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Abstract: Significant research has been conducted to minimise environmental impacts and promote
the sustainable use of resources and raw materials. Microbial surfactants are an example of advanced
materials obtained from sustainable production processes. In the present study, a biosurfactant
was produced by the yeast Starmerella bombicola ATCC 22214 grown in a previously selected low-
cost mineral medium containing 10% sucrose, 1.2% canola oil, and 0.5% corn steep liquor. The
biosurfactant reduced surface tension from 72 ± 0.1 to 32.76 ± 0.3 mN/m. The yield was 23 g/L,
and the critical micelle concentration was 0.6 g/L. The biosurfactant emulsified 96.25 ± 0.08% of
used motor oil, was characterised as a sophorolipid, and exhibited stability under extreme conditions
with no significant loss of its properties. Toxicity was assessed by exposing the microcrustacean
Artemia salina and the zebrafish (Danio rerio) to the biosurfactant. The biosurfactant proved efficient
for use in remediation processes, removing 97.8% and 69.2% of the petroleum derivative from sand
in kinetic and static tests, respectively, and removed 91.5% of the contaminant from seawater. The
results indicate the potential of this new biosurfactant for the mobilisation and solubilisation of
hydrocarbons in the marine environment. This green biomolecule is a promising technology for the
replacement of chemical dispersants in the remediation of aquatic and soil systems.

Keywords: Starmerella bombicola; biosurfactant; bioemulsifier; toxicity; oil derivative; bioremediation

1. Introduction

Oil and its derivatives have played a central role in driving the economy for more
than a century [1]. The primary sources of water and soil contamination by petroleum
hydrocarbons are oil spills and the improper disposal of oily waste generated from leaks
during the production, drilling, extraction, transportation, and storage of oil. This includes
damage to pipelines and leaks from underground storage tanks [2]. When released into the
environment, oil hydrocarbons spread horizontally, affecting a large area, and are decanted
due to the action of gravity, resulting in the blockage of pores in the soil [3]. These durable,
stable contaminants remain in the environment for long periods of time and do not easily
undergo degradation [4].
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Separation from the soil is difficult for two main reasons: (1) contaminants can be
strongly absorbed by organic matter and encapsulated in minerals in the soil, which
hampers the remediation process; and (2) soil is a complex, heterogeneous system and mass
transfer processes play an important role in separation. Organic and inorganic colloids,
flora, fauna, and microorganisms in the soil can also interfere with remediation [3,5].

Different methods are used to treat oily wastewater, such as flotation, sedimentation,
coagulation, filtration, ultrafiltration, and reverse osmosis. As water and oil are practi-
cally immiscible, they are easy to separate. Water containing suspended, emulsified, or
solubilised residual oil is treated and sent to an appropriate destination [6].

As environmental contamination with oil hydrocarbons constitutes a considerable
threat to human health, different technologies are employed to remediate contaminated
sites. Environmental remediation constitutes a set of methods used to mitigate the harmful
effects of these pollutants. However, such methods involve the use of synthetic surfac-
tants [7], which are highly toxic [8]. Thus, replacing synthetic compounds with natural
products has attracted growing interest.

Concerns related to the depletion of fossil fuels have shifted the focus toward sus-
tainable alternatives to conventional chemical processes that rely on petroleum [9]. The
advancement of biorefinery practices has facilitated the obtainment of fuels, polymers, and
chemicals produced from microbial sources [10]. Fermentation techniques that employ mi-
crobial strains enable the obtainment of high-value products, such as vitamins, carboxylic
acids, biofuels, enzymes, etc. Natural products derived from microbial cells offer ecological
compatibility and also require less land and water [11]. An environmental biodiversity
analysis revealed that 99% of microbes exist in the form of consortia and have applications
as functional ingredients in different industries [9,12].

There are approximately one million types of products of a natural origin. One-quarter
of these are biologically active compounds. More than half are derived from plants, and
the remainder are obtained from microorganisms, which produce about 23,000 secondary
metabolites, with fungi accounting for 42% and filamentous bacteria accounting for 32% [13].
These statistics demonstrate the considerable biodiversity and utility of microorganisms for
industrial purposes. Natural products constituted approximately 52% of all novel chemical
products that received approval from the US Food and Drug Administration between the
years 1981 and 2006 [14]. Numerous strategies have been developed and put into practice
to obtain byproducts from microorganisms. However, a small number of microbial-based
natural products are employed in the industrial sector [15], which underscores the need to
establish a commercial market for bioproducts derived from microbes.

Biosurfactants constitute a valuable by-product obtained from microbial cells and have
become increasingly competitive with synthetic surfactants derived from petroleum [16].
The increasing interest in microbial surfactants is due to the fact that such compounds are
expected to replace synthetic petroleum surfactants, such as sodium dodecylbenzenesul-
fonate (SDBS), which have a slow degradation process. For instance, sulfonate surfactants
are produced from alkyl aryl hydrocarbons, such as dodecylbenzene, which have a linear
hydrocarbon structure without an aromatic component, and degradation takes three to
eight days, compared to the 24 days that synthetic petroleum surfactants require [17].

Biosurfactants are biomolecules with hydrophobic and hydrophilic portions. The
hydrophobic portion has long-chain fatty acids, whereas the hydrophilic portion may
be an amino acid, carbohydrate, phosphate carboxyl acid, cyclic peptide, or alcohol [18].
This amphipathic nature gives biosurfactants surface-active properties that enable the
reduction of surface tension and interfacial tension in aqueous solutions and mixtures with
hydrocarbons. These metabolites are synthesised by yeasts, bacteria, and filamentous fungi
of the genera Candida, Pseudomonas, Bacillus, Starmerella, Rhodococcus, and others [19–21].

The advantages of biosurfactants over synthetic surfactants include lower toxicity,
greater biodegradability, and high stability over a broad range of pH, salinity, and tempera-
ture values. Thus, these biomolecules have applications in a variety of fields, including the
food, biomedical, and environmental industries [22]. Moreover, the critical micelle concen-
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tration (CMC) of biosurfactants is lower. The CMC is the lowest amount of a surfactant
needed to achieve the greatest reduction in surface tension, improving economic efficiency
in different applications.

The properties of biosurfactants include humectation, emulsification, foaming, phase
solubilisation, and dispersion. Depending on the combination of molar mass, mode of
action, and physicochemical properties, biosurfactants can have low or high molecular
weight. Those with low molecular weight reduce surface tension and interfacial tension,
whereas those with high molecular weight are denominated bioemulsifiers and are more
effective at ensuring the stabilisation of emulsions [18,23]. Biosurfactants generally have a
molar mass ranging from 500 to 1500 Da [24]. With regards to the chemical composition,
these biomolecules can be glycolipids (rhamnolipids, mannosylerythritol lipids, trehalose
lipids), lipopeptides (surfactins, fengycins, lichenysines), glycolipopeptides, glycoproteins,
phospholipids, neutral lipids, polymeric biosurfactants (emulsan, alasan, biodispersan),
and particular biosurfactants (protein–sugar–lipid complex molecules) [25].

Biosurfactants can be used to enhance the washing and removal of lyophilic con-
taminants through displacement and solubilisation. Displacement occurs when the con-
centration of biosurfactant is below the CMC, whereas solubilisation occurs at higher
concentrations. With the displacement mechanism, biosurfactant molecules accumulate
at the interface between the soil and pollutant or between water and soil, causing the soil
to roll and changing the affinity of the system for water. The adsorption of biosurfactant
molecules to the surface of the contaminant results in repulsion forces between the main
chemical groups of the contaminant and the soil particles, enhancing the separation of the
contaminant. With the solubilisation mechanism, the contaminant is incorporated into the
micelles formed by the presence of the biosurfactant, favouring partitioning towards the
water phase. Pollutants that partition towards micelles can be recovered and demulsified,
electrochemically destroyed, or adsorbed to activated carbon. The washing solution (bio-
surfactant) can be discarded or recycled to reduce remediation costs. Biosurfactants also
increase the bioavailability of organic pollutants in the soil to microbial cells by lowering
the surface tension of the aqueous phase, thereby facilitating biodegradation [26].

