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Abstract: In recent times, industrial robots have gained immense significance and popularity in
various industries. They not only enhance labor safety and reduce costs but also greatly improve
productivity and efficiency in the production process. However, selecting the most suitable robot
for a specific production process is a complex task. There are numerous criteria to consider, often
conflicting with each other, making decision-making challenging. In order to tackle this problem,
the multi-criteria decision-making (MCDM) method is employed, which aids in ranking decisions
based on criteria weights. However, traditional MCDM methods are now considered outdated, and
researchers are concentrating on hybrid models that include multiple MCDM techniques to tackle
decision-making problems effectively. This study presents an effective MCDM model that integrates
Fuzzy-AHP-TOPSIS to evaluate and choose the best robot. The Fuzzy-AHP is utilized to establish a
set of weights for the evaluation criteria. Subsequently, the proposed technique analyzes, prioritizes,
and chooses the best robot option from the ranking list for the factory. The experimental results
demonstrate that by employing the integrated fuzzy analytical hierarchy process, taking into account
parameter weights and expert judgment, the robots are identified in order of best to worst alternatives
to factories. The outcomes of this research possess significant implications for robot selection and can
be applied in various fields to cater to production requirements.

Keywords: industrial robots; MCDM; fuzzy-AHP; fuzzy-TOPSIS

1. Introduction

The advancement of technology in the 4.0 industrial revolution has unlocked remark-
able opportunities for heightened automation in production [1,2]. It is crucial to address
the imperative of researching and implementing industrial robots to substitute human
labor in production processes [3–5]. The utilization of robots in diverse industries such
as automobile manufacturing, electronics, food and beverages, healthcare, and services
has demonstrated notable impacts [6–8]. Especially in the manufacturing industry, the
introduction of various robot types has resulted in a wide range of attributes, including
functions, technical specifications, load capacity, speed, and price [9,10]. This diversity
has presented challenges in choosing the best robot for a factory. The decision-making
process for choosing the ideal robot aims not only to achieve cost effectiveness and efficient
production but also to optimize other aspects of the production process, such as labor safety,
productivity, product quality, space and resource optimization, flexibility, and reduced pro-
duction time [11,12]. Making errors in decision-making regarding the selection of industrial
robots can impact a factory’s ability to compete in the market for both productivity and
product quality [13]. Consequently, choosing the appropriate robot for a certain industry
application and production environment has become a complex challenge, particularly
given the multitude of robot types available in the market. Decision makers must take into
account subjective and objective factors, as well as the benefits and costs associated with
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each option [14,15]. In practice, the criteria for selecting industrial robots often conflict
with each other, have different units of measurement, and require trade-offs, making it
challenging to compare and make decisions [16–18]. To address this issue, researchers have
put forth various methods and models for robot selection [19,20]. These models encompass
computer-aided approaches, statistical methods, and optimization models for enhancing
production system performance [21–23]. In 1991, the authors proposed a regression model
to identify robots that outperformed others in terms of manufacturer specifications at a
given cost [24]. Diagram and matrix methods have been utilized since 2006 to effectively
compare and identify robots, as well as to store and retrieve robot data for various ap-
plications [25]. While these methods address the issue of robot selection, they may lack
flexibility when dealing with complex variables, and the models can become intricate
and confusing, particularly in large-scale factories. Conversely, determining the optimal
robot involves a decision-making process that takes into account a number of competing
subjective and objective factors, resembling an MCDM problem. MCDM techniques have
proven to be valuable in handling such complicated problems, and researchers have em-
ployed various MCDM methods to tackle robot selection challenges [26–29]. The authors
of one study employed the MCDM technique combined with the weighting technique for
decision-making in the powder-mixed electrical discharge machining process [30]. The
evaluation based on distance from average solution (EDAS) technique was effectively
used to handle the robot selection problem [31]. Another MCDM technique, known as
Analytic Hierarchy Process (AHP) secondary analysis, incorporates both subjective and
objective criteria to make robot selections [32]. However, the traditional MCDM methods
may not align with reality as decision-making for each option depends on the evaluator’s
subjective opinion and related assessments, which are often vague and imprecise [33,34].
In many cases, accurately determining ratings and weights for performance is challenging.
To address this issue, fuzzy set theory was created to represent uncertainties in predictions,
human perception, and other factors. This led to the creation of Fuzzy MCDM (FMCDM)
techniques [35]. Researchers have utilized FMCDM methods to tackle this problem [36–38].
The first people to introduce decision-making procedures in fuzzy contexts were Bellman
and Zadeh (1970) [39]. Generally, a fuzzy function defines a fuzzy number, where each
value in the set is assigned a membership degree ranging from 0 to 1 [40]. Octagonal fuzzy
numbers are often considered the optimal solution for addressing load transmission prob-
lems in fuzzy environments [41]. The triangular fuzzy number (TFN), which represents the
decision maker’s status in complex problems, can be an effective means of conveying infor-
mation [42]. In MCDM models, fuzzy numbers are employed to manage the evaluator’s
subjectivity and uncertainty. The novel hexagonal fuzzy approximation’s characteristics are
examined, and a group MCDM issue using index matrices is used to show the practicality
of the proposed method [43]. Multi-criteria selections are made using fuzzy numbers in
MCDM approaches as Fuzzy-TOPSIS (Fuzzy Technique for Order Preference by Similarity
to Ideal Solution), Fuzzy-AHP, Fuzzy-MOORA, etc. [44–47]. In order to prioritize the order
for multi-criteria assessment of industrial robot systems, Cengiz Kahraman developed a
fuzzy hierarchy approach based on the TOPSIS model [48]. In [49], the authors utilized the
Fuzzy-AHP technique to achieve optimal robot selection. The utilization of fuzzy numbers
in MCDM multi-criteria techniques offers a more objective, multi-perspective, and realistic
assessment when considering criteria for selecting the optimal solution.

