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Abstract: Under the background of intelligent construction of coal mines, gas extraction design is still
based on manual design, which is complex, time–consuming, and error–prone, and its automation
degree needs to be improved. In order to solve this problem, taking the 1302 working face of a
mine in Shanxi Province as the research object, this paper carried out relevant research. Firstly, the
influencing factors of gas extraction were determined, and the influence rules of different parameters
on the extraction effect were studied by numerical simulation. Secondly, an intelligent optimization
method of gas extraction drilling parameters based on deep mining called the PSO–LSTM model, is
proposed. This model uses the PSO algorithm to optimize the parameters of the LSTM model, so
as to improve the accuracy of the LSTM model results. Finally, a quantitative expression algorithm
of 3D spatial information of gas extraction drilling holes based on Python is proposed, which can
automatically generate 3D spatial models of bedding or through gas extraction drilling holes using
optimized drilling parameters and known 3D information of coal seams. This study shows that
the results obtained using the PSO–LSTM model are the same as the drilling parameters obtained
using numerical simulation, which verifies the accuracy of the PSO–LSTM model. According to the
optimized drilling parameters, a 3D model of gas extraction drilling is quickly generated, which
greatly reduces the tedious work of drawing construction drawings for coal mine enterprises and
improves the intelligence level of coal gas extraction drilling.

Keywords: gas extraction; drilling parameter optimization; PSO–LSTM; 3D model; Python

1. Introduction

Coal mine gas extraction is a systematic engineering process that includes the design
and construction of extraction drilling holes, coal seam anti–reflection, monitoring and
testing, standard evaluation, and other links. The design of the drilling hole is the main
basis of drilling construction. The scientific and rational design of the drilling holes directly
affects the difficulty of drilling construction and the amount of engineering, as well as
the later extraction efficiency. The design of extraction drilling must be considered from
various factors. It is a complex decision–making process that is limited by various factors
such as coal seam gas geological conditions, drilling construction environment, drilling
machine drilling tool performance, and so on. It is necessary to balance various needs, such
as gas extraction standards, drilling construction difficulty, and drilling amount, so that the
drilling layout scheme can achieve the overall optimization state. At present, the design of
coal mine gas extraction drilling is mainly based on manual work. In addition to the large
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workload, which is time–consuming and laborious, there are also the following problems.
First, the design basis of the drilling hole is unreasonable. In addition to the inaccurate
knowledge of gas geological conditions, key parameters, such as the effective extraction
radius of the drilling hole, are mainly obtained through experimental measurement or
experience, which are static and inaccurate. When the extraction location is transferred, and
the coal seam gas geological conditions change significantly, the drilling hole design cannot
be effectively supported. Secondly, the borehole design is not fine enough, and the whole
extraction area is designed according to the same conditions without fully considering the
differences in coal seam gas geological conditions and the length of gas pre–extraction time
at different locations in the region. This can easily cause the borehole arrangement to be
too thin or too dense, resulting in poor extraction effect, substandard extraction, increased
drilling projects, and shortage of mining replacement. Therefore, the development trend of
gas extraction drilling intelligent design is to carry out research on gas extraction drilling
intelligent design technology, realize the fine automatic design of drilling parameters, and
make the drilling layout reasonably match the extraction conditions and demand.

In recent years, with people’s attention to gas extraction, research in the field of gas
extraction is also carried out continuously. The optimization design of gas extraction pa-
rameters includes a variety of methods. One is a field test and data analysis. Gas extraction
tests with different technological parameters are carried out at the coal mine site [1–6]. The
field test can directly reflect the gas extraction effect under actual production conditions
and provide real and reliable data for the optimization of process parameters. The second
is numerical simulation and simulation analysis. Numerical simulation software is used to
simulate and analyze the gas extraction process, and its influence on the extraction effect
is observed by changing different technological parameters (such as drilling hole layout,
drilling spacing, drilling diameter, etc.) so as to determine the optimal parameter combina-
tion [7–12]. This method can intuitively show the gas flow law, provide a scientific basis
for parameter optimization, and reduce the blindness and cost of the field test. The third
is intelligent control to optimize technology, the application of sensors, data acquisition
technology, cloud computing, and other advanced technologies, and the establishment of
intelligent gas monitoring and control systems. Through real–time monitoring of the gas
concentration and operation parameters of the extraction equipment, the extraction process
parameters can be automatically adjusted to realize intelligent control [13–18]. Intelligent
control can significantly improve the response speed and accuracy of gas extraction sys-
tems, reduce the risk of human error, and improve the safety and stability of the system.
Later, different scholars carried out research on gas extraction from the aspects of pressure
relief [19–21], blasting [22], hole sealing [23], etc., so as to optimize the drilling horizon and
improve the gas extraction efficiency.

