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Abstract: Scrap steel serves as the primary alternative raw material to iron ore, exerting a significant
impact on production costs for steel enterprises. With the annual growth in scrap resources, concerns
regarding traditional manual inspection methods, including issues of fairness and safety, gain increas-
ing prominence. Enhancing scrap inspection processes through digital technology is imperative. In
response to these concerns, we developed CNIL-Net, a scrap-quality inspection network model based
on object detection, and trained and validated it using images obtained during the scrap inspection
process. Initially, we deployed a multi-camera integrated system at a steel plant for acquiring scrap
images of diverse types, which were subsequently annotated and employed for constructing an en-
hanced scrap dataset. Then, we enhanced the YOLOv5 model to improve the detection of small-target
scraps in inspection scenarios. This was achieved by adding a small-object detection layer (P2) and
streamlining the model through the removal of detection layer P5, resulting in the development of a
novel three-layer detection network structure termed the Improved Layer (IL) model. A Coordinate
Attention mechanism was incorporated into the network to dynamically learn feature weights from
various positions, thereby improving the discernment of scrap features. Substituting the traditional
non-maximum suppression algorithm (NMS) with Soft-NMS enhanced detection accuracy in dense
and overlapping scrap scenarios, thereby mitigating instances of missed detections. Finally, the model
underwent training and validation utilizing the augmented dataset of scraps. Throughout this phase,
assessments encompassed metrics like mAP, number of network layers, parameters, and inference
duration. Experimental findings illustrate that the developed CNIL-Net scrap-quality inspection
network model boosted the average precision across all categories from 88.8% to 96.5%. Compared to
manual inspection, it demonstrates notable advantages in accuracy and detection speed, rendering
it well suited for real-world deployment and addressing issues in scrap inspection like real-time
processing and fairness.

Keywords: steel scrap; classification; deep learning; target detection

1. Introduction

In today’s global economic context, the steel industry occupies a pivotal role but
confronts challenges in environmental protection and sustainable development. With
global crude steel production reaching 1.8882 billion tons in 2023, meeting emission re-
duction targets set by the Paris Agreement emerges as a pressing concern for the steel
industry’s long-term sustainability [1,2]. Enhancing the utilization of scrap, acknowledged
as the most environmentally friendly raw material in steel production [3], is crucial to
achieving this objective. Electric arc furnace steelmaking and the adoption of scrap over
converter steelmaking are critical strategies advancing the industry toward low-emission
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steelmaking, leveraging benefits in resource conservation and reduced CO2 emissions [4,5].
The high-quality inspection of scrap forms a critical link in this process, impacting not
only steelmaking efficiency but also directly affecting enterprise economic benefits and
environmental responsibilities [6]. Nevertheless, despite the mechanization achieved in
transportation, loading, and unloading processes at numerous scrap yards [7,8], a consid-
erable scope remains for enhancing the intelligent recognition of various grades of scrap
material. The prevalence of traditional manual inspection methods introduces subjective
biases, impacting inspection fairness and accuracy, besides being inefficient and hazardous,
thereby falling short of modern steelmaking requirements [9]. With the rapid growth of
scrap resources and the constraints of traditional inspection methods, there is an urgent
need to develop AI-based algorithms for scrap classification and quality assessment sys-
tems. These systems will markedly enhance the intelligence level of detection, facilitating
more precise assessments of scrap quality and costs, enhancing operational efficiency, and
mitigating risks. This advancement offers robust technological support for low-emission
and sustainable development within the steel industry. Hence, the development and de-
ployment of AI-driven scrap classification and quality assessment systems are pivotal in
fostering high-quality development within the steel industry.

The development of intelligent classification methods for scrap types based on deep
learning algorithms commenced later compared to other fields. Nevertheless, due to the
rapid advancement and extensive application of deep learning technologies in recent years,
many scholars have conducted research and achieved notable outcomes in this domain.
Xu et al. [9] developed a deep learning-based model for classifying and grading scrap,
integrating the Squeeze-and-Excitation Network (SENet) attention mechanism with feature
extraction from cross-stage local networks. Tu et al. [10] proposed a novel framework
to tackle challenges in scrap grading, encompassing complex background handling, the
precise detection of scrap, and grading assessment. This framework significantly enhances
grading accuracy while maintaining speed and has been successfully implemented across
various steel plants. Ichiro DAIGO et al. [11] employed transfer learning to classify heavy
scrap using pyramid pooling semantic segmentation on a small dataset, yielding favorable
classification outcomes for thickness or diameter. Xiao et al. [12] developed a deep learning
network model for scrap classification and grading using SENet, incorporating cross-stage
local networks for feature extraction and a spatial pyramid structure to handle cross-scale
challenges in scrap images, and integrating SENet into the feature extraction network.
Mei [13] investigated aspects including rust degree identification, coating recognition and
detection, and the rapid detection of alloy elements using machine vision technology and
LIBS technology. Qiu [14] optimized the image fogging convergence algorithm and the
non-maximum suppression algorithm using the YOLOv3 model, successfully detecting
scrap raw materials in input images. These studies offer new avenues for advancing the
intelligent classification of scrap types.