The compound annual growth rate of the global biosurfactant market is expected
to be 0.8%, increasing from USD 1.3754 billion in 2020 to USD 1.4427 billion in 2026,
although the cost of producing a biosurfactant is not yet compatible with the market
demand. Foaming during processing, limited yields, expensive raw materials, and costs
related to purification and downstream processing constitute some of the challenges to face
when producing biosurfactants on an industrial scale. To solve this problem, industrial
and agricultural byproducts have been used as substrates. Moreover, the use of waste
products minimises pollution and reduces waste treatment costs. Statistical approaches
and engineering methods have also been successfully used to reduce costs and optimise
biosurfactant production operations [18,27].

The viability of industrial biosurfactant production depends on the target market.
Production can only be performed on a small scale for food, medicinal, and cosmetic
products due to the purification steps required. The use of crude fermentation broths,
on the other hand, could be a viable solution for environmental applications, which do
not require a purification step. Moreover, biosurfactants for such applications can be
produced from microorganisms grown in media containing a combination of low-cost
carbon sources, ensuring economic and environmental sustainability [28]. Thus, crude
biosurfactants are promising for environmental remediation and wastewater treatment,
taking advantage of the hydrophobicity of the microbial cell surface, which is an essential
aspect of biodegradation [29].

The main challenges for biosurfactants are related to technical and economic issues.
Technical problems include low production yields, low product concentration, high mass
intensity, and high specific energy demands [30,31]. Economic issues arise from biosur-
factant separation and purification processes, which involve technologies such as foam
fractionation, membranes, gravity separation (e.g., acid precipitation, crystallization), and
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ultrafiltration, all of which have high capital and operating costs [32]. These challenges have
hindered the widespread replacement of chemical surfactants with biosurfactants. Various
process improvements have been proposed, including metabolic engineering, bioprocess
engineering, chemical engineering, and process engineering. For example, genetically
modified microorganisms (GMOs) have been developed to increase the yield of biosurfac-
tants [33]. Hybrid production schemes, which integrate product formation and separation,
have also been studied to reduce processing steps and production costs, but these methods
are still in the research stage [34]. Few studies have focused on the conceptual design of bio-
surfactant production processes from a techno-economic and environmental perspective to
explore potential technologies for upscaling. However, it is important for the development
of biosurfactants to expand beyond the academic sector, as the industrial development of
biosurfactants is linked to establishing a circular bioeconomy by using renewable sources
for production [35]. The increasing development of biosurfactants is driven by current
laws and policies regulating the use of environmentally harmful chemicals. Such laws and
policies have been announced and implemented throughout the world, further promoting
the shift towards the use of sustainable eco-friendly products [22]. For example, BASF
SE (Ludwigshafen, Germany) has entered partnership agreements with Allied Carbon
Solutions Co. Ltd. (Numazu, Japan) and Holiferm Ltd. (Manchester, United Kingdom)
to advance sustainable biosurfactant production for the personal and home care sector.
These actions set an example to encourage the production of bio-based products in line
with policies, laws, and financial incentives [36].

The research addressed in this paper focuses on technical and environmental in-
formation regarding the production of a new biosurfactant. The aim was to produce a
biosurfactant from the yeast Starmerella bombicola ATCC 22214 and evaluate its properties,
toxicity, and safety for use in remediating soil and water contaminated with an oil deriva-
tive. In the following sections, we will explain how we were able to achieve high yields in
the production of this novel biosurfactant using low-cost substrates. This biomolecule is
highly efficient, non-toxic, and environmentally friendly, and can be used without requiring
multiple purification steps.

2. Materials and Methods
2.1. Microorganism, Maintenance Medium, and Growth Medium

The yeast S. bombicola ATCC 22214 purchased from the American Type Culture Collec-
tion was used for biosurfactant production and was maintained in yeast mould agar (YMA)
medium at 5 ◦C. The medium was composed of distilled water (100 mL) with peptone
(0.5%), agar (2%), D-glucose (1%), and yeast extract (0.3%), pH 7.0. To maintain viability,
transfers to fresh agar slants were performed every month. The growth medium was yeast
mould broth (YMB), with the same composition as the YMA medium, but without the agar.

2.2. Growth of Inoculum

To standardise the inoculum, the culture was transferred to a tube containing the
YMA medium at 28 ◦C, obtaining a young culture, and the sample was placed in a 250 mL
Erlenmeyer flask with YMB medium (50 mL). Incubation was performed under aerobic
conditions, with constant agitation (150 rpm) for 48 h at 28 ◦C. The mixture was diluted until
reaching 104 cells/mL. A Neubauer chamber was used for the cell count. The inoculum
was used at a concentration of 5% (v/v).

2.3. Production Media and Culture Conditions

Different media (500 mL) were used for biosurfactant production based on descriptions
in the literature (Table 1). Erlenmeyer flasks with a capacity of 1000 mL were used for
fermentation to produce biosurfactants. The pH was adjusted to 6.0. An autoclave operating
at 121 ◦C was used to sterilise the media (15 min), which were then incubated under aerobic
conditions with 5% of the pre-inoculum and kept under orbital agitation at 200 rpm for
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192 h at a temperature of 28 ◦C. The pH of the media was not adjusted during cultivation.
All analyses were performed in triplicate and did not vary more than 5%.

Table 1. Composition of biosurfactant production media.

Medium Components of Production Medium (g/L)

Medium 1 Sunflower oil: 50; Glucose: 25; Yeast extract: 1; KH2PO4: 0.5;
MgSO4·7H2O: 0.5; NaNO3: 3

Medium 2 Sunflower oil: 50; Sucrose: 25; Yeast extract: 1; KH2PO4: 0.5;
MgSO4·7H2O: 0.5; NaNO3: 3

Medium 3 Canola oil: 12; Glucose: 100; Corn steep liquor: 5; K2HPO4: 1;
(NH4)2SO4: 4; MgSO4·7H2O: 0.5

Medium 4 Canola oil: 12; Sucrose: 100; Corn steep liquor: 5; K2HPO4: 1;
(NH4)2SO4: 4; MgSO4·7H2O: 0.5

Medium 5 Canola oil: 12; Glucose: 100; Corn steep liquor: 5

Medium 6 Canola oil: 12; Sucrose: 100; Corn steep liquor: 5

Medium 7 Crude cotton seed oil: 100; Glucose: 100; Urea: 1.5; K2HPO4: 1;
Corn steep liquor: 4; NaCl: 0.1

Medium 8 Refined cotton seed oil: 100; Glucose: 100; Urea: 1.5; K2HPO4: 1;
Corn steep liquor: 4; NaCl: 0.1

Medium 9 Crude cotton seed oil: 100; Sucrose: 100; Urea: 1.5; K2HPO4: 1;
Corn steep liquor: 4; NaCl: 0.1

Medium 10 Refined cotton seed oil: 100; Sucrose: 100; Urea: 1.5; K2HPO4: 1;
Corn steep liquor: 4; NaCl: 0.1

2.4. Isolation of Biosurfactant

Liquid–liquid extraction was used to isolate the biosurfactant. For such, ethyl acetate
(proportion of 1:4 (v/v) with the non-centrifuged medium) was used twice. After centrifu-
gation of the organic phase at 2600× g for 20 min, filtration was performed, and the filtrate
was placed in a separatory funnel with a solution of saturated sodium chloride (NaCl) for
separation of the remaining aqueous phase. Next, the organic phase was placed into an
Erlenmeyer flask, followed by the addition of anhydrous magnesium sulphate (MgSO4)
until the formation of granules. Filtration was then performed using a qualitative paper
filter (Whatman No. 1), followed by drying at a temperature of 50 ◦C [37].