In addition, other predecessors have also made visual presentations on gas extraction
research. Xu Xuezhan et al. [24] used 3D modeling software and numerical simulation soft-
wareto simulate the high–efficiency gas extraction range and used 3D modeling software
and numerical simulation software to carry out a three–dimensional visual simulation of
the through–layer gas extraction process. In terms of 3D visualization, Zhang Jilin et al. [25]
developed a 3D visualization analysis software system for coal mine drilling holes, which
realized intelligent design, automatic mapping of gas extraction drilling holes, and display
of drilling shapes in a 3D environment. However, this type of software does not have
the ability to identify the hidden dangers of hole arrangement. Therefore, Fan Kai [26]
established a three–dimensional effect display and analysis platform for gas extraction
drilling holes and applied the system to Sihe Coal Mine, realizing the timely discovery
and complete elimination of hidden dangers of hole arrangement. However, the above
gas extraction visualization system is difficult to develop for low–level personnel and
difficult to popularize. Based on this, Zhu Quanjie et al. [27] used Blender, Python, and
other open–source programs to build a rapid generation platform for 3D mine models
based on parametric modeling ideas. Easy to grassroots development again: Users only
need to input key data information to realize the rapid generation of a tunnel 3D model.
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In the context of smart coal mine construction, gas drainage, as a fundamental solution
to coal mine gas disasters, will emerge as a pivotal technology for addressing the challenges
of gas disaster prevention and control in deep mining, thereby enhancing safety standards
for coal mine operations. It constitutes a vital component of smart coal mine development.
At present, the intelligence level of coal gas drainage technology and equipment in China
is still very low. Overall, it is in the initial stage, and there is an urgent need to integrate
modern information technology into the field of coal gas drainage and gradually realize the
information, automation, and intelligence of gas drainage. For the application scenarios of
coal mine gas extraction borehole design, drainage system regulation and maintenance, and
drainage standard evaluation, the technologies of mine big data, coal mine 5G, and artificial
intelligence are fully adopted to break through the key technologies of dynamic transparent
gas geology, drilling intelligent design, drainage pipe network autonomous regulation and
fault diagnosis, and drainage standard intelligent evaluation. The development direction
of intelligent gas extraction is to form intelligent equipment and systems with the ability of
accurate perception, autonomous decision–making, and automatic adaptation, and realize
less or even no human operation in the whole process of gas extraction. Because the design
and layout of a gas extraction drilling field are affected by coal seam occurrence, geological
anomalies (such as faults), gas content, engineering layout, and other factors, the design
of a reasonable and effective gas extraction drilling hole directly affects the gas extraction
effect. Conventionally, technicians design drilling parameters and carry out construction
according to the requirements of the “Rules for the Prevention and Control of Coal and Gas
Outburst” (2019 edition) and other requirements, combined with the actual situation of the
mine. This process runs throughout the gas coal seam mining process; the workload is large,
complex, and time–consuming. With the gradual advancement of intelligent construction
in coal mines, automation and intelligent construction of gas extraction work are on the
agenda, and the automatic design and three–dimensional display of gas extraction drilling
will become an important research topic in this field.

Based on the development trend of gas extraction toward precision, efficiency, and
intelligence, the key technologies of intelligent design and visual display of gas extraction
drilling holes are proposed. The research contents include influencing factors of gas ex-
traction, the intelligent calculation method of key parameters, visualization of optimized
drilling parameters, etc. This research not only provides a new method for the intelligent de-
sign of gas extraction drilling and intelligent generation of construction three–dimensional
drawings but also has a positive guiding role for parameter design and on–site construction
in this field.

2. Analysis of Factors Affecting Gas Extraction
2.1. Analysis of Influencing Factors

The effective drainage radius is the key index for evaluating the gas drainage effect,
which directly reflects the effective range of the gas drainage drilling hole. Clarifying the
factors influencing the effective extraction radius is of great significance for optimizing the
gas extraction process and improving the extraction efficiency, and can also provide a clear
direction for numerical simulation research on gas extraction.

According to the radial flow field law of gas migration, the initial intensity expression
of gas emission from the drilling hole is as follows [28]:

qo = 2πmλ
p2

o − p2
l

ln
R
ro

(1)

The borehole gas emission intensity at time t is expressed as follows [28]:.

q = q0e−αt (2)
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At time t, the total amount of gas extracted from the borehole is as follows [28]:

Q =
∫ t

0
qdt =

∫ t

0
q0e−αtdt =

2πmλ(p2
0 − p2

l )(l − e−αt)

αln
R
ro

(3)

For the range where the length and width of the extraction area are a and b respectively,
the gas extraction amount is [28]

QExtraction = ηQAll = ηabmγW (4)

The number of boreholes required to have an effective extraction radius R is [28]

N =
a

2R
· b
2R

=
ab

4R2 (5)

From QExtraction = NQAll, we can obtain [28]

R2 =
πλ(p2

0 − p2
1)(1 − e−αt)

2αηγW ln
R
ro

(6)

where: η represents extraction efficiency, %; q0 is the initial intensity of gas emission
from the borehole, m3/(min·hm); α represents the attenuation coefficient of borehole gas
flow, d−1; R represents the effective influence radius of gas extraction, m; λ represents the
permeability coefficient of coal seam, m2/(MPa2·d); p0 is the initial pressure of coal seam
gas, MPa; p1 represents the gas pressure in the borehole, MPa; r0 represents the borehole
diameter, m; γ is the bulk density of coal, t/m3; W is the original gas content of coal seam,
m3/t; m is the borehole length, m; Pstd is standard atmosphere, MPa.

Through the analysis of Formula (6), we can gain insight into several core elements
that affect the effective radius of extraction. Among them, the most important factors are
the diameter of the drilling hole, the permeability of the coal seam, the initial gas pressure,
the negative pressure of extraction, and the duration of extraction, which show a significant
positive correlation with the effective extraction radius, which reveals a close relationship
between them.