Due to the high recycling value of non-ferrous metals, current research on AI-based
algorithms for classifying scrap metal primarily concentrates on the non-ferrous metal
sector to align with industrial needs and market demands. Gao et al. [15] proposed a
method for sorting copper impurities in scrap material using deep learning technology,
integrating optical recognition and shape detection. They achieved automatic recognition
of copper (Cu) with an accuracy as high as 90.6% using separable convolutional neural
networks. Penumuru et al. [16] successfully implemented automatic material identifica-
tion in an Industry 4.0 environment by integrating machine vision and machine learning
technologies, accurately identifying and classifying aluminum, copper, medium-density
fiberboard, and low-carbon steel. Diaz-Romero et al. [17] utilized transfer learning methods
including fine-tuning and feature extraction for the real-time classification of casting and
forging (C&W) alloys in conveyor belt systems. Koyanaka and Kobayashi [18] incorporated
neural network analysis into a waste identification algorithm for the automatic separation
of lightweight metal scrap, achieving an average separation accuracy of 85% for mixed
alloys including cast aluminum, forged aluminum, and magnesium across three different
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ELV shredding facilities. Diaz-Romero et al. [19] proposed a deep learning model that
integrates dense convolutional networks, back-propagation neural networks, and princi-
pal component analysis for predicting and evaluating the quality of composite castings,
forgings, and stainless steel datasets, obtaining satisfactory outcomes. Chen et al. [20]
investigated the small-sample identification and separation of non-ferrous metals based
on deep learning, using data augmentation, adjusting focal loss functions, and adjusting
Intersection over Union (IOU) thresholds with the YOLOv3 algorithm to achieve accuracies
of 95.3% for aluminum scrap recognition and 91.4% for copper scrap recognition. These
studies make substantial contributions to the advancement of intelligent classification and
the separation of metal scrap using deep learning techniques.

Recent years have seen substantial advancements in object detection technology, espe-
cially in handling complex and dense scenes, with a notable focus on detecting small-scale
targets. Innovations such as multi-feature extraction methods and multi-scale fusion tech-
niques have effectively tackled the challenges of identifying dense and small-scale objects
in scenarios such as aerial imaging, space exploration, and underwater target detection. Xu
et al. [21] proposed enhancing the feature extraction capability of the YOLOv3 model by
introducing a “replicated” Backbone network to construct an auxiliary network, thereby
enhancing the detection of distant small targets such as vehicles, pedestrians, and traffic
signs during driving. Ming et al. [22] addressed aerial image object detection by employing
the Position-Sensitive Feature Pyramid Network (PS-FPN) to precisely extract location-
sensitive features of small, densely arranged objects, and introduced a distance-rotated IoU
loss to mitigate discrepancies between training and evaluation metrics. Wang et al. [23]
proposed a multi-scale feature fusion pyramid network for space exploration tasks, en-
hancing target extraction capability with a CNN-CST module based on Swin Transformer,
refining the SE attention mechanism, and introducing enhanced spatial pyramid pooling to
optimize performance in detecting small targets. Fang et al. [24] developed the YOLO-RAD
algorithm for dense scenes, integrating the Reception Field Attention (RFA) mechanism,
the Adaptive Spatial Feature Fusion module (ASFF), and the dynamic head structure for
small targets (DyHead-S), thereby substantially enhancing pedestrian detection accuracy in
crowded scenarios. Zhao et al. [25] enhanced the YOLOv7 network for underwater target
detection by integrating SE attention and RFE modules and incorporating Wasserstein
distance as a novel metric to supplant traditional loss functions. Liu et al. [26] intro-
duced CFNet and CBAM modules, presenting the YOLOv8-CB algorithm for enhanced
lightweight multi-scale pedestrian detection via a Bidirectional Feature Pyramid Network
(BIFPN) architecture.