2.5. Biosurfactant Characterisation

The ionic charge of the biosurfactant was determined using the agar double diffusion
method [38]. Two rows of wells were prepared in 1% agar. The wells of one row received the
isolated biosurfactant solution, and the wells of the other row received a pure compound,
the ionic charge of which was known. The anionic substance was sodium dodecyl sulphate
(SDS) (20 mM), and the cationic substance was barium chloride (50 mM). The ionic nature
of the biosurfactant was indicated by precipitation lines between the wells after monitoring
for 48 h at room temperature.

1H and 13C nuclear magnetic resonance (NMR) analyses were performed in a 500 MHz
spectrometer (Bruker INOVA, Varian, Palo Alto, CA, USA). For such, 20 mg of the isolated
biosurfactant was dissolved in deuterated chloroform (CDCl3; Sigma-Aldrich, Taufkirchen,
Germany) (500 µL) at 300 MHz and 298.1 K. The ppm scale relative to normal tetram-
ethylsilane (TMS) was considered for the analysis of chemical shifts (δ). Fourier transform
infrared (FTIR) spectroscopy (400 Perkin Elmer) was also used to characterise the isolated
biosurfactant in the wavenumber range of 4000 to 400 (resolution: 4 cm−1).
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2.6. Surface Tension

A Sigma 700 Tensiometer (KSV Instruments Ltd., Helsinki, Finland) with a du Noüy
ring was used at room temperature for the automatic measurement of surface tension in
samples of the cell-free broth (crude biosurfactant) centrifuged at 10,000× g for 15 min.

2.7. Emulsification Index (E24)

Two mL of the crude biosurfactant solution (cell-free broth) were placed in a screw-top
tube (100 mm × 13 mm) to which 2 mL of used motor oil was added for the determination
of emulsification activity following the method proposed by Cooper and Goldenberg [39].
Motor oil used as a contaminant was obtained from a local automotive manufacturer in the
city of Recife, Brazil. This oil is commercially available for use in flex engines (gasoline,
CNG, and alcohol) and is labelled SAE 20W-50 with synthetic blend (PETROBRAS, Rio de
Janeiro, Brazil). It is composed of a paraffinic base lubricating oil (a complex mixture of
hydrocarbons) and includes performance-enhancing additives. The viscosity of the oil is
98.0 cSt (at 40 ◦C) and its density is 0.9420 g/mL (at 20 ◦C). The contents of the tube were
mixed in a vortex at 50 Hz for two minutes. The emulsification index (E24) was determined
after 24 h using Equation:

E24 = (he/ht) × 100

in which: he = height of emulsion layer; ht = total height of mixture measured with a ruler
in mm. The samples were stored at 27 ◦C [40].

2.8. Effect of Environmental Factors

The effects of environmental factors on surface tension and emulsification activity
in solutions of the crude biosurfactant (cell-free broth) were investigated as described in
Sections 2.6 and 2.7, considering different temperatures (0, 5, 28, 70, 100, and 120 ◦C) for
60 min, pH (2.0, 4.0, 6.0, 8.0, 10.0, and 12.0) after adjustments with HCl or NaOH 6.0 M,
and concentrations of NaCl (2, 4, 6, 8, 10, and 12%) at 28 ◦C [41].

2.9. Determination of Critical Micelle Concentration

The critical micelle concentration (CMC) was determined by diluting sodium hy-
droxide (NaOH) in a small fraction of distilled water, to which the crude extract of the
biosurfactant was added at a proportion of 1:7 (v/v) ratio. The product was washed in
acetone, followed by filtration through a sintered glass filter and drying for evaporation
of the solvent. The product (0.1 g) was successively diluted with distilled water, followed
by the quantification of surface tension with the aid of the KSV Sigma 700 tensiometer
and du Noüy ring up to a constant value (standard deviation less than 0.4 mN/m during
10 successive measurements) to obtain the CMC, which was expressed as g/L of biosurfac-
tant. The ring method involves raising the liquid until it touches the surface. The sample is
then lowered again to stretch the film formed beneath the liquid to determine maximum
force, which is then used to calculate surface tension. The instrument was calibrated using
Mill-Q-4 ultrapure distilled water from Millipore (Burlington, MA, USA). Before use, the
platinum plate and all glassware were washed with chromic acid, deionized water, and
acetone in sequence and then flamed with a Bunsen burner. Samples were read three times
for accuracy [37].

2.10. Toxicity Test with Artemia salina as Indicator

Brine shrimp (Artemia salina) larvae were used as the bioindicator in the toxicity
test of the biosurfactant. Eggs of the microcrustacean were purchased from a local store,
and larvae were obtained after 24 h of incubation. Ten larvae were placed in 10 mL
flasks with seawater (5.0 mL), together with 5.0 mL of the crude biosurfactant (cell-free
broth) or different concentrations of the isolated biosurfactant (½ CMC, CMC, 2 × CMC,
3 × CMC, and 5 × CMC). The control treatment was seawater alone (without biosurfactant).
Mortality was determined after 24 h [42].
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2.11. Ecotoxicity Tests with Danio rerio as Indicator

Adult zebrafish (Danio rerio) were fed nauplii of Artemia sp. four times per day. A 50 L
aquarium was used, into which eight females and four males were placed for reproduction.
Fertilised eggs were examined using an inverted microscope at a magnification of 40 times.
Fertilisation was greater than 90%. Eggs with opacity or coagulation were discarded. The
environmental variables of interest were pH (7.5 to 7.9), temperature (27 ± 0.5 ◦C), and
dissolved oxygen (5 to 6.5 mg/L).

The fish embryo test (FET) was used, in which fertilised eggs were exposed to the
biosurfactant [43]. The signs of embryo death were egg coagulation, absence of somites
after 24 h, as well as the absence of a heartbeat or movement. The number of deaths after
96 h of exposure was compared to the total exposed to each sample (20 individuals) for the
calculation of the mortality rate [44].

The general morphology score (sum partial scores for each embryo during morpho-
logical development in 96 h of exposure) was used to determine sublethal effects. Develop-
mental markers were investigated at 24 h intervals, with the determination of abnormalities
indicating sublethal effects. The effect of the different concentrations of the biosurfactant
on the embryos was determined by comparisons with the control. The following charac-
teristics and respective time intervals were considered: detachment of the tail during the
initial development of the embryo (24 h); formation of somites (24 and 48 h); development
and pigmentation of eyes (24 to 96 h); movement of the embryo (24 to 96 h); the presence of
blood circulation (24 to 96 h); the presence of heartbeats (48 to 96 h); pigmentation of head
and body (48 to 96 h); pigmentation of the tail (48 to 96 h); the presence of an extension
of a nearly empty vitelline sac related to a nearly completely resorbed vitelline sac (96 h),
enabling a space where the swim bladder will be; presence of pectoral fins (72 to 96 h);
presence of a salient mouth (72 to 96 h); hatching (72 to 96 h). The maximum GMS is 18 at
the end of 96 h, indicating a perfectly developed larva [44–46].