In the stage of coal seam gas pre–extraction, the three variables of drilling diameter,
extraction negative pressure, and extraction time can be effectively regulated in the in-
dustrial production process. Therefore, with the help of advanced numerical simulation
software, we can simulate how these controllable factors affect the effective extraction
radius, which provides us with a deeper understanding of the extraction process and
supports the optimization of the process.

2.2. Mesh Model and Coal Seam Parameters

In the 1302 working face of a mine in Shanxi Province, 94 mm drilling holes are used
for gas extraction, the spacing of drilling holes is 5 m, the single arrangement of holes,
and the extraction time is 120 days. A two–dimensional model with a length of 50 m
and width of 5 m (as shown in Figure 1) was constructed using numerical simulation
software to observe the effects of different parameters on the effective extraction radius.
The parameters of the coal seam are shown in Table 1.
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Table 1. Parameter of coal seam.

Parameter Parameter Value Parameter Parameter Value

Elastic modulus of coal 2.415 × 109 Pa Density of gas 0.716 kg/m3

Apparent density of coal 1380 kg/m3 Initial gas pressure 1.53 MPa
Moisture content 1.53% Limit adsorption gas capacity 15.53 m3/t

Ash content 14.72% Gas adsorption constant 1.32 MPa−1

Initial porosity 5.45% Gas dynamic viscosity coefficient 1.06 × 10−5 Pa·s
Initial permeability 1.74 × 10−16 m2 Poisson’s ratio 0.3

2.3. Influence of Different Parameters on Gas Extraction

In order to study the influence of different parameters on gas extraction, the following
four groups of simulations were carried out:

(1) In the actual gas extraction process, the gas extraction cycle is generally three to
four months, so this paper takes 30 d, 60 d, 90 d, and 120 d as the extraction period to carry
out numerical simulations to study the change in gas pressure.

(2) Boreholes with diameters of 75 mm, 94 mm, 133 mm, and 143 mm were used for
numerical simulation, and the change in gas pressure was observed to study the relationship
between borehole diameter and effective extraction radius.

(3) In order to study the relationship between the effective extraction radius and hole
spacing, the gas pressure changes were simulated when the hole spacing was 2, 3, and
4 times the effective extraction radius.

(4) In order to explore the relationship between the negative drainage pressure and
the effective drainage radius, the negative drainage pressures of 10 KPa, 20 KPa, 30 KPa,
and 40 KPa were used for numerical simulation, and the gas pressure changes among them
were observed.

The cloud diagram of the gas pressure variation under different parameters is shown
in Figure 2, and the variation trend of the effective extraction radius under different
parameters is shown in Figure 3. According to Figures 2 and 3, when other conditions
remain unchanged, the effective extraction radius increases with the increase in extraction
time, drilling diameter, and extraction negative pressure. In a certain range of content, the
larger the drilling spacing, the larger the effective extraction range; however, beyond a
certain range, the effective extraction range will not increase. According to the simulation
results, the maximum drilling spacing is 6 m.
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3. Research Methods and Ideas of the Thesis

This paper first studies the influence of different drilling parameters on the effective
extraction radius and then constructs a gas extraction parameter optimization model to
predict drilling parameters. Finally, a 3D drilling model was constructed to realize the
optimized 3D drilling visualization display. Specific implementation methods and ideas
are as follows:

3.1. Parameter Optimization Algorithm (PSO–LSTM)

(1) PSO algorithm
The particle swarm optimization (PSO) algorithm is derived from research on bird

predation behavior. The basic idea is to seek an optimal solution through mutual cooper-
ation and information sharing among individuals within the group. In this algorithm, a
massless particle is used to simulate an individual in a flock. There are only two attributes:
velocity and position. Velocity represents the direction and distance of the next iteration,
while position represents a solution to the problem. When PSO is initialized, all individuals
in the flock forage in their own space. When the individuals find the food (the optimal
solution of the problem), the solution is taken as the individual optimal solution (Pid,pbest);
All the individual optimal solutions in the group are shared, and the quality of the solutions
is evaluated by the fitness function to obtain the group optimal solution (Pd,gbest). In the
next iteration, each individual updates its speed and position through the group optimal
solution and continues foraging until a unique optimal solution is obtained [29]. The PSO
algorithm flow is shown in Figure 4.
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Suppose there are N particles in the D–dimensional search space, and each particle
represents a solution, then the position of the ith particle is Xid = {xi1, xi2, . . . , xiD}, the
velocity of the ith particle is Vid = {vi1, vi2, . . . , viD}, the optimal position searched by the ith
particle (the individual optimal solution) is Pid,pbest = {pi1, pi2, . . . , piD}, the optimal position

searched by the group (the group optimal solution) is Pd,gbest =
{

p1,gbest, p2,gbest, . . . , pD,gbest

}
,

and the individual historical optimal fitness value is fp. The optimal population historical
adaptation value is fg. The algorithm is simple in structure, easy to implement, and has the
advantages of high precision and short processing time.