Object detection algorithms based on deep learning are categorized into two main
types: two-stage and single-stage detection algorithms [27]. Two-stage detection algorithms
such as Faster R-CNN (Region-Based Convolutional Neural Networks) and Mask R-CNN
(Mask Region-Based Convolutional Neural Network) are noted for their high accuracy
but exhibit slower speeds compared to single-stage algorithms. Single-stage detection
algorithms like the YOLO (You Only Look Once) series and SSD (Single-Shot MultiBox
Detector) provide excellent speed and accuracy and have been widely adopted, despite
potential challenges in detecting small targets and missed detections [28–31].

Previously, our team explored an intelligent classification of scrap in laboratory simu-
lations, developing object detection models for recognizing scrap types [9,12,32]. However,
due to factors such as high-altitude shooting in industrial settings and densely packed
scrap, the collected data included small and densely distributed targets, resulting in the
poor performance of the laboratory-established models. To tackle the challenge of scrap
detection in industrial scenarios, this paper proposes a novel scrap-quality inspection
model named CNIL-Net (CA+Soft-NMS+Improved Layer) structured on the YOLOv5
model. Through enhancements in detection layers and the integration of the CA (Coordi-
nate Attention) mechanism and Soft-NMS (Soft non-maximum suppression algorithm),
CNIL-Net classifies overlapping small-target scrap across multiple categories and scales.
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Comparative evaluations with models such as YOLOv7 and YOLOv8 demonstrate the
superior performance of the proposed model.

The innovative contributions of this paper are as follows:

1. First item; The detection performance of traditional object detection algorithms is
enhanced for densely packed small targets, thereby achieving accurate classification
in scrap images and reducing missed detections of overlapping targets;

2. Second item; Compared to manual classification and grading, the CNIL-Net model
exhibits significant advantages in terms of accuracy and efficiency, paving the way for
the development of an intelligent unmanned scrap acceptance system.

The structure of this paper is outlined as follows: Section 2 offers an in-depth descrip-
tion of the dataset creation process, along with a detailed overview of the CNIL-Net model’s
architecture and its related enhancement modules and algorithms. Section 3 discusses the
experimental setup and evaluation criteria used for the model, and presents the training
and validation results for the scrap steel dataset. Section 4 provides a summary of the
research findings.

2. Materials and Methods
2.1. Preparation of the Datasets

Three high-definition industrial cameras were installed by our team at a steel company
in China, mounted on brackets positioned between 10.2 m and 10.5 m high. This positioning
ensures comprehensive coverage of a 5.4 m long and 2.3 m wide area used by dump trucks.
Whenever a truck reaches the designated area in the scrap yard, a claw crane automatically
unloads the scrap. The system automatically detects the crane’s grabbing motion and
captures images according to its frequency, thereby minimizing redundant detections and
storage. Figure 1 illustrates a schematic diagram showing the camera positions relative to
the scrap truck, with a total of 934 images retained.

In alignment with the core requirements of steel companies, where various scrap types
are associated with distinct recycling prices, plates were classified based on three thickness
categories, while non-plate scrap was categorized according to its type and whether it
exceeded standard lengths. The data were annotated using LabelImg software and catego-
rized into 9 labels, namely plate thickness <3 mm; plate thickness 3–6 mm; plate thickness
>6 mm; airtight; inclusion; overlength (1.2–1.5 m), overlength (1.5–2 m); scattered; and
ungraded. However, due to the complexity of acceptance scenarios, class data imbalance,
and inadequate training on small-target samples, the model’s generalization capability is
compromised [33–35]. Moreover, deep learning algorithms necessitate extensive datasets to
support their parameter-intensive operations. To enhance dataset robustness, we employed
five data augmentation methods, namely adding noise, adjusting brightness, cropping,
mirroring or rotating, and randomly combining these strategies to further diversify the
dataset, as depicted in Figure 2. Following data augmentation, the dataset expanded to
3736 images, encompassing a total of 298,260 labels. For optimal model training and valida-
tion, the dataset was divided into training and validation sets at a ratio of 9:1, consisting of
3362 images for training and 374 for validation. This dataset was named ESD (Enhanced
Scrap Datasets). Table 1 details the statistics of the labels for each category, and this dataset
was used for training and validation for both the comparison and ablation experiments in
this paper.
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Figure 1. Schematic site layout.

Figure 2. Image enhancement effects: (a) original image; (b) with added noise; (c) brightness
adjustment; (d) cropping; (e) mirroring; (f) rotating; (g) random combination; (h) random combination;
(i) random combination.
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Table 1. Labeling quantities for each category of the dataset.