Several new MCDM models have been developed by researchers, which improve
making choices, accuracy and strategy [50–53]. MCDM approaches are becoming more and
more popular because of their capacity to evaluate and contrast many options. Meanwhile,
traditional MCDM methods are progressively going out of style. For complicated decision-
making scenarios, a single MCDM tool is often insufficient [54,55]. In order to achieve more
effective decision-making, it is necessary to integrate two or more MCDM models together,
in addition to combining MCDM with other methods [56,57]. The primary objective
of merging these techniques is to leverage the advantages of each tool and overcome
the drawbacks of individual models. To predict the ideal replacement robot, Goswani
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et al. [58] used a unique hybrid MCDM model that incorporates COPRAS and ARAS. For
robot choosing, the authors integrated FAQT-2 and concluded that the suggested hybrid
MCDM approach is more dependable and consistent compared to the traditional MCDM
method [59]. Table 1 highlights a selection of notable research studies in the current body
of literature pertaining to the evaluation of robots.

Table 1. Reference list for MCDM studies for robotics evaluation.

MCDM Method Criteria for Evaluating Robots Results Reference

Entropy, TOPSIS
Mechanical Weight, Repeatability,
Payload, Maximum Reach,
Average Power Consumption.

The study determined that Robot-7 is the optimal
selection for arc welding tasks. This robot has a
mechanical weight of 501 kg, a repeatability of
0.15 mm, a load capacity of 6 kg, a maximum reach
of 4368 mm, and a power consumption of 2.5 kW.

[60]

BW, EDAS
Load Capacity, Repeatability,
Velocity Ratio, Degree of
Freedom.

The proposed method offers several advantages,
including increased consistency and reduced
computational requirements.

[61]

EDAS

Purchase Cost, Load Capacity,
Repeatability, Man–Machine
Interface, Man–Machine Interface,
Vendor’s Service Contract.

Compared with other MCDM methods (such as
AHP, TOPSIS, VIKOR, ELECTRE, PROMETHEE,
MOORA, WASPAS, GRA, ROV, and OCRA), the
EDAS method is simpler and easier to apply in
selecting industrial robots.

[62]

TOPSIS-ARAS,
COPRAS-ARAS

Load Capacity, Repeatability
Error, Handling Coefficient,
Velocity, Cost.

Based on the evaluation, Robot-12 achieved the
highest rating and was identified as the optimal
choice. This study validates the effectiveness of the
hybrid models TOPSIS-ARAS and COPRAS-ARAS
in enhancing the accuracy of rankings and
delivering consistent and dependable results in the
selection of industrial robots.

[63]

SAW, TOPSIS,
LINMAP, VIKOR,
ELECTRE-III and
NFM

Load Capacity, Repeatability
Error, Cost, Vendor’s Service
Quality, Programming Flexibility.

In case study 1, Robot 2 and Robot 3 emerged as the
top choices for pick-and-place tasks.
Case study 2 revealed that Robot 1 and Robot 3
received the highest ratings among the
considered robots.
In case study 3, Robot 2 was consistently identified
as the optimal selection among the four robots
considered by most MCDM methods.