Speed updating formula [29]:

vk+1
id = wvk

id + c1r1(Pk
id,pbest − xk

id) + c2r2(Pk
d,gbest − xk

id) (7)

The location update formula is as follows [29]:

xk+1
id = xk

id + vk+1
id (8)

where i is the particle number, d is the particle dimension number, k is the number of
iterations, w is the inertia weight, c1 is the individual learning factor, c2 is the group
learning factor, and r1 and r2 are random numbers between 0 and 1. The velocity vector of
particle i in the d-th dimension is the vk

id in the k-th iteration. The position vector of particle
i in the d-th dimension in the k-th iteration is the xk

id. The historical optimal position of
particle i in the d-th dimension in the k-th iteration is the Pk

id,pbest. The historical optimal

position of the swarm in the d-th dimension in the k-th iteration is the Pk
d,gbest.

(2) LSTM model
The long short–term memory (LSTM) network model is composed of multiple repeated

structural modules, and each structural module contains three gates: the forgetting gate,
the input gate, and the output gate [30]. Figure 5 shows the LSTM model structure. The
LSTM network realizes the control of three gates through the activation function so as to
realize the retention and forgetting of historical information.
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LSTM prediction model mainly includes three steps:
The forget gate ft determined by the sigmoid function layer is calculated as follows:

ft = σ(W f [ht−1, xt] + b f ), (9)

where, the sigmoid activation function is denoted by σ; The forgetting gate weight matrix
is denoted by W f ; The neuron output is denoted by h; The neuron input is denoted by x;
The current time is denoted by t. The previous time is denoted by t − 1; The bias term is
denoted by bf.
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The input gate to increase the amount of state is it, optionally updated. The calculation
formula is shown in Equations (4)–(6):

it = σ(W f [ht−1, xt] + bi), (10)

C̃t = tanh(Wc[ht−1, xt] + bc), (11)

Ct = ftCt−1 + itC̃t, (12)

where, the alternative update information at time t is denoted by C̃t; The activation function
is denoted by tanh(). Wc represents the weight matrix of memory cells; Ct and Ct−1 denote
the memory cell state at time t and t − 1, respectively.

The output gate is denoted by Ot and is calculated as follows:

Ot = σ(Wo[ht−1, xt] + bo), (13)

ht = OttanhCt, (14)

where, the output gate weight matrix is denoted by Wo.

3.2. Drilling 3D Model Construction Method

Python 3.7 is a major release of the Python programming language that introduces a
number of new features and improvements that provide developers with a more powerful
and flexible programming environment. The main characteristics of Python can be summa-
rized as follows: it is simple and easy to learn, free source code, open source, and reduces
the cost of learning; it has a wealth of high–quality libraries such as Pandas, Numpy, and
Matplotlib that provide powerful support for data processing, computation, and plotting.

When generating the 3D model, the 3D coordinates of the reference point are deter-
mined, and the coordinates of the other vertices are calculated by the 3D spatial relationship
between the other vertices of the model and the reference point. The scatter() function in
Python was used to generate each vertex, and the wiring function was used to connect the
relevant vertices according to the model design to generate the model contour. Then, the
surface function is used to connect the contour lines in turn to form the model section and
finally generate the three–dimensional space model. Figure 6 shows the rapid generation
process of the 3D spatial model of the borehole.
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3.3. Specific Implementation Ideas

In order to realize the intelligent optimization of gas drilling parameters and the
rapid generation of a three–dimensional space model based on big data mining technology,
Python programming language, and MATLAB R2021b programming language are used to
construct the intelligent optimization model of drilling parameters and the rapid generation
algorithm of the three–dimensional space model. Specific research steps are as follows: in
the process of borehole design, firstly, the regional gas extraction conditions are analyzed,
and according to the gas extraction law knowledge in the knowledge base, the gas extraction
law of the extraction region is determined. Then, according to the law of gas extraction
and the allowable time of gas pre–extraction, the spacing of the gas extraction holes at
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various points is determined. Then, according to the occurrence of the coal seam, the
position of the drilling hole was determined by fully considering the performance of the
drilling machine and drilling tool, and the azimuth Angle, dip Angle, and hole depth of
each drilling hole were calculated by the spatial geometry method. Finally, according to
the drilling design parameters, a drilling design map is automatically drawn to complete
the intelligent drilling design. Its flowchart is shown in Figure 7.

1. Analysis of influencing factors of effective extraction radius: From the perspective
of the theoretical formula of effective extraction radius, the influencing factors are
analyzed. The factors that can be effectively controlled in the actual production
process include extraction time, hole diameter, hole spacing, and extraction negative
pressure. Therefore, numerical simulation software is used to construct geometric
models and divide grids, and the gas pressure changes under different parameters
are studied from these four aspects.

2. Intelligent optimization model of drilling parameters: in order to find more suitable
drilling parameters, big data mining technology is used to learn the drilling experience
of successful cases, and the long short–term memory neural network model of particle
swarm optimization is constructed by MATLAB to determine the key parameters of
the model and optimize the drilling parameters of gas extraction.