Statistical analysis: A logistic curve was used to calculate the lethal effects of LC50/96h with
the aid of R software 4.0.2 (R Development Core Team, 2020, Auckland, New Zealand) [47].
One-way analysis of variance (ANOVA) was used to determine mean GMSs obtained
from embryos exposed to different concentrations of the biosurfactant, considering a 5%
significance level. Dunnett’s post hoc test was used to detect significant differences from
the control. Statistical analysis was performed with the aid of the SigmaPlot software,
version 12 (Jandel Scientific, Erkrath, Germany).

2.12. Remediation Experiment with Oil Derivative Adsorbed to Sand—Kinetic Test

Sand (10 g) contaminated with a 10% motor oil solution was placed in 100 mL of drink-
ing water, to which 1 mL of sugarcane molasses donated by a local processing plant was
added. The mixture was sterilised under fluent vapor and constituted the control condition.
Next, 2% solutions of different concentrations of the isolated biosurfactant (CMC and
2 × CMC) were added, followed by 15% of the inoculum containing 107 colony-forming
units/mL cultivated in the YMB medium. The mixtures were incubated at 150 rpm
and 28 ◦C for 75 days. The experiments were performed in triplicate using 250 mL
Erlenmeyer flasks. The following conditions were analysed: Control—contaminated
sand + molasses; Condition 1: contaminated sand + molasses + S. bombicola; Condition 2:
contaminated sand + molasses + biosurfactant (CMC) + S. bombicola; Condition 3: con-
taminated sand + molasses + S. bombicola + biosurfactant (2 × CMC). Molasses (1%) was
added at regular intervals (Days 15, 30, 45, and 60). Aliquots (5 mL) were withdrawn every
15 days for analysis, totalling five samplings (Days 15, 30, 45, 60, and 75) [48]. The oil
removal rate was determined by gravimetry, as described in Section 2.14.

2.13. Removal of Oil Derivative Adsorbed to Sand in Packed Columns—Static Test

Sand (10 g) contaminated with a 10% motor oil solution (w/w) was placed in glass
columns (55 × 6 cm). The surface was then inundated with 200 mL of the biosurfactant
solution at the CMC (Condition 1) and 2 × CMC (Condition 2) under the action of gravity.
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The crude biosurfactant (cell-free broth) was tested with the same quantity (Condition 3).
A column containing the sand and water (200 mL) was the control. After 24 h, no further
percolation of the biosurfactant solutions was observed [48,49]. The oil removal rate was
determined by gravimetry, as described in Section 2.14.

2.14. Analysis of Oil Derivative Removed from Sand

One hundred mL of n-hexane was added to the liquid phase in a decantation funnel
and agitated for 10 min. The mixture was either placed into a rotary evaporator to evaporate
the hexane or hexane was evaporated in a laboratory oven at 68–70 ◦C. The beaker with
the residual oil was weighed.

The role of the aging factor in pollution phenomena of soil and sand particles, which
is an important element in the effective dynamics of contaminant removal, was considered
using motor oil samples that were previously exposed to room temperature (30–35 ◦C) for
a period of one year prior to use.

2.15. Remediation Experiment of Oil Derivative in Seawater

Bioremediation tests were performed based on the methods described in the Standard
Methods for the Examination of Water and Wastewater [50]. Motor oil removal exper-
iments were conducted in 250 mL Erlenmeyer flasks with 50 mL of seawater collected
from Port Suape and 1% motor oil. The medium was sterilised, followed by inocula-
tion with 5% of the inoculum of the biosurfactant-producing microorganism (107 colony-
forming units/mL with an O.D. of 0.7 to 600 nm). The flasks were agitated at 150 rpm
in a rotary shaker for 30 days, with samples withdrawn for analysis every 10 days (to-
talling three samples). The experiments involved the following different conditions:
Control − seawater + motor oil; Condition 1: seawater + motor oil + S. bombicola; Condition 2:
seawater + motor oil + S. bombicola + biosurfactant (CMC); Condition 3: seawater + motor
oil + S. bombicola + biosurfactant (2 × CMC). The oil degradation efficiency was determined
as described in Section 2.16.

2.16. Calculation of Degradation Efficiency of Oil Derivative from Seawater

The oil degraded from the samples and control medium was quantified following
extraction with n-hexane. The residual oil was separated using a separatory funnel with
the same volume of hexane in a beaker that had previously been weighed.

2.17. Statistical Analysis

Statistical analysis was performed with the aid of Statistica® (version 7.0) using the
one-way procedure, followed by linear one-way analysis of variance (ANOVA). The results
of triplicate experiments were expressed as mean and standard deviation. Tukey’s post hoc
test was used with a 95% significance level for the determination of significant differences.

3. Results and Discussion
3.1. Biosurfactant Production, Isolation, and Emulsifying Capacity

Biosurfactants were produced by S. bombicola ATCC 22214 using different media,
followed by the determination of the surface tension of the crude biosurfactants, yield
(through the isolation of the organic solvent), and emulsifying capacity. The results are
displayed in Table 2.

Surface tension is one of the most important properties for the determination of the
effectiveness of a biosurfactant [51]. According to Akbari et al. [52], biosurfactants with the
capacity to reduce the surface tension of water from 72 to 35 mN/m are effective. Thus,
all biosurfactants produced in the present study achieved satisfactory results (Table 2).
The similar surface tension of the different biosurfactants demonstrates that S. bombicola
ATCC 22214 can produce biosurfactants using a variety of substrates. Previous studies
have also reported the versatility of this yeast in producing biosurfactants in different
media [53–55]. Jiménez-Peñalver et al. [56] produced a biosurfactant from S. bombicola
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ATCC 22214 in a low-cost medium that lowered surface tension to 33.8 mN/m. Jadhav
et al. [57] cultivated S. bombicola MTCC 1910 in a medium in which the carbon source was
10% residue from a sunflower oil refinery and obtained a biosurfactant that lowered the
surface tension to 35.50 mN/m. Shah et al. [58] cultivated S. bombicola ATCC 22214 in a
medium with 10% palm oil and produced a biosurfactant that lowered the surface tension
to 35.35 mN/m. Gaur et al. [59] produced a biosurfactant from the yeast Candida albicans
SC5314 that reduced the surface tension to 42 mN/m. These results are similar to those
found in the present investigation.

Table 2. Surface tension results, yield, and motor oil emulsification index of biosurfactants pro-
duced by S. bombicola ATCC 22214 in different production media (data expressed as mean ± SD of
triplicate determinations).

Biosurfactant Surface Tension (mN/m) Yield (g/L) Emulsification Index (%)

Medium 1 32.4 ± 0.2 8.1 83.3 ± 0.1
Medium 2 32.8 ± 0.1 7.3 84.4 ± 0.4
Medium 3 38.0 ± 0.1 11.4 77.0 ± 0.1
Medium 4 32.7 ± 0.3 23.0 96.2 ± 0.1
Medium 5 32.8 ± 0.5 7.7 90.2 ± 0.1
Medium 6 32.9 ± 0.2 5.3 90.5 ± 0.1
Medium 7 33.6 ± 0.6 5.4 72.9 ± 0.1
Medium 8 33.1 ± 0.1 8.7 91.0 ± 0.1
Medium 9 33.4 ± 0.4 10.1 89.7 ± 0.1
Medium 10 31.3 ± 0.1 19.5 92.4 ± 0.5

The simplified isolation method carried out in the laboratory was used to determine
biosurfactant yields. The advantage of this method is the elimination of the initial centrifu-
gation and filtration steps involved with other methods and the use of a smaller quantity
of solvent. The present results are in agreement with data described in previous studies
involving the isolation of biosurfactants produced by microorganisms of the genus Can-
dida. Marcelino et al. [60] cultivated S. bombicola in a mineral medium supplemented with
soybean oil and corn industry residue, obtaining a biosurfactant yield of 15.6 g/L. Dier-
ickx et al. [61] cultivated S. bombicola in a 7.5 L bioreactor and obtained a biosurfactant yield
of 87.12 g/L, indicating that it is possible to scale up the production of the biosurfactant
produced by this species.