[64]

CRITIC, MABAC
Load Capacity, Memory Capacity,
Manipulator Reach, Maximum
Tip Speed, Repeatability.

Robot R3 attained the highest ranking, signifying its
suitability for pick-and-place operations in flexible
manufacturing systems. Among the evaluated
robots, Robot R1 received the lowest ranking. The
study also conducted a comparison of the ranking
results with other MCDM methods to validate the
accuracy and reliability of the proposed method.

[65]

QFD, MPR

Payload Capacity, Workspace,
Accuracy, Repeatability, Life
Expectancy, Programmable
Flexibility, Safety and Security,
Purchase Cost, Maintenance Cost,
Operation Cost.

The key criterion in the selection of an industrial
robot is load capacity, and the most critical technical
requirement is the drive system.

[66]

COCOSO, TOPSIS,
VIKOR, MOORA

Load Capacity, Repeatability,
Maximum Tip Speed, Memory
Capacity, Manipulator Reach.

According to the COCOSO method, R3 emerges as
the best robot based on the MW, SD, and CRITIC
weight distribution methods. However, R1 is
considered the best robot according to the EM
method, and R3 is favored according to the
AHP method.

[67]
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Table 1. Cont.

MCDM Method Criteria for Evaluating Robots Results Reference

SWARA, CoCoSo
Payload, Mechanical weight,
Repeatability, Reach, Cost, Power
Consumption.

The Fanuc P-350iA/45 robot has been selected as the
most suitable robot for painting applications.
These results have also been compared and
cross-referenced with other popular MCDM
methods such as TOPSIS, VIKOR, COPRAS,
PROMETHEE, and MOORA, demonstrating a high
degree of similarity in the ranking patterns among
these methods, affirming the effectiveness of the
SWARA-CoCoSo method.

[68]

Rough-MABAC

Payload, Horizontal Reach,
Vertical Reach, Repeatability,
Weight, Power Rating, Cost,
Flexibility, Safety, Welding
Performance, Maintainability,
Ease of Programming.

The research findings indicate that Robot A6 is the
most suitable choice, ranking at the top of the list,
followed by Robots A3, A13, A10, A5, A9, A4, A11,
A1, A14, A7, A12, A8, and finally Robot A2. The
robots are categorized into two main groups,
efficient and inefficient, based on their positions in
the approximate boundary regions.

[69]

PIPRECIA-TOPSIS Payload, Weight of Robot,
Repeatability, Reach.

The PIPRECIA technique identifies payload as the
most crucial criterion based on a predefined priority
order, and the TOPSIS method recommends the
FANUC 100iD/10L model as the best arc
welding robot.

[70]

BWM, G-BWM
Velocity, Repeatability, Load
Capacity, Cost, Quality, Memory
Capacity, Manipulator Reach.

The results indicate that Robot 2 is the best robot.
The G-BWM (group best–worst method)
demonstrates greater effectiveness compared to the
G-AHP (Group Analytic Hierarchy Process) method
due to its lower overall violation and deviation, as
well as requiring fewer comparisons, resulting in
reduced computational requirements.

[71]

MCGDM-IP Cost, Handling Coefficient, Load
Capacity, Repeatability, Velocity.

Robot R11 achieved the highest ranking among the
evaluated robots, while Robot R4 received the lowest
ranking. The MCGDM-IP method improved the
satisfaction level of the group by 2.12% compared to
the simple additive weighting (SAW) method.

[72]

CODAS, COPRAS,
COCOSO, MABAC,
VIKOR

Payload, Speed, Reach,
Mechanical Weight, Repeatability,
Cost, Power Consumption.

The results indicate that the HY1010A-143 robot is
evaluated as the most suitable for painting
applications according to four out of the five
methods used. The KF121 robot is evaluated as the
least suitable for painting applications by all of the
MCDM methods.

[73]

AHP

General Criteria,
Structure/Architecture Criteria,
Reliability Criteria, Application
Criteria, Performance Criteria,
Safety Criteria.

The AHP method is applied to evaluate the cobots
based on the predefined criteria. The cobot with the
highest overall priority weight (A1) is considered
the most suitable based on the given criteria and
AHP evaluation.

[74]

WSM, WPM,
WASPAS, MOORA,
MULTIMOORA

Load Capacity, Maximum Tip
Speed, Repeatability, Memory
Capacity, Manipulator Reach.