Category Number of Dataset Labels Number of Training Set
Labels

<3 mm 11,248 10,166
3–6 mm 12,2812 109,766
>6 mm 10,7476 97,407
airtight 716 645

inclusion 2260 2033
overlength (1.2–1.5 m) 10,952 9940
overlength (1.5–2 m) 6720 6067

scattered 9164 8214
ungraded 26,912 24,224

2.2. Model Improvement
2.2.1. Detection Layer Structure

In its original design, the YOLOv5 model divides the initial detection layers into P3
to P5, allowing it to detect objects at various scales. Through hierarchical downsampling
operations, the model handles 640 × 640-pixel images, producing feature maps of 20 × 20,
40 × 40, and 80 × 80 at scales of 32×, 16×, and 8×, which correspond to objects ranging
from large to small sizes. However, the small size and low resolution of small-target scrap
restrict the extraction of feature information and introduce considerable noise. Because
of YOLOv5’s significant downsampling factor, deep feature maps struggle to capture the
characteristics of small-target scrap effectively, potentially resulting in missed detections
and affecting overall model performance [36].

To tackle these challenges, a proposed solution involves introducing an additional P2
layer (scaled to 160 × 160) [37]. This enhancement aims to enhance the model’s ability to
focus on small targets and improve the detection of distant scrap targets. Specifically, after
the 17th layer in the architecture, upsampling operations are employed on the feature maps
to augment their size. At the 20th layer, the 160 × 160 feature map obtained is fused with
the second-layer feature map from the Backbone to create a larger feature map suitable for
detecting small targets.

It is important to note that as the number of detection layers in the model increases, so
do parameters, network layers, and other metrics. Given the rarity of large-sized targets
in aerial images of scrap, in this study, we chose to eliminate the larger detection layer P5
(corresponding to a scale of 20 × 20), thus optimizing the model for swift deployment in
industrial environments. Figure 3 illustrates the network structure after the addition of the
P2 layer and the removal of the P5 layer, with dashed and blue lines indicating removed and
added data flow components, while orange and green blocks represent removed and added
modules. This revised network configuration is henceforth referred to as the Improved
Layer (IL).
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Figure 3. IL network structure.

2.2.2. Coordinate Attention (CA)

The inspection scenarios present complex backgrounds with considerable interfer-
ence, and the scrap inside the carriage holds limited informative content. Furthermore,
the distinctions in characteristics among different types of scrap are not clear, presenting
substantial challenges for model training. To improve detection accuracy and mitigate
irrelevant interference, this study introduces an attention mechanism. CA mechanisms
like the well-established SENet [38] have proven to greatly enhance model performance.
However, they frequently neglect crucial positional information required for selectively
generating spatial features. Spatial attention mechanisms, in contrast, concentrate exclu-
sively on identifying spatially significant regions within the network, conserving resources
for critical areas while disregarding inter-channel relationships [39].

The CA mechanism integrates both channel and spatial information to enhance fea-
ture representation. It decomposes Coordinate Attention into two one-dimensional global
pooling processes along each spatial direction, aggregating channel features to capture long-
range dependencies and preserve precise positional information. This method produces
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two distinct feature maps with directional awareness. Moreover, embedding positional in-
formation from input feature maps into aggregated feature vectors of Coordinate Attention
enhances the representation of regions of interest across larger areas while mitigating the
excessive computational overhead. The specific process is depicted in Figure 4. Introducing
the CA mechanism enables the model to accurately detect scrap inside carriages in complex
inspection scenarios, thus enhancing detection accuracy.

Figure 4. CA structure diagram.

2.2.3. Soft Non-Maximum Suppression (Soft-NMS)

During the post-processing phase of object detection, non-maximum suppression
(NMS) is frequently utilized to filter detection boxes, extracting high-confidence object
detection results while minimizing false positives with low confidence. Its formula is
depicted in Equation (1). However, in scenarios with stacked scrap, traditional NMS
frequently erroneously removes overlapping or closely adjacent scrap boxes, resulting in
missed detections. To tackle this issue, the Soft-NMS is introduced. The Soft-NMS calculates
overlap not with simple binary thresholds but by integrating a penalty function to adjust
detection box scores. When multiple overlapping bounding boxes are detected, the Soft-
NMS employs Gaussian weighting to adjust their confidence levels. It sorts bounding boxes
based on their confidence scores, applying a weighting function to reduce the confidence
of lower-scored boxes rather than outright removing them. This approach mitigates the
issue of NMS operations erroneously deleting overlapping detection boxes, as outlined in
Equation (2) [40].

Si =

{
S′

i , IoU(M, bi) < Nt

0, IoU(M, bi) ≥ Nt
(1)

Si = S′
i · e−

(IoU(M,bi))
2

σ (2)

In this formula, Si represents the current confidence score of the detection frame, S′
i repre-

sents the confidence score of the detection frame before any modification, M denotes the
frame with the highest score, Nt stands for the preset overlap threshold, and σ represents
the algorithm’s standard deviation.