The emulsification index was calculated to determine the capacity of the biosurfactants
produced in the different media to emulsify residual motor oil. The results were above
90% for all tests, indicating the high emulsifying activity of the biomolecules. Using a
biosurfactant produced by C. albicans IMRU 3669, El-Sheshtawy et al. [62] obtained 65%
emulsification of a petroleum derivative. Lira et al. [63] produced a biosurfactant from C.
guilliermondii UCP 0992 in a medium supplemented with 5% corn steep liquor, 5% soybean
waste frying oil, and 5% sugarcane molasses and obtained 71.4% emulsification of motor
oil. Santos et al. [64] produced a biosurfactant from C. lipolytica UCP 0988 in a medium
supplemented with industrial waste products and achieved 60% emulsification of motor oil.

Emulsion systems containing hydrocarbons and water have low stability. Therefore,
surfactants are used to stabilise these systems. The stability provided by surfactants
demonstrates the surface activity of the compound. However, it is important to note that
surfactants and emulsifiers serve different purposes. Surfactants primarily function to
reduce interfacial tension, while emulsifiers adsorb more slowly to the droplet surface,
providing long-term stability [65]. The biosurfactant produced by S. bombicola in medium 4
(1.2% canola oil, 10% sucrose, 0.5% corn steep liquor, 0.1% K2HPO4, 0.4% (NH4)2SO4, and
0.05% MgSO4·7H2O) was selected for further experiments, as the best yield and the highest
emulsification index were achieved with this medium. The replacement of glucose with
sucrose is an important point, as it reduces the final production cost.
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3.2. Biosurfactant Characterisation

The double diffusion method in agar showed that the biosurfactant is anionic. Us-
ing the same method, other biosurfactants produced by yeasts were also described as
anionic [66,67].

A 1H NMR spectrum was obtained from the purified biosurfactant (Figure 1). The
peaks between 0 and 3 ppm suggest aliphatic groups, with the presence of hydrogens of
methyl groups (0–1.2 ppm), aliphatic carbons (1.3–1.8 ppm, 1.8–2.0 ppm), and the carbonyl
group (2.2–2.8 ppm). The peaks between 4 and 4.4 ppm suggest the presence of hydroxyl
(-OH). Moreover, a double bond was found at 5.3 ppm. Gaur et al. [59] found similar peaks
in the characterisation of a sophorolipid. Similar peaks were also found in the analysis of
the biosurfactant produced by S. bombicola NRRL Y-17069 [68].
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Figure 1. 1H NMR spectrum (CD3OH, 300 MHz) of biosurfactant isolated from S. bombicola ATCC
22214 cultivated in 10% sucrose, 0.5% corn steep liquor, 1.2% canola oil, 0.1% K2HPO4, 0.4%
(NH4)2SO4, and 0.05% MgSO4·7H2O.

In the 13C NMR spectrum, the peak at 173 ppm was attributed to the C=O of carboxyl
acid or ester. Double-bond peaks were found between 120 and 140 ppm. Hydroxyl (-OH)
was detected between 60 and 70 ppm. Signals were also detected between 10 and 40 ppm,
which are characteristic of aliphatic carbons (Figure 2).
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Figure 2. 13C NMR spectrum (CD3OD, 300 MHz) of biosurfactant isolated from S. bombicola
ATCC 22214 cultivated in 10% sucrose, 0.5% corn steep liquor, 1.2% canola oil, 0.1% K2HPO4,
0.4% (NH4)2SO4, and 0.05% MgSO4·7H2O.
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FTIR spectra (Figure 3) revealed a characteristic stretching of O–H near 3500 cm−1 in
the structure of the biosurfactant. The peak at 3006 cm−1 was attributed to =C–H stretching.
The peaks at 2924 cm−1 and 2854 cm−1 were attributed to –C–H stretching. An absorbance
band was found at 1747 cm−1 and attributed to the vibration of the stretching of –C=O. The
bands at approximately 1463 cm−1 and 1377 cm−1 are associated with the asymmetrical
and symmetrical bending of CH3, respectively. Stretching characteristic of C (=O)–O–C
was found at 1163 cm−1. C–O–C stretches were obtained at 1120 cm−1 and 1096 cm−1,
suggesting a glycosidic bond. The structural details of the biosurfactant produced by S.
bombicola ATCC 22214 were similar to those described for sophorolipid biosurfactants
characterised in previous studies [58,59,69,70].
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Figure 3. FTIR absorption spectra of biosurfactant produced by S. bombicola ATCC 22214 cultivated
in 10% sucrose, 0.5% corn steep liquor, 1.2% canola oil, 0.1% K2HPO4, 0.4% (NH4)2SO4, and 0.05%
MgSO4·7H2O.

3.3. Critical Micelle Concentration

The effectiveness of a biosurfactant in reducing surface tension is determined by its
critical micelle concentration (CMC), which is the concentration at which the surfactant
starts forming micelles. Therefore, a lower CMC indicates a more effective surfactant,
making it more desirable for the industries by improving its cost–performance profile,
which determines its commercial viability [71,72]. Figure 4 shows the change in surface
tension as a function of the concentration of the biosurfactant produced in medium 4.
The CMC of the biosurfactant produced by S. bombicola ATCC 22214 was reached at
a concentration of 0.6 g/L, indicating satisfactory efficiency. Studying a biosurfactant
produced by C. bombicola URM 3718, Silva et al. [37] determined a CMC of 0.5 g/L. Ashish
and Debnath [73] produced a biosurfactant from C. tropicalis MTCC230 and determined a
CMC of 0.0325 g/L.
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Figure 4. CMC of biosurfactant produced by S. bombicola ATCC 22214 in medium composed of
10% sucrose, 0.5% corn steep liquor, 1.2% canola oil, 0.1% K2HPO4, 0.4% (NH4)2SO4, and 0.05%
MgSO4·7H2O.
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3.4. Stability of Biosurfactant

The stability study of a biosurfactant is required to determine its applicability, as appli-
cations in specific environments can pose a challenge. For a biosurfactant to have industrial
use, it must maintain its surface-active characteristics irrespective of the environmental
conditions to which it is subjected [74].

Biosurfactant yields obtained in the fermentation process are essential for their use
in the bioremediation of large areas contaminated with hydrocarbons. Thus, using crude
biosurfactants (cell-free broth) is recommended in view of economic considerations. There-
fore, the stability of the biosurfactant produced in medium 4 was investigated in its crude
form considering the effect on surface tension and emulsification capacity in the presence
of residual motor oil (Table 3).

Table 3. Influence of saline (NaCl) concentration, temperature, and pH on reduction in surface
tension and emulsifying activity of residual motor oil in cell-free broth containing biosurfactant
produced by S. bombicola ATCC 22214 cultivated in 10% sucrose, 0.5% corn steep liquor, 1.2% canola
oil, 0.1% K2HPO4, 0.4% (NH4)2SO4, and 0.05% MgSO4·7H2O (data expressed as mean ± SD of
triplicate determinations).