3. 3D space model generation algorithm: The Python open–source program is used as
the compilation language, and the modeling idea of “generating lines from points,
lines from surfaces, and surfaces from surfaces” is used to generate the corresponding
3D space model with the optimized parameters in step 2.
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4. Parameter Optimization Method of Gas Extraction Based on PSO–LSTM

The design of a drilling hole is the main basis of drilling construction. The scientific
and rational design of drilling holes directly affects the difficulty of drilling construction
and the amount of engineering, as well as the play of later extraction efficiency. The
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design of extraction drilling must be considered from various factors. It is a complex
decision–making process that is limited by various factors such as coal seam gas geological
conditions, drilling construction environment, drilling machine drilling tool performance
and so on. It needs to balance various needs, such as gas extraction standards, drilling
construction difficulty, drilling amount and so on, so that the drilling layout scheme can
achieve the overall optimization state. To solve this black–box problem, it is an effective
way to construct a long short–term memory neural network model based on particle
swarm optimization. The model can fuse coal mine geological data, gas monitoring
data, and other related information and realize transparent and intelligent analysis of gas
geological conditions.

4.1. Optimization Model Construction

Particle Swarm Optimization long short–term memory neural network model (PSO–
LSTM) is a combination of Particle swarm optimization (PSO) and long short–term memory
(LSTM). (LSTM) performs double training on gas drilling data and uses the optimization
results of the PSO algorithm as the test set of the LSTM algorithm, which makes the training
results of the LSTM algorithm more accurate [31], and the flow chart is shown in Figure 8.
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The specific process is as follows:
Step 1: The gas drilling data Xn is standardized according to the format so that it

conforms to the data processing flow; The processed data is divided into training set E1
and test set E2 in proportion. In equations Xn, E1, and E2, Ri is the drilling radius, di is the
drilling spacing, and i = {1, 2, . . ., n}.
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Step 2: Start with the training set E1 and the PSO model to optimize and train the
LSTM model. The specific process is as follows:

(1) The PSO algorithm is initialized to form an optimization community.
(2) The conventional prediction model divides the training set and the test set ac-

cording to a ratio of 7:3. Therefore, the first 70% of the training set E1 is defined as the

LSTM model training set e1 = (
n
∑
i

Ri,
n
∑
i

di), and the last 30% is defined as the PSO model

optimization set e2 = (
n
∑
i

Ri,
n
∑
i

di).

(3) The LSTM model training set e1 is used as the training set of the LSTM model,
and the optimal solution of the PSO model optimization set e2 is used as the test set of the
LSTM model.

(4) Start the simulation prediction process to find the particle that minimizes the RMSE
of the PSO selection set (training result). Meanwhile, the training set e1 is used to train the
LSTM model.

Root Mean Square Error (RMSE) is used as the evaluation index to detect whether the
PSO model training reaches the maximum number of iterations or the minimum difference
in fitness between iterations.

RMSE =

√√√√√ n
∑

i=1
(Xobs,i − Xpre,i)

2

n
(15)

(5) Output the optimal solution Ye2 = (
n
∑
i

Ri,
n
∑
i

di) of optimal set e2 of PSO model,

i = {1, 2, . . ., n}.

Step 3: Use the optimal solution Ye2 = (
n
∑
i

Ri,
n
∑
i

di) of the PSO model selection e2 to

predict and analyze the LSTM model that has been trained.
Step 4: Adjust the model parameters based on the predictions. If it does not, the

parameters are adjusted, the internal weights are updated, and the PSO–LSTM model
is returned for training again until the training result reaches the maximum number of
iterations.

Step 5: After the training of the PSO–LSTM model, the test set E2 is used to predict
and analyze the trained PSO–LSTM model.

Step 6: Output the PSO–LSTM model optimal solution Yn = (
n
∑
i

Ri,
n
∑
i

di), i = {1, 2, . . ., n}.

4.2. Determination of Key Parameters

When constructing the PSO–LSTM model, it is necessary to consider how to establish
its key parameters and the influence of the data itself on the prediction accuracy so as to
improve the performance of the model by reasonably establishing these parameters. The
parameters of the PSO algorithm were as follows: the number of the initial populations was
five, the dimension of the initial population was two, the maximum iteration number of the
initial population was 10, the learning factor c1 = c2 = 2, the maximum inertia weight was
1.2, and the minimum inertia weight was 0.8. The parameters of the PSO–LSTM model are
input layer dimension 2, output layer dimension 1, hidden layer neuron number 10~200,
learning rate 0.01~0.15, iteration number 50, and stochastic gradient descent algorithm [32].
The key parameters are shown in Table 2.
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Table 2. Key parameter table.

PSO Algorithm Parameter PSO–LSTM Algorithm Parameter

Parameter Parameter Value Parameter Parameter Value

Initialize the number of groups 5 Input layer dimension 2
Initialize the group dimensions 2 Output layer dimension 1

Initialize the maximum number of
swarm iterations 10 Number of neurons in the hidden layer 10~200

Learning factor c1 2 LSTM layer PSO optimization
Learning factor c2 2 solver Adam

Maximum inertia weight 1.2 Learning rate Adaptive
Minimum inertia weight 0.8 Number of iterations 50

5. Fast Generation Algorithm for 3D Borehole Model

According to the above–optimized drilling parameters and 3D coordinate information
of coal seam, the rapid generation algorithm of 3D drilling space is realized based on
the modeling idea of “generating lines from points, generating surfaces from lines, and
generating bodies from surfaces”. It consists of two parts: the 3D model generation of
bedding drilling and through drilling. Generate 3D models of boreholes covering necessary
parts such as coal seams, laneways, and boreholes.