2.3. CNIL-Net Model Structure

In this paper, the aforementioned improved modules and algorithms are integrat-
edto construct the CNIL-Net scrap-quality inspection network model based on YOLOv5.
Specifically, the addition of the detection layer P2 enhances the model’s capability to detect
small-target scrap, while the removal of P5 reduces model complexity. The CA mechanism
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is incorporated into the Backbone to consider both channel and spatial information in the
scrap features. The non-maximum suppression algorithm in the loss function is replaced
with Soft-NMS to mitigate the model’s problem regarding missing dense and overlapping
targets. The structure of the CNIL-Net model is illustrated in Figure 5.

Figure 5. CNIL-Net structure.

3. Results and Discussion

During this experimental model training, the optimizer (SGD) was chosen, the image
size (imgsz) was fixed at 960 pixels × 960 pixels, and the neural network was trained with
a batch size of 16 samples per iteration. Following a comparison of activation functions
like SiLU and Mish, SiLU was chosen as the activation function for this experiment. After
evaluating the regression performance of loss functions like CIoU and GIoULoss on the
ESD dataset, CIoU Loss was adopted as the loss function for this experiment. Both the
comparison experiment and the ablation experiment were conducted using 200 epochs,
with additional training sessions of 250 and 300 epochs added to the CNIL-Net network
model to observe convergence.

3.1. Experimental Environment and Evaluation Index
3.1.1. Experimental Environment

The experimental setup in this paper included the Ubuntu 9.3.0 operating system, with
the PyTorch framework employed for model training and validation. Acceleration was
achieved using four NVIDIA GeForce RTX4090*24 G graphics cards paired with Intel(R)
Xeon(R) Gold 5318Y 2.1 GHz CPUs, accelerated with CUDA 11.4. Programmed in Python
3.8.10 using the Visual Studio Code.
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3.1.2. Evaluation Metrics

Precision and recall gauge the accuracy and completeness of model checking, respec-
tively. However, they sometimes exhibit a trade-off, which can be reconciled by introducing
F1-value evaluation metrics. We evaluated the model using metrics such as mAP, F1 score,
number of network layers, parameters, GFLOPs, and inference time. The formulas for
several of these metrics are presented as follows:

mAP =
1
N

N

∑
i=1

APi (3)

F1 = 2 · P · R
P + R

(4)

In these formulas, N represents the total number of categories, i denotes the ith category,
AP stands for the average precision, P represents the precision rate, and R denotes the
recall rate.

3.2. Comparison Experiments
3.2.1. Comparison of Different Algorithms

To validate CNIL-Net’s superiority in scrap detection, we conducted comparison
experiments with several models, namely YOLOv7-tiny, YOLOv7, YOLOv8m, YOLOv8l,
and a scrap type recognition model previously proposed by our team [9,12,33]. YOLOv7-
tiny is a lightweight variant of YOLOv7, whereas YOLOv8m and YOLOv8l are distinct
versions within the YOLOv8 series. The primary differences among these models lie in
their specific versions within the YOLO detection framework and their respective scales.
The experimental results for these models, evaluated using the ESD dataset, are presented
in Table 2. The CNIL-Net model outperforms other algorithms in terms of mAP and F1
values. In contrast, the YOLOv7-tiny model, despite having a lower number of network
layers and parameters, and less model complexity compared to CNIL-Net, yielded only
68.6% and 72.2% in mAP and F1 values, respectively. Compared to previously proposed
models in the lab, CNIL-Net exhibited higher model complexity but fewer network layers
and parameters, resulting in respective improvements of 9.8%, 8.3%, and 8.1% in mAP.
These results underscore CNIL-Net’s suitability for scrap detection scenarios, combining
effectiveness with lightweight design for enhanced scrap category detection.

Table 2. Comparison of different models.

Model mAP (%) F1 (%)
Number of

Network
Layers

Parameters GFLOPs

YOLOv7-tiny 68.6 72.2 208 6,029,244 13.1
YOLOv7 89.5 89.7 314 36,524,924 103.3

YOLOv8m 88.5 88.4 295 25,902,640 79.3
YOLOv8l 90.8 90.7 365 4,391,520 164.9

Literature 9 86.7 86.2 304 21,389,990 49.0
Literature 13 88.2 87.2 309 21,390,088 49.1
Literature 27 88.4 87.4 307 21,389,982 49.0

CNIL-Net 96.5 91.4 272 7,980,198 68.6

3.2.2. Comparison of Different Model Scales

YOLOv5, developed by the Ultralytics team, has proven to be highly efficient, accurate,
and lightweight, demonstrating robust detection capabilities across various scenarios. The
model can be categorized into five versions—n, s, m, l, and x—based on variations in net-
work depth and width, where each subsequent version (from n to x) progressively increases
both depth and width. Increasing the network depth and width generally enhances the
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model’s detection accuracy, albeit at the cost of increased model complexity and training
inference time.

