obtained after 3 h of activation (ACR-3) demonstrated
the best available CO2 adsorption capacity, representing the best compromise between
adsorption capacity and burn-off (i.e., mass loss of the adsorbent material).
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Based on these results, the recommended approach for preparing the optimal activated
adsorbent is the following:

• The RF resin with a high HMTA content should first be synthesized;
• Carbonization of the cured resin should be carried out at 900 ◦C, with a heating rate of

5 ◦C/min;
• Activation progress should be around 12% (corresponding to an activation time of 3 h

in the present work).

This carefully selected route ensures the production of an activated adsorbent with
superior performance characteristics. In conclusion, by systematically investigating the
key parameters and analyzing the resulting data, this study enabled a successful deter-
mination of the optimal conditions for producing activated carbons with excellent yield
and adsorption capacity. The recommended approach outlined above serves as a practical
guideline for achieving desirable outcomes in the production of activated adsorbents from
cured resin.

Finally, it should be highlighted that the procedure for fabricating the porous carbon
monoliths is simple and easily scalable.

3.6. Selectivity and Adsorption/Desorption Cyclability

As mentioned previously, the obtained activated carbons demonstrated very good
CO2 adsorption capacities. However, further tests were conducted to evaluate the CO2/N2
and CO2/CH4 selectivities of the optimal activated carbon material (ACR-3), as well as its
adsorption stability after several adsorption/desorption cycling runs. All of these results
are summarized in Table 3 and depicted in Figures 8 and 9.
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process. In addition, it was found that the activated carbon exhibited good selectivity for 
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Figure 9. Cyclical CO2 adsorption behavior of ACR-3: adsorption at 0 ◦C and 1 bar and desorption
under vacuum at 130 ◦C.
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Table 3. Gas uptakes (CO2, N2 and CH4) at 1 bar and IAST selectivity (CO2/N2; CO2/ CH4) for ACR-3.

CO2 Uptake at 1 Bar N2 Uptake at 1 Bar CH4 Uptake at 1 Bar IAST Selectivity IAST Selectivity
(mmol/g) (mmol/g) (mmol/g) CO2/N2 (15:85) CO2/ CH4 (50:50)

Temperature 0 ◦C 25 ◦C 50 ◦C 0 ◦C 25 ◦C 50 ◦C 0 ◦C 25 ◦C 50 ◦C 0 ◦C 25 ◦C 50 ◦C 0 ◦C 25 ◦C 50 ◦C

ACR-3 4.99 3.39 2.21 0.85 0.50 0.30 2.10 1.40 1.00 62 31 18 8.3 5.3 3.9

As shown in Table 3 and Figure 8a,c, ACR-3 exhibited a higher CO2 adsorption capacity
over N2 and CH4 at the different temperatures tested (0 ◦C, 25 ◦C and 50 ◦C). Indeed, at
1 bar, the CO2 adsorption capacity for ACR-3 ranged from 2.2 to 5 mmol/g, while the
adsorption capacity for N2 and CH4 only ranged from 0.3 to 0.8 and from 1.0 to 2.1 mmol/g,
respectively. As displayed in Table 3 and Figure 8b,d, the IAST selectivity analyses showed
that ACR-3 exhibited good performances for CO2/N2 separation (separation of CO2 from
a flue-gas stream), as well as for CO2/CH4 separation (natural gas sweetening). Indeed, for
the CO2/N2 (15:85) mixture at 1 bar, the obtained IAST selectivity factors were 62, 31 and
18 at 0 ◦C, 25 ◦C and 50 ◦C, respectively. These values are comparable to those reported in
other studies on absorbent carbons [3,6,22,30,53]. The same IAST selectivity analysis was
performed for CO2/CH4 separation, assuming a 50:50 mixture. At 1 bar, the obtained IAST
selectivity factors were 8.3, 5.3 and 3.9 at 0 ◦C, 25 ◦C and 50 ◦C, respectively, which were
similar to those reported for PBZ-porous carbon [30] and Zeolite-13X [54].

Regarding the adsorption/desorption cyclability, Wang et al. [55] mentioned that
the regeneration for amine-based solid adsorbents is usually carried out between 120
and 170 ◦C. Therefore, to assess the cyclability of the optimal activated carbon (ACR-3),
the adsorption of CO2 was conducted at 0 ◦C and 1 bar, while the desorption step was
performed under vacuum at 130 ◦C. Figure 9 displays the evolution of the CO2 adsorption
capacity of ACR-3 at 0 ◦C and 1 bar during 10 consecutive adsorption–desorption cycles. As
can be seen, there was no significant drop in CO2 adsorption capacity. In fact, the adsorption
capacity remained practically constant throughout the runs performed, demonstrating a
notable stability. Overall, the high CO2 adsorption capacity along with good selectivity and
excellent stability suggest that the fabricated carbon is a good candidate for CO2 adsorbent.

4. Conclusions

In this contribution, a novel resin based on resorcinol, formaldehyde and Pluronic
F127 as a sacrificial template was synthesized, and its properties were investigated in order
to obtain activated carbons with high product yield and maximum adsorption capacity. The
study focused on evaluating the influence of key factors, such as HMTA content, heating
rate and activation progress, on the resulting carbon material.

Increasing the HMTA content resulted in enhanced porosity development during
carbonization, leading to higher specific surface area and total pore volume. These im-
provements in surface characteristics were directly correlated with an increase in CO2
adsorption capacity. The heating rate during resin carbonization was also found to play
a crucial role in determining the carbon characteristics. Lower heating rates, such as
5 ◦C/min, promoted the development of a larger surface area and porosity, leading to a
superior CO2 uptake. Regarding the activation process, longer activation times allowed for
greater pore development, leading to enhanced surface properties. The activated carbons
exhibited substantially higher surface areas and CO2 adsorption capacities compared to
the non-activated carbon. The optimal activation time was determined by finding the best
compromise between the increase in adsorption capacity and the mass loss (burn-off), i.e.,
by identifying the maximum “available CO2 adsorption capacity”.

The recommended approach involves using a RF resin with a high HMTA content, car-
bonization at 900 ◦C with a heating rate of 5 ◦C/min and conducting a 3 h activation process.
In addition, it was found that the activated carbon exhibited good selectivity for two typical
gas mixtures (CO2/N2 and CO2/CH4), as well as an excellent adsorption/desorption
cyclability, showing its great potential as CO2 adsorbent.
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