5.1. Key Point Calculation of Bedding Borehole Model

The 3D modeling of the working face is carried out by using the drilling of bedding
on both sides of the strike. In the ideal state, the 3D drilling model of the inlet roadway
and the return roadway is shown in Figure 9, in which the starting and ending coordinates
of the intersection line between the working face and the bottom of the inlet roadway are
A1(xA1 , yA1 , zA1) and B1(xB1 , yB1 , zB1) respectively, and the starting and ending coordinates
of the intersection line between the working face and the bottom of the return roadway
are C1(xC1 , yC1 , zC1) and D1(xD1 , yD1 , zD1) respectively. The length along coal seam strike
is LZ1, the slant width of working face is LW1, the azimuth Angle of the roadway is α1, the
Angle between coal seam strike and horizontal plane is β1, the azimuth Angle of drill hole
in inlet roadway is θ1, and the azimuth Angle of the drill hole in return roadway is θ2. A
schematic diagram of the drill hole arrangement of the k unit is shown in Figure 10.
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The coordinate of the control point of the first unit of the inlet wind lane is

(xA1 , yA1 , zA1 +
Lh
2
).

(1) Coordinates of inlet lane
The coordinate of the n1 opening point of the KTH element is Jn1(xJn1

, yJn1
, zJn1

):

xJn1
= xA1 + ∑k−1

1 Lk cos(β1) cos(α1) + (n1 −
1
2
)dk cos(β1) cos(α1)

yJn1
= yA1 + ∑k−1

1 Lk cos(β1) sin(α1) + (n1 −
1
2
)dk cos(β1) sin(α1)

zJn1
= zA1 +

Lh
2

+ ∑k−1
1 Lk sin(β1) + (n1 −

1
2
)dk sin(β1)

(16)

where, n1 represents the number of pumping holes in the inlet lane of unit k.
The coordinate of the n1 final hole point of the KTH element is J′n1

(xJ′n1
, yJ′n1

, zJ′n1
):

xJ′n1
= xA1 + ∑k−1

1 Lk cos(β1) cos(α1) + (n1 −
1
2
)dk cos(β1) cos(α1)− Lc cos(γ1) sin(α1)

yJ′n1
= yA1 + ∑k−1

1 Lk cos(β1) sin(α1) + (n1 −
1
2
)dk cos(β1) sin(α1) + Lc cos(γ1) cos(α1)

zJ′n1
= zA1 +

Lh
2

+ ∑k−1
1 Lk sin(β1) + (n1 −

1
2
)dk sin(β1) + Lc sin(γ1)

(17)

where,
Lh
2

represents the distance between coal seam A1 and A1
′, m; γ is the dip Angle of

coal seam, ◦; Lc is the length of the extraction drilling hole, m, Lc ≥ Lw/2 + 5.
(2) Return air lane
The coordinate of the n2 opening point of the KTH element is Hn2(xHn2

, yHn2
, zHn2

):
xHn2

= xA1 − Lw1 cos(γ1) sin(α1) + ∑k−1
1 Lk cos(β1) sin(α1) + n2dk cos(β1) cos(α1)

yHn2
= yA1 + Lw1 cos(γ1) cos(α1) + ∑k−1

1 Lk cos(β1) cos(α1) + n2dk cos(β1) sin(α1)

zHn2
= zA1 +

Lh
2

+ Lw1 sin(γ1) + ∑k−1
1 Lk sin(β1) + n2dk sin(β1)

(18)

The coordinate of the n2 final hole point of the KTH element is H′
n2
(xH′

n2
, yH′

n2
, zH′

n2
):

xH′
n2

= xA1 − Lw1 cos(γ1) sin(α1) + ∑k−1
1 Lk cos(β1) sin(α1) + n2dk cos(β1) cos(α1) + Lc cos(γ1) sin(α1)

yH′
n2

= yA1 + Lw1 cos(γ1) cos(α1) + ∑k−1
1 Lk cos(β1) cos(α1) + n2dk cos(β1) sin(α1)− Lc cos(γ1) cos(α1)

zH′
n2

= zA1 +
Lh
2

+ Lw1 sin(γ1) + ∑k−1
1 Lk sin(β1) + n2dk sin(β1)− Lc sin(γ1)

(19)

where, n2 represents the number of drilling holes in the return air lane of unit k.
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5.2. Key Point Calculation of Through–Layer Drilling Model

A schematic diagram of the 3D model of through–layer drilling is shown in Figure 11,
which is composed of four parts: the bottom coal pumping roadway with A2B2C2D2 as
the top surface, the pre–pumping coal seam with A3B3C3D3 as the bottom surface, the
pre–driving coal roadway with A4B4C4D4 as the bottom surface, and the red and blue
drilling trajectories. It is assumed that the inclination angles of the bottom pumping
roadway, the pre–pumping coal seam and the pre–tunneling coal roadway are the same,
and the bottom pumping roadway is A2(xA2 , yA2 , zA2), B2(xB2 , yB2 , zB2), C2(xC2 , yC2 , zC2) and
D2(xD2 , yD2 , zD2). Pre–pumped coal seam A3(xA3 , yA3 , zA3), B3(xB3 , yB3 , zB3), C3(xC3 , yC3 , zC3),
D3(xD3 , yD3 , zD3); Coal roadway A4(xA4 , yA4 , zA4), B4(xB4 , yB4 , zB4), C4(xC4 , yC4 , zC4) and
D4(xD4 , yD4 , zD4) were pre–tunneled. The length along the strike of the coal seam is LZ2,
the slant width of the working face is LW2, the azimuth Angle of the roadway is α2, and the
Angle between the strike of the coal seam and the horizontal plane is β2.
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where, Kd0 represents the distance between 
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Figure 11. Schematic diagram of 3D model of through–layer drilling hole.