To determine the optimal network depth and width for the scrap acceptance model,
we compared and evaluated the performance of these five models on the ESD dataset,
presenting detailed analysis results in Table 3. As shown in Table 3, the YOLOv5x model
exhibits the highest detection performance but also has significantly more network lay-
ers and parameters and higher complexity compared to other models, posing challenges
for deployment in industrial settings and meeting real-time detection needs. In contrast,
YOLOv5m maintains a high mAP value of 88.8% with moderate model complexity, striking
a balance between lightweight design and high accuracy. Based on this comparison, the
YOLOv5m model was selected as the pretraining model in this study due to its comprehen-
sive consideration of detection performance and real-time requirements.

Table 3. Comparison of performance indexes of different scale models.

Model mAP (%) F1 (%)
Number of

Network
Layers

Parameters GFLOPs

YOLOv5n 66.8 67.4 270 1,776,094 4.3
YOLOv5s 80.5 79.7 270 7,043,902 16.0
YOLOv5m 88.8 88.0 290 20,885,262 48.0
YOLOv5l 91.3 89.6 367 46,151,358 107.8
YOLOv5x 93.6 92.5 444 86,227,246 203.9

3.2.3. Comparison of Different Detection Layers

To tackle the challenge of inadequate feature capture of small discarded steel objects
by the YOLOv5 model, we enhanced the model’s attention toward these targets through
the incorporation of an additional P2 layer. Experimental validation illustrated that the
network architecture, enhanced with the P2 layer, excels in detecting multi-scale and small
steel targets. Nevertheless, the addition of the fourth detection layer resulted in a notable
increase in parameter count and complexity, thereby prolonging inference times, which
is not conducive to swift deployment in industrial settings. To strike a balance between
detection performance and model complexity, each detection layer underwent individual
evaluation. Evaluation metrics for the various detection layers are detailed in Table 4.

Due to the scarcity of large targets in waste steel images captured by high-altitude
cameras, the performance of the P5 detection layer was subpar, yielding an mAP of only
44.9%. In contrast, the smaller-scale detection layers P2, P3, and P4 yielded mAPs of 83.5%,
95.0%, and 76.3%, respectively. As a result, the P5 layer was eliminated from the model,
and a lightweight network structure IL was devised using only P2 to P4 layers. Table 5
presents a comparative analysis of the performance of the two detection structures before
and after enhancement. From Table 5, it is evident that while the mAP of the IL structure
marginally decreased (by merely 0.8%), there were substantial reductions of 25.1%, 65.1%,
and 16.9% in network depth, parameter count, and complexity, respectively, underscoring
the feasibility and efficacy of the model’s lightweight properties.

Table 4. Comparison of performance metrics of different detection layers.

Layer mAP (%) F1 (%)

P2 83.5 83.1
P3 95.0 92.9
P4 76.5 78.0
P5 44.9 45.2
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Table 5. Improvement in each model.

Layers mAP (%) F1 (%)
Number of

Network
Layers

Parameters GFLOPs

P2–P5 96.1 94.4 350 22,831,608 82.4
P2–P4 95.3 93.3 262 7,970,190 68.5

3.3. Ablation Experiments

Ablation experiments were conducted on the ESD dataset to assess the impact of
each enhancement module on model performance. The benchmark model YOLOv5, six
enhancement models, and the CNIL-Net model were utilized for this purpose. Table 6
presents the specifications of each enhanced model, while Table 7 displays the training
outcomes and evaluation metrics for each model. From Table 7, it is evident that the
CNIL-Net model proposed in this study achieved a substantial enhancement in mAP,
achieving 96.5%, a 7.7% increase over the benchmark model. Concurrently, the number
of network layers and the number of parameters in this model were reduced by 6.2% and
61.8%, respectively.

Table 6. Improvement details for each model.

Model IL CA Soft-NMS

Improved model 1 ✓
Improved model 2 ✓
Improved model 3 ✓
Improved model 4 ✓ ✓
Improved model 5 ✓ ✓
Improved model 6 ✓ ✓

CNIL-Net ✓ ✓ ✓

Table 7. Evaluation indicators for different models.