NaCl (v/v) Surface Tension (%) Emulsification Index (%)

2 33.3 ± 0.02 95.5 ± 0.3
4 33.7 ± 0.03 95.4 ± 0.3
6 32.2 ± 0.01 96.2 ± 0.2
8 33.5 ± 0.02 96.2 ± 0.1
10 31.8 ± 0.02 96.2 ± 0.2
12 32.4 ± 0.01 96.9 ± 0.1

Temperature (◦C) Surface Tension (mN/m) Emulsification Index (%)

0 33.7 ± 0.02 96.3 ± 0.2
5 33.9 ± 0.01 96.4 ± 0.2
28 32.7 ± 0.01 96.3 ± 0.4
70 32.8 ± 0.00 92.7 ± 0.2

100 32.8 ± 0.00 92.6 ± 0.4
120 33.5 ± 0.18 90.4 ± 0.3

pH Surface Tension (mN/m) Emulsification Index (%)

2 35.0 ± 0.02 94.4 ± 0.1
4 34.9 ± 0.03 94.5 ± 0.3
6 32.7 ± 0.01 95.5 ± 0.2
8 31.8 ± 0.01 95.5 ± 0.2
10 34.2 ± 0.01 96.4 ± 0.2
12 33.9 ± 0.01 97.6 ± 0.1

The biosurfactant maintained the ability to reduce surface tension in the presence of
all concentrations of NaCl added to the cell-free broth (2–12%), indicating good tolerance
to salinity. The concentrations of NaCl also did not exert a substantial influence on the
emulsification index. As the salinity of the ocean is around 3%, the biosurfactant produced
by S. bombicola ATCC 22214 can be applied in environments with a high saline concentration.

Surface tension remained around 33 mN/m, with little variation in the cell-free broth
at temperatures ranging from 0 to 120 ◦C. This indicates that the biosurfactant can be
applied in environments that undergo a significant change in temperature, such as indus-
tries in which sterility is achieved by heat. The emulsification indices of motor oil also
demonstrated thermal stability.

The surface tension of the cell-free broth fluctuated somewhat with the change in
pH, remaining relatively stable (around 35 mN/m) at more acidic pH (2 and 4) and more
basic pH (around 34 mN/m) and dropping to 32 mN/m at pH 6 and 8. The emulsifica-
tion of the motor oil increased with the increase in pH. Ashish and Debnath [74] found
similar behaviour.
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Based on the results, the crude biosurfactant can be applied in environments with
extreme salinity, temperature, and pH, as in oil recovery activities and the bioremediation
of polluted marine environments, with no significant change in its properties. This factor is
important, as the purification step can correspond to as much as 60% of the total production
cost of a biosurfactant. The elimination of this step lowers the application cost of the
biosurfactant produced by S. bombicola ATCC 22214, constituting another advantage of this
novel biomolecule in the petroleum market.

3.5. Toxicity of Biosurfactants to Artemia salina

The literature suggests that biosurfactants are less harmful than synthetic surfactants
and dispersants. However, the impact of these biomolecules on the environment has not
been studied enough [75]. Indeed, recent research emphasises the importance of conducting
thorough investigations to understand the properties of new biosurfactants before release
into the environment. According to Silva et al. [76], biosurfactants are commonly non-toxic
to microorganisms at concentrations close to the CMC.

A bioassay was conducted involving larvae of the microcrustacean Artemia salina to
determine the toxicity of the biosurfactant produced by S. bombicola ATCC 22214 (Table 4).
No mortality occurred after exposure to the crude biosurfactant and different concentrations
of the isolated biosurfactant (½ CMC, CMC, and 2 × CMC) for 24 h, indicating the absence
of toxicity. In contrast, mortality was 10 and 20% at concentrations of 3 × CMC and
5 × CMC, respectively. Acute toxicity tests of a biosurfactant produced by C. bombicola to
A. salina larvae also demonstrated low toxicity in a previous study [77].

Table 4. Toxicity of biosurfactant produced by S. bombicola ATCC 22214 cultivated in 10% sucrose,
0.5% corn steep liquor, 1.2% canola oil, 0.1% K2HPO4, 0.4% (NH4)2SO4, and 0.05% MgSO4·7H2O.

Biosurfactant Concentration in Saline Water Mortality of Brine Shrimp Larvae (%)

Cell-free broth no mortality
½ × CMC no mortality

CMC no mortality
2 × CMC no mortality
3 × CMC 10.000 ± 0.000
5 × CMC 20.000 ± 0.000

3.6. Ecotoxicity of Biosurfactant to Danio rerio (Zebrafish)

Surfactants stand out among synthetic materials due to their unique properties, which
enable their application in diverse fields compared to conventional solvents. However,
approximately 60% of chemical surfactants enter aquatic environments [78], and the con-
tinual emissions negatively alter the health of such environments. Thus, biosurfactants
constitute a viable option to diminish the harmful effects on natural ecosystems due to their
low toxicity while maintaining the same functions as synthetic products [79]. To assess
the toxicity level of these compounds, it is necessary to carry out controlled, standardised
ecotoxicology tests that use established organisms as adequate biological models for such
analyses. Among the test organisms used for this purpose, the teleost fish D. rerio (zebrafish)
is currently one of the main biological models of vertebrates used in ecotoxicological tests
for environmental monitoring and the laboratory assessment of toxicity at lethal and sub-
lethal levels of isolated substances or mixtures, including morphological and behavioural
biomarkers [44,80]. Toxicity tests were performed on samples of the biosurfactant produced
by S. bombicola ATCC 22214, with the analysis of lethal and sublethal effects [43,45].

One hundred ninety-two embryos were used in the tests performed in culture plates:
24 in the culture water (control) and 7 in plates with different concentrations of the biosur-
factant. The mortality of the embryos is displayed in Table 5.
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Table 5. Quantity of dead individuals exposed to different concentrations of biosurfactant with
percentage of deaths 96 h post-exposure (hpe). Twenty individuals used in each treatment.

Concentration (mg/L) Deaths 24 hpe Deaths 48 hpe Deaths 96 hpe Mortality Rate (%) at End of Test (96 h)

600 20 - - 100
300 20 - - 100
150 9 8 3 100
75 0 4 16 100

37.50 0 4 16 100
18.750 0 3 14 85
9.375 0 0 5 25

The data showed the absence of toxicity with less than 24 h of exposure for all con-
centrations less than 75 mg/L, unlike what was found for exposure to three synthetic
surfactants (dodecyl dimethyl benzyl ammonium chloride, sodium dodecyl sulphate, and
fatty alcohol polyoxyethylene ether), for which the mortality rate was 53% at concentra-
tions of 1 mg/L in the first 10 h of exposure, demonstrating high toxicity [81]. A study
using a biosurfactant for the control of aquatic pathogens (SPH6) reported 10% toxicity
at a concentration of 20 mg/L in 24 h, by which the surfactant was considered a product
with low toxicity [82]. In the present study, 15% mortality was found beginning with 48 h
of exposure at a concentration of 18.75 mg/L, which demonstrates lower toxicity of the
biosurfactant produced by S. bombicola ATCC 22214.

The lethal concentration that kills fifty percent of the organisms (LC50) was 134.4, 100.8,
and 15 mg/L after 24, 48, and 96 h of exposure, respectively, which, based on data from the
U.S. Fish and Wildlife Service, denotes low toxicity [83]. Previous studies using commercial
surfactants reported lower LC50 than the values found in the present investigation, such
as the 18.3 µg/L described by Al-asmakh et al. [84] using AEO-7. Yi et al. [79] performed
tests involving sodium dodecylbenzenesulfonate, nonylphenol exthoxylate (NPE), and
stearyl trimethylammonium bromide and found LC50 values of 5.77 mg/L, 17.24 mg/L,
and 0.73 mg/L, respectively, which are in agreement with the low toxicity found in the
present study. In a study involving a biosurfactant produced by Pseudomonas putida, the
LC50 was 60 mg/L when zebrafish embryos were exposed for 48 h, which is considered
low toxicity. Johann et al. [85] reported an LC50 of 100.8 mg/L in the same period used in
the present investigation.