The planar diagram of the opening point is similar to that of the final hole point, as
shown in “Opening point planar Arrangement” in Figure 11, where nw_s represents the s-th
drilled hole in the w row. The difference is that the opening point is located at the back side
of the bottom extraction roadway, and the final hole point is located at the bottom of the
pre–extraction seam.

(1) Coordinates of opening points
The s opening point in row w is Knw−s(xKnw−s

, yKnw−s
, zKnw−s

):
xKnw−s

= xD2 + Kd0 cos(β2) cos(α2) + ∑s−1
1 Kd1 cos(β2) cos(α2) + ∑s−1

1 Kd1 cos(β2) cos(α2)

yKnw−s
= yD2 + Kd0 cos(β2) sin(α2) + ∑s−1

1 Kd1 cos(β2) sin(α2) + ∑s−1
1 Kd1 cos(β2) sin(α2)

zKnw−s
= zD2 + Kd0 sin(β2) + ∑s−1

1 Kd1 sin(β2)− ∑w−1
1 Kd2 sin(β2)

(20)

where, Kd0 represents the distance between Kn1−1 and D2 point, m; Kd1 represents the
spacing of the opening point column, m; Kd2 denotes the row spacing of the opening
points, m.

(2) Final hole point coordinates
The s-th final hole point in row w is Znw−s(xZnw−s

, yZnw−s
, zZnw−s

):
xZnw−s

= xA3 + ∑s−1
1 Zd1 cos(β2) cos(α2)− ∑w−1

1 Zd2 cos(β2) sin(α2)

yZnw−s
= yA3 + ∑s−1

1 Zd1 cos(β2) sin(α2) + ∑w−1
1 Zd2 cos(β2) cos(α2)

zZnw−s
= zA3 + ∑s−1

1 Zd1 sin(β2) + ∑w−1
1 Zd2 sin(γ2)

(21)
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where, Zd1 represents the spacing of the final hole point column, m; Zd2 represents the row
spacing of the terminal hole point, m.

6. Application Example and Effect Evaluation
6.1. Source of Cases

The test site was selected as the 1302 working face of a coal mine in Shanxi Province,
with a coal seam thickness of 5.3 m and a coal seam dip Angle of 16◦. There are two grooves
in the working face, and there is a high extraction roadway below the coal seam. According
to the actual demand of the mine, gas extraction work is carried out from two laneways,
including gas extraction work of low through–layer drilling and gas extraction work
of bedding drilling. Considering the complexity, time–consuming, and labor–intensive
manual design of gas extraction drilling, a method of artificial intelligence is proposed to
quickly design the parameters of gas extraction drilling, and the visual display of the gas
extraction drilling field is realized by means of software programming.

6.2. Case 1 Result Analysis (Bedding Extraction)

(1) Optimization of drilling parameters
Based on the extraction records of the adjacent working face, 30 historical data points

of the drilling holes along the layer were selected to verify the effectiveness of the above
method, in which the diameter of the drilling holes along the layer was not less than 94 mm.
The first 24 (80%) of each group of data were used as the training set, and the PSO–LSTM
model was used to optimize and train the drilling parameters. The last six items (20%)
were used as the test set to predict the optimization results. Among them, the first 17 (70%)
items of the test set were used as the LSTM model training set, and the last seven (30%)
items were used as the PSO model optimization set.

By defining the size, iteration number, inertia weight, acceleration coefficient, and
other parameters of the particle swarm, the particle swarm is initialized, and the LSTM
network structure is designed, including the input layer, hidden layer, and output layer,
and relevant parameters such as the time step and the number of hidden layer units are set.
PSO was combined with LSTM, the initial weights and hyperparameters of LSTM were
optimized by PSO, and the model was trained until it converged to the optimal solution as
shown in Table 3.

Table 3. Comparison of drilling parameter optimization results in bedding.

Serial Number Data Types Drill Hole
Spacing/(m)

Drill Hole
Depth/(m)

Inclination of
Drill Hole/(◦)

Borehole
Azimuth/(◦)

X1 Training set 9.1 28.7 18.17 29.87
X2 Training set 8.4 29.5 16.92 29.26
X3 Training set 8.8 30.0 17.91 30.08

. . .. . .
T1 Test set 8.1 29.7 17.30 30.21
T2 Test set 8.3 28.7 17.11 30.15
T3 Test set 8.2 30.1 16.81 29.72

. . .. . .
Y1 Design results 6 30.0 16.00 30.00

Table 3 shows that the drilling parameters designed using the PSO–LSTM optimization
model are spacing 6 m, drilling hole depth 30 m, drilling dip Angle 16◦, and azimuth
Angle 30◦. The design results are the same as the drilling parameters designed using
numerical simulation, and the time consumption is shorter, which shows the accuracy and
convenience of the method.