Model mAP (%) F1 (%)
Number of

Network
Layers

Parameters GFLOPs

YOLOv5 88.8 88.0 290 20,885,262 48.0
Improved model 1 95.3 91.6 262 7,970,190 68.5
Improved model 2 88.0 81.1 300 20,905,254 48.0
Improved model 3 91.3 84.2 290 20,885,262 48.0
Improved model 4 95.9 92.4 272 7,980,198 68.6
Improved model 5 96.0 90.5 262 7,970,190 68.5
Improved model 6 90.0 81.1 300 20,905,254 48.0

CNIL-Net 96.5 91.4 272 7,980,198 68.6

A comparison between the enhanced model 1 and the benchmark model reveals that
restructuring to P2–P4 markedly enhances model accuracy, resulting in a 6.5% improvement
in mAP and a 3.6% increase in F1 score over the YOLOv5 baseline. This enhancement
stems from the capability of the P2–P4 detection layers to acquire feature maps at scales
of 40 × 40, 80 × 80, and 160 × 160. These shallow feature maps bolster the model’s
proficiency in detecting low-resolution targets from high-altitude captures and efficiently
capturing feature details of small-scrap targets in the ESD dataset, thereby mitigating
positional information loss and omission issues. It is important to note that acquiring
a large-scale feature map entails increased sampling operations in enhanced model 1,
thereby augmenting network complexity. Furthermore, the removal of the detection layer
P5 also entails eliminating layers 7 and 8 from the Backbone section, thereby reducing the
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associated convolutional and pooling layers and significantly decreasing network depth
and parameter count.

The introduction of CA into the initial network, similar to Improved Model 2, resulted
in a decline in model performance. This can be attributed to placing CA in the eighth
layer of the Backbone, where the input feature map size is 20 × 20. Given the dataset’s
abundance of small-sized targets, the attention mechanism predominantly learns negative
information. Conversely, Improved Model 4 incorporates CA into the higher layer of the
spatial pyramid pooling, aligning it with larger-scale output feature maps. This adaptation
enhances the model’s ability to discern channel and positional information, leading to
slight improvements in both mAP and F1 values.

Both Improved Model 3 and Improved Model 5 adopt the Soft-NMS instead of the
traditional NMS. All scraps within the compartment were densely packed and overlapped
with each other; the Soft-NMS employs Gaussian weighting on overlapping detection
frames to adjust confidence levels, mitigating the inadvertent deletion of overlapping
detections caused by NMS operations, and lowering model false-negative rates. A com-
parison with the benchmark model and Improved Model 1 shows that integrating the
Soft-NMS algorithm significantly enhances model training accuracy. Specifically, the mAP
of Improved Model 3 and Improved Model 5 increased by 2.5% and 0.7%, respectively.

Leveraging the enhancements of Improved Model 1, the CNIL-Net model integrates
CA and incorporates the Soft-NMS algorithm. In comparison to Improved Model 1, the
CNIL-Net model exhibited slight increments in network layers, parameters, and com-
plexity but achieved a 1.2% improvement in mAP. When contrasted with the benchmark
model YOLOv5, the CNIL-Net model enhanced its mAP and F1 scores by 7.7% and 3.4%,
respectively, alongside reductions in network layers and parameters. The model excelled
in accurately capturing small targets, identifying densely overlapped targets correctly, and
providing superior accuracy in identifying the different types of scrap materials. Further-
more, the CNIL-Net model boasts a complexity of only 68.6 GFLOPs, making it suitable for
swift deployment in industrial settings and ensuring reliability in practical applications.

Figure 6 illustrates the training outcomes of each model and the CNIL-Net model on
the ESD dataset before and after enhancements. Figure 6a depicts the mAP curves during
the training of each model, while Figure 6b provides a comparative analysis between the
CNIL-Net model and the YOLOv5 model. Here, the curves plot the number of training
epochs on the horizontal axis and mAP values on the vertical axis. The results from Figure 6
clearly indicate that upgrading to the CNIL-Net model leads to a substantial enhancement
in model detection accuracy.