With regards to sublethal effects, embryo–larval development was only analysed at the
lowest concentrations (9.37 and 18.75 mg/L) due to the low mortality found after exposure
for 96 h. No significant differences were found when these concentrations were compared
to the control (Figure 5).

Despite the absence of toxicity in the GMS analysis at the lowest concentrations,
some embryos exhibited pericardial oedema and haemorrhage when exposed to other
concentrations of the biosurfactant (Figure 6), with a frequency of 63% at 150 mg/L,
18.75% at 75 mg/L, and 12.5% at 37.5 mg/L. Such pathologies were not found at the
other concentrations. In previous studies, pericardial oedema was also found in zebrafish
embryos and larvae exposed to 12.8 µg/L of AEO-7 [84], 10 mg/L of NPE, and 0.5 mg/L of
STAB [79], which are much lower concentrations than the lowest concentration at which
this effect was found in the present study (37.5 mg/L).

The tests carried out with the biosurfactant produced by S. bombicola ATCC 22214
demonstrated low toxicity to zebrafish embryos and larvae at environmentally relevant
concentrations and the absence of toxicity at the lowest concentrations. Thus, the biosur-
factant is a safe product for use in natural aquatic environments, offering low toxicity to
non-target organisms.
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Figure 6. Larva with haemorrhage and pericardial oedema (A) exposed to 75 mg/L of biosurfactant
produced by S. bombicola and control larva without pathologies (B).

In the context of environmental impact and regulations on the use of biosurfactants, it
is important to emphasize that chemical dispersants have been used in the USA since 1969.
During the oil spill from Deepwater Horizon in 2010, an unprecedented amount of Corexit
dispersants, which contain the anionic surfactant sodium dioctyl sulfosuccinate (DOSS),
was used. This raised concerns with regards to the potential toxicity to organisms in the
water column. Corexit 9527 and 9500 were extensively on the oil spill. The use of Corexit
9580 was discontinued due to its toxic surfactants and a component that was found to be
carcinogenic (2-butoxyethanol) [76,86]. In Brazil, only two chemical dispersants (Corexit
EC9500—Nalco Holding Company, Watchung, NJ, USA, and Ultrasperse II®—Ingredion,
Westchester, IL, USA) are authorized by the National Environment Council [87] for the
treatment of oil spills in the marine environment. Ultrasperse II® is a blend of alcohol,
alcohol sulphate, and fatty ester ethoxylate, and few studies have reported its effects on
marine life. Although it is allowed in some countries and used by some oil companies with
intellectual property protection, its toxicity to marine fish has been demonstrated [86].

Current dispersants are less toxic and more effective than the products used in past
decades. However, several challenges to understanding toxicity have been pointed out,
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such as the limitations of lab tests and differences in exposure conditions in the field [87].
Laboratory experiments are good for maintaining consistent test material concentrations
during exposure, which is necessary for the accurate measurement of toxicological re-
sponses. However, these methods fail to fully replicate real exposure scenarios and can
affect the availability of the compounds being tested. Despite these challenges, chemical
toxicity distribution (CTD) is a risk assessment method that assists in assessing the envi-
ronmental risks of dispersants. A study by Berninger et al. [88] suggested that dispersants
are less toxic than oil alone but more toxic than oil when mixed with this hydrocarbon.
Assessing the toxicity of untreated and dispersant-treated oil is complex due to the various
toxic compounds to which aquatic organisms are exposed. The presence of polycyclic
aromatic hydrocarbons (PAHs) in chemically dispersed oils is also linked to their toxicity.
The toxicity of dispersants can be measured using LC50 values, which range from 200 to
500 mg/L, with higher concentrations indicating lower toxicity. The US Environmental
Protection Agency uses a five-step scale to classify pesticides based on their acute toxicity
to aquatic organisms. Microbial biosurfactants are considered eco-friendly alternatives
for dispersant formulations due to their low toxicity. Despite the availability of different
toxicity assessment methods, the low toxicity of eco-friendly dispersants is likely attributed
to the absence of organic solvents and other toxic chemicals, which also enhances the
biodegradability of these products [76].

3.7. Remediation of Oil Derivative Adsorbed to Sand by Biosurfactant—Kinetic Test

Oil and its derivatives are among the main environmental problems throughout the
world. Bioremediation is considered a promising ecological option for cleaning up oil-
contaminated environments with the use of microorganisms or microbial processes to
diminish the concentration and/or toxicity of these pollutants. However, the response time
can be long, which makes the addition of agents that accelerate this process necessary, such
as biosurfactants. The addition of biosurfactants increases the solubility of hydrophobic
organic compounds, enhancing their desorption from soil [29,89,90].

Figure 7 displays the results of the bioremediation of soil contaminated with motor oil
in the presence of the yeast S. bombicola and the biosurfactant produced by the S. bombicola
ATCC 22214 strain in a kinetic test.
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Figure 7. Degradation of oil adsorbed to sand by bioremediation process using biosurfactant produced
by S. bombicola ATCC 22214. Condition 1: contaminated sand + molasses + S. bombicola; Condition 2:
contaminated sand + molasses + biosurfactant (CMC) + S. bombicola; Condition 3: contaminated
sand + molasses + S. bombicola + biosurfactant (2 × CMC). Error bars illustrate standard deviations
calculated from three independent experiments.
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The motor oil degradation rate was increased by the addition of the biosurfactant
compared to the control condition (without biosurfactant). The highest removal rate
(97.8%) was achieved with the biosurfactant at the 75-day assessment, demonstrating the
advantage of this new biosurfactant in remediation processes. The concentration of the
isolated biosurfactant exerted an influence on the degradation rate due to the enhancement
of solubilisation of the oil in the aqueous phase. According to Oluwaseun et al. [91] and
Zhao et al. [92], mobilisation and solubilisation are the main mechanisms of oil removal
from soil, which are related to the CMC. Mobilisation occurs when the biosurfactant is used
at a concentration lower than the CMC, and solubilisation occurs when the biosurfactant is
used at a concentration above the CMC, as stated in Section 1. The reduction in surface and
interfacial tensions is associated with the mobilisation mechanism. Surfactants increase the
interaction angle between the hydrophobic contaminant and soil, facilitating separation
from soil particles. With the mobilisation mechanism, the contaminant is divided in the
centre of the micelles of the surfactant.

In this research, the biosurfactant was used at and above its CMC. This means that
at higher concentrations, the surfactant molecules replaced water molecules, reducing the
polarity of the water phase and surface tension. Consequently, the process of solubilisation
of pollutants was accelerated. Micelles were formed, which significantly increased the
solubility of the hydrophobic contaminant in the aqueous phase, thus helping to detach it
from the soil. Mobilisation is more efficient when pollutants are solubilised in the water
phase, enabling removal by either plants and microorganisms (biotic removal) or washing
and recovery (abiotic removal) [93].

In a previous study, a biosurfactant produced by Candida antarctica was able to remove
about half of the oil adsorbed to sand [94]. In a study carried out by Santos et al. [95], a
biosurfactant produced from C. sphaerica UCP 0995 achieved a 90% motor oil removal rate
at a concentration of 2 × the CMC in 90 days.