(2) Visual display of drill field
The design results in Table 3 are incorporated into the compiled drill–field visualization

model, and the results are shown in Figure 12. It can be seen from Figure 12 that the drill
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holes of the inlet and return air roadways are different, and the length of the drill holes is
greater than half of the width of the extracted coal seam. This method of hole distribution
can fully extract coal seam gas and avoid an excessive concentration of residual gas. The
drill holes of the inlet lane and return lane are numbered. There are 25 drill holes in the
inlet lane (lower side) and 24 drill holes in the return lane (upper side).
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6.3. Case 2 Result Analysis (Through–Layer Extraction)

3D visualization of the through–layer drilling holes is shown in Figure 13. There are
72 through–layer drilling holes (nine rows and eight columns), and the opening points
and final hole points of the drilling holes are arranged neatly and numbered from 1 to 72.
Figure 13c shows that the effective extraction range of the final hole point of each drilling
hole overlaps with each other and is tightly connected, covering the whole pre–extracted
coal seam, which can fully extract coal seam gas. Due to space limitations, the optimization
process of through–layer drilling will not be described again.
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6.4. Discussion

With the gradual development of intelligent construction in mines, it is imperative to
automate and intelligentize gas extraction. Based on this, this study proposes an intelligent
optimization method based on PSO–LSTM and combines 3D visualization technology to
carry out intelligent design and visual display research of extraction drilling parameters,
which improves the scientific and intuitive design of gas extraction drilling and provides
strong support for coal mine safety production. Through a later test, the above method is
used to realize the rapid design of gas extraction parameters, drilling concentration, nega-
tive pressure, and other composite–related requirements. At the same time, the generation
of a three–dimensional drilling field lays the foundation for the visual display of the gas
extraction drilling field and ensures the safe and efficient recovery of the working face.

Gas extraction is a “four–dimensional” dynamic process, which needs to fully consider
the dimensions of space and time. Differential borehole parameter design is an indis-
pensable problem in gas extraction, and gas transparent geology technology is a key link.
In order to improve the accuracy and timeliness of geological condition detection and
coal seam gas measurement, advanced coal seam geological detection and coal seam gas
parameter measurement techniques are studied for dynamic transparent gas geology. Es-
tablishing a GIS–based gas geological information platform, constructing a high–precision
three–dimensional gas geological dynamic model, and accurately, intuitively, and dynam-
ically displaying the gas geological conditions and their evolution process in the whole
life cycle of gas extraction are the main development trends of gas geological security in
intelligent gas extraction.

In the future, based on the above theoretical research, the team will further develop
the automatic design platform of gas extraction drilling, improve the functions of ex-
traction drilling design, 3D model generation, drawing output, and so on, and form a
full–cycle control platform of “design–construction–acceptance –observation –enrichment
–abandonment” of gas extraction drilling. It integrates the functions of auxiliary analysis of
borehole spacing, automatic calculation of borehole parameters, automatic drawing of de-
sign drawings, three–dimensional display of design effects, etc., and realizes the automatic
design of boreholes for common types of gas extraction in coal mines, such as through
layers, along layers, and high positions. At the same time, it is further explored to combine
other optimization algorithms with deep learning models to improve the intelligence level
of drilling design and expand its application in other mine safety production fields.

7. Conclusions

Aiming at the problems of low utilization rate of gas extraction parameters and long
design cycle of the gas extraction scheme, an intelligent design and visualization method
of gas extraction drilling based on PSO–LSTM was proposed. The PSO–LSTM model uses
the PSO algorithm to optimize the parameters of the LSTM model and search for the most
suitable LSTM model parameters to improve the accuracy of the LSTM algorithm.

1. From the perspective of the theoretical formula of extraction radius, the law of ex-
traction radius with different drilling parameters is studied; that is, the extraction
range increases with the increase in extraction time, drilling diameter, and extraction
negative pressure. Within a certain range, the extraction range increases with an
increase in borehole spacing, which provides a theoretical basis for the intelligent
optimization of extraction parameters.

2. This paper proposes an intelligent optimization method for gas extraction drilling
parameters based on depth mining. Using the experience of successful cases of
gas extraction drilling in–depth mining by this method, taking the successful actual
parameters as a reference, intelligent optimization of 1302 working face drilling
parameters: drilling spacing 6 m, drilling depth 30 m, drilling Angle 16◦, azimuth
Angle 30◦, improve the accuracy of the model.

3. The mathematical expressions of the gas extraction space models for the bedding and
through–layer boreholes are summarized. Based on the modeling idea of the point–
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generating line, line–generating surface, and surface–generating body”, through the
intelligent optimization of drilling parameters and 3D coordinate information of the
coal seam, a 3D space model of bedding and throughbed is generated. This method
uses a Python open–source program as the basic modeling language, which overcomes
the shortcomings of other modeling software with diverse operations and complexity.
In addition, Python can automate the modeling process by writing scripts, reducing
manual time and errors. This is particularly important for scenarios in which fast
iterations are required, or a large number of models need to be processed.

4. Taking the 1302 working face of a coal mine in Shanxi Province as the research object,
the drilling parameters are designed by numerical simulation and the PSO–LSTM
model. The research in Section 5.2 shows that the drilling parameters designed
by numerical simulation and the PSO–LSTM model are similar, which verifies the
accuracy of the PSO–LSTM model and provides some support for the intelligent
mining of coal mines.
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