Figure 6. Image enhancement effects: (a) mAP curves for each model; (b) the mAP curves comparison
between the CNIL-Net model and the baseline model training.
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3.4. Analysis of Experimental Results

During the training of the CNIL-Net network model, we experimented with increasing
the number of training epochs to 250 and 300, with results depicted in Figure 7. The
analysis of Figure 7 reveals that the mAP value stabilizes around 96.5% after 200 training
epochs, indicating model convergence. The confusion matrix, a graphical representation
depicting algorithm performance, presents matrices [41] for both the benchmark model
and the CNIL-Net model trained over 200 epochs, which are displayed in Figures 8 and 9,
respectively. Here, the matrix portrays the true categories (True) along the horizontal
axis and the predicted categories (Predicted) along the vertical axis. The main diagonal
elements denote correctly identified samples (TPs) per category, while the upper and
lower triangular regions signify missed and false detections, respectively. A comparison
of confusion matrices between the baseline model and CNIL-Net model reveals slight
reductions in correctly detected samples for overlength categories (1.2–1.5 m and 1.5–2 m)
after model improvement, while accuracy improves notably across other categories. An
examination of the CNIL-Net model’s confusion matrix reveals relatively high misdetection
rates in two scrap categories, 3–6 mm and >6 mm, primarily stemming from numerous
scrap items outside compartment boundaries in the images. These categories constitute
a significant portion of the overall samples, thereby contributing disproportionately to
the overall misdetection rate. Overall, the model demonstrates strong performance across
all categories, achieving over 86% accuracy, with six categories exceeding a 90% correct
detection rate.

The ESD validation dataset consisted of 374 images and 29,798 labels. We validated
the CNIL-Net model on the validation set, presenting the performance metrics for each
category in Table 8. The validation results demonstrate that the detection accuracy and
F1 score for each category exceed 90%. Notably, the airtight category achieves the highest
AP and F1 scores at 98.8% and 97.7%, respectively. Additionally, the AP for the two most
frequently labeled thickness categories—3–6 mm and >6 mm—also reaches 96.0% and
93.3%, respectively.

Figure 10 depicts the images captured at the scrap acceptance site, while Figure 11
illustrates the application of the CNIL-Net scrap-quality inspection model post-inference,
detailing each scrap item with its category label and confidence level. A comparison of
images before and after inspection reveals the accurate recognition of the location and
category of scraps by the model. During scrap-quality inspection, the model processed
a single picture in just 5.76 ms, with a 15–20 s interval between each claw machine grab.
Thus, the CNIL-Net model meets the practical requirements for accuracy and processing
speed in scrap inspection.

Figure 7. Effect of model convergence after increasing the number of rounds in the CNIL-Net
network.
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Figure 8. YOLOv5 model training confusion matrix.

Figure 9. CNIL-Net model training confusion matrix.
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Table 8. Evaluation indexes of the validation set for each category.

Class Labels AP (%) F1 (%)

<3 mm 1082 97.1 94.3
3–6 mm 13,046 96.0 93.9
>6 mm 10,069 93.3 90.6
airtight 71 98.8 97.7

inclusion 227 97.5 93.6
overlength (1.2–1.5 m) 1012 97.1 92.4
overlength (1.5–2 m) 653 96.1 92.5

scattered 950 95.6 92.9
ungraded 2688 97.1 95.0

Figure 10. YOLOv5 model training confusion matrix.

Figure 11. YOLOv5 model training confusion matrix.

4. Conclusions

To address challenges in scrap-quality inspection, the CNIL-Net model was developed
on the YOLOv5 architecture, enhancing the detection layers and incorporating the CA
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mechanism and the Soft-NMS algorithm, followed by comparative analysis. The results
show the following findings:

1. Introducing the P2 detection layer while removing P5 from the original four-layer
structure reduced network layers, parameters, and complexity by 25.1%, 65.1%, and
16.9%, respectively. Although this adjustment led to a slight 0.9% decrease in mAP,
it enhanced the model’s ability to detect small targets and significantly reduced its
computational burden.

2. Incorporating the CA mechanism and the Soft-NMS algorithm successfully addressed
challenges in feature channel extraction and precise location identification without
adding complexity. Moreover, it mitigated issues related to non-maximum suppres-
sion, resulting in a 1.2% increase in mAP alongside improvements in detection layer
performance.

3. The CNIL-Net model achieved an average accuracy of 96.5% across all categories in
scrap-quality inspection. Compared to the YOLOv5 benchmark, it demonstrated a
7.7% improvement in mAP and achieved an impressive single-image inference speed
of 5.76 ms, fully meeting the requirements for industrial scrap-quality inspection.

Compared to traditional manual inspection methods, the CNIL-Net scrap-quality
inspection model offers significant advantages in accuracy, safety, and fairness. Its high pre-
cision and lightweight design facilitate swift deployment in industrial settings, paving the
way for intelligent, unmanned scrap acceptance systems. Moving forward, the team plans
to generate additional high-quality, multi-category scrap datasets and iteratively enhance
the intelligent quality inspection system to facilitate widespread industrial adoption.
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