3.8. Removal of Oil Derivative Adsorbed to Sand by Biosurfactant in Packed Columns—Static Test

Biosurfactants decrease interfacial tension between oil and soil or oil and water, reduc-
ing capillary forces that resist the movement of oil through soil. Packed columns were used
instead of agitation processes to test the effectiveness of the biosurfactant produced by S.
bombicola ATCC 22214 under static conditions. Figure 8 displays the results of the static test.
The cell-free broth (crude biosurfactant) achieved the best removal rate (69.2%) after 24 h
of percolation.
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Figure 8. Removal of oil adsorbed to sand by bioremediation process using biosurfactant produced
by S. bombicola ATCC 22214 in packed columns through static test. Condition 1: biosurfactant at CMC;
Condition 2: biosurfactant at 2 × CMC; Condition 3: cell-free broth (crude biosurfactant); Control:
distilled water. Error bars illustrate standard deviations calculated from three independent experiments.
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This removal capacity is promising, as the biosurfactant did not undergo the extraction
process and removed more than half of the oil adsorbed to the sand. The isolated biosurfac-
tant achieved removal rates of 39.5% and 48.1% under Condition 1 (CMC) and Condition 2
(2 × CMC), respectively, whereas water alone (control) was able to remove 19.2% of the
contaminant. It is noteworthy that isolation constitutes a large part of the production costs,
and high removal rates with the crude biosurfactant are of extreme industrial interest.

Several biosurfactants have shown potential for cleaning soil contaminated with
hydrophobic substances in glass columns. Ibrahim et al. [96] reported a 76% oil recovery
rate using a biosurfactant in a column in a period of only two hours. Fernandes et al. [97]
produced a biosurfactant from Bacillus subtilis RI 4114 and reported a 69% recovery rate
of residual oil using 600 mg/L in a column. Kavitha et al. [98] produced a biosurfactant
from Bacillus sp. MTCC 5514 and found a greater than 70% oil removal rate from standard
sand and sandy soil. Jain et al. [99] investigated oil removal in glass columns comparing
two biosurfactants to synthetic surfactants, reporting greater than 90% recovery rates
with the biosurfactants, whereas the synthetic surfactants did not achieve a 70% rate of
contaminant removal.

3.9. Remediation of Seawater Contaminated with Spilled Oil Derivative

The bioremediation of seawater requires a surfactant with dispersant capacity. As a
phenomenon associated with both interfacial tension and surfactant concentration, dis-
persion facilitates the access of autochthonous microorganisms to the contaminant, thus
promoting bioremediation.

The reduction in surface and interfacial tensions promoted by biosurfactants increases
the solubility, mobility, and bioavailability of petroleum hydrocarbons. This facilitates
biodegradation by microorganisms, which can break down large oil slicks and make the
contaminants more easily accessible for natural processes. As a result, microorganisms
can metabolise and reduce or eliminate the contaminants to safe levels [100]. There are
two mechanisms by which biosurfactants facilitate hydrocarbon biodegradation: (1) The
reduction in surface and interfacial tensions increases the bioavailability of the contaminant
to the microorganism; (2) The interaction between the cell surface of the microorgan-
ism and biosurfactant alter the cell membrane, facilitating adhesion to the hydrocarbon
through the increase in hydrophobicity without causing harm to the membrane. Due to the
blocking of hydrogen bonds, biosurfactants enable hydrophobic–hydrophilic interactions
that rearrange molecules and reduce the surface tension of the medium, leading to an
increase in surface area. This favours bioavailability and consequent biodegradability of
the contaminant [101,102].

Time (in days) and the increase in biosurfactant concentration enhanced the degrada-
tion rate of the motor oil by the yeast, as shown in Figure 9. The best result was found at
30 days, with the degradation of 91.5% of the oil when the biosurfactant was used at twice
its CMC. Good results were also achieved under Conditions 1 and 2 (lower biosurfactant
concentrations), with an increase in the degradation rate over time.

Saeki et al. [103] produced a biosurfactant from Gordonia sp. JE-1058 that enhanced the
degradation polycyclic aromatic hydrocarbons and total saturated hydrocarbons in seawater.

The viscosity of liquid oil plays a crucial role in the performance of cleaning agents [104].
High viscosity slows the dispersion of oil and delays leaching after the collection of the con-
taminant and the thickness of floating oil exerts a negative impact on the effectiveness and
efficiency of treatment [105]. As the residual engine lubricating oil used in the experiments
of this work had already undergone physical and chemical changes caused by prolonged
storage, the results obtained demonstrate the potential of the biosurfactant in removing
very viscous hydrocarbons.
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Figure 9. Degradation of oil from seawater by bioremediation process using biosurfactant pro-
duced by S. bombicola ATCC 22214. Condition 1: seawater + motor oil + S. bombicola; Condition 2:
seawater + motor oil + S. bombicola + biosurfactant (CMC); Condition 3: seawater + motor oil + S.
bombicola + biosurfactant (2 × CMC).

Several studies have compared biosurfactants with chemical surfactants/dispersants.
Couto et al. [106] examined the effects of the chemical surfactant Ultrasperse II® and the
biosurfactant surfactin produced by Bacillus sp. H2O-1 on marine bacterial communities.
The authors found that surfactin stimulated the growth of oil-degrading bacteria more
effectively than the chemical surfactant, although the biodegradation of the hydrocarbon
was not affected. Additionally, rhamnolipids stimulated hydrocarbon biodegradation
in the marine environment more effectively than the chemical surfactants DOSS and
GM-2 [107]. Binary systems combining biosurfactants and chemical surfactants have been
developed to combat oil spills with less toxicity. For instance, a binary system consisting
of the cationic surfactant ethanediyl-1,3-bis(dodecyl dimethyl ammonium bromide) and
surfactin produced by Bacillus subtilis was successful at reducing the interfacial tension of
crude oil [108]. Shah et al. [109] also developed a dispersant based on a binary mixture of
an ionic surfactant, choline laurate, and a lactonic sophorolipid produced by S. bombicola,
which exhibited no toxicity in experiments with fish and had dispersion rates higher
than 80%.

4. Conclusions

Despite the advances in biotechnology, few microbial products have reached the
industrial scale to replace petroleum-based materials. While biotechnology is important
to many industries, the production of microbial surfactants remains too costly to compete
with chemical surfactants. Therefore, strategies are needed to improve the affordability of
the production of these natural compounds on the industrial level. The microbial strain
must be able to use substrates efficiently, and careful selection of the microorganism is
required when creating a particular product. The existence of a market for microbial
products is another concern, which requires both efficiency and a competitive price. The
present study fulfilled some of these requirements. The new biosurfactant produced by S.
bombicola ATCC 22214 in a low-cost medium demonstrated efficiency and effectiveness and
was characterised as a sophorolipid. Moreover, the biosurfactant exhibited stability in the
presence of extreme environmental conditions, low toxicity, and the capacity to perform
satisfactorily in the removal and degradation of a petroleum derivative in soil and seawater.
Thus, the production of this biosurfactant on a large scale for applications in industries as
an agent for the mitigation of environmental pollution related to hydrophobic compounds
is promising and can significantly contribute to the reduction of environmental impacts on
ecosystems. Although the production of surfactants has been a widely explored process
for decades, the combination of substrates and cultivation conditions associated with
different microorganisms remains a valid strategy for obtaining optimal yields and efficient
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biomolecules. After the initial establishment of satisfactory conditions to produce this new
biomolecule, as described in this study, the next steps will be scale-up in bioreactors and the
optimisation of the extraction steps to use crude or semi-purified formulations of the new
agent to meet the demands of the oil industry. Joining efforts to improve the entire process
of obtaining each biomolecule is essential for these green surfactants to reach the market.
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