The results indicate that among the applied MCDM
methods, the MULTIMOORA (MOORA with
Complete Multiplicative Form) method is the most
robust and less affected by changes in the criteria
weights. The robot ranking results show that the
Cybotech V15 Electric Robot (R3) is often the best
choice in most of the methods.

[75]

COPRAS

Repeatability Error, Load
Capacity, Maximum Tip Speed,
Memory Capacity,
Manipulator Reach.

The Cincinnati Milacrone T3-726 Robot (A2)
achieved the highest ranking with a Qi value of
0.1946 and a Ui value of 100.00, securing first
position. The COPRAS method has been
demonstrated to be effective in the evaluation and
selection of industrial robots, aligning well with the
results from previous studies.

[76]
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Table 1. Cont.

MCDM Method Criteria for Evaluating Robots Results Reference

AHP
Load Capacity, Reach, Weight,
Repeatability, Power
Consumption, Dexterity, Service

Based on the AHP method, the robot structure R2 is
selected as the most optimal choice. [77]

GRA
Load Capacity, Repeatability
Error, Velocity Ratio, Degrees
of Freedom.

Robot R3 achieved the highest score with a grey
relational grade of 0.9434 and was ranked first. [78]

AHP

Technical Criteria: Movement,
Shaft Speed, Reach, Repeatability,
Allowable Moment, Load: Robot
Mass, Robot Reach, Vertical
Reach, Horizontal reach
Other Criteria: Capacity, Cost,
Flexibility, Mounting Type,
Welding Type.

Among the analyzed 15 industrial robots, the robot
with code A4 achieved the highest weight of
approximately 16%, followed by A5 with
approximately 15%, and A2 and A9 both
scoring ≈ 10%.
Robot A4 excelled in criteria such as repeatability
(C1.2), robot weight (C2.2), and power (C3.1),
obtaining the highest score in these aspects.

[79]

We introduced the hybrid approach of Fuzzy TOPSIS and Fuzzy AHP, which has not
been previously explored in research on robot selection. Our results demonstrated the
effectiveness of this evaluation method and the article not only brings practical value to
robot selection in manufacturing but also contributes to the knowledge base of MCDM
methods, particularly the combination of fuzzy AHP and fuzzy TOPSIS in modern produc-
tion environments. In this study, the criterion weights are determined using the Fuzzy-AHP,
while the robot alternatives are evaluated and ranked using the Fuzzy-TOPSIS. Specifically,
we employ the Fuzzy-AHP-TOPSIS combination model to rank eight different robots based
on their attributes, as evaluated by experts. The alternatives are organized in order of
increasing closeness to both positive and negative ideal solutions. To address the uncer-
tainty and subjectivity of the evaluators, we incorporate fuzzy numbers into the model.
By integrating the Fuzzy-AHP-TOPSIS model, we successfully selected the optimal robot
for our factory with a high degree of reliability. Moving forward, we plan to enhance this
hybrid MCDM model by incorporating additional techniques and methods to ensure the
best possible decision-making outcomes.

2. Materials and Methods
2.1. Fuzzy Numbers

Fuzzy set theory is employed to address uncertainty stemming from imprecision or
ambiguous information. According to this theory, an ordered pair collection (X being a
subset of the real numbers R) is referred to as a fuzzy set (F = {(ψ, µF(ψ))|ψ ∈ X}). A
membership function called µF(ψ) and µF(ψ) gives each element a number between 0 and
1. The pairwise comparison matrices of the AHP integrate fuzzy set theory. The triangular
fuzzy number (TFN) is commonly utilized to represent the judgments of experts and is
denoted by F( f , f , f ). The parameters F( f , f , f ) represent the minimum, intermediate
(i.e., most favorable), and maximum values used to quantify uncertain judgments. The
following determines the TFN’s membership function:

µF(ψ) =


0, ψ < f

(ψ − f )( f − f )
−1

, f ≤ ψ < f

( f − ψ)( f − f )
−1

, f ≤ ψ ≤ f
0, ψ > f

(1)

A collection of criteria, represented as C = {c1, c2, c3, . . . , ci}, and a set of alternatives,
represented as A =

{
A1, A2, A3, . . . , Aj

}
, are taken into consideration while making a multi-

criteria choice. Every alternative is analyzed using a specified set of criteria. The selection
of each criterion is followed by the analysis of its utilization level for each alternative
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Aj. Thus, the value range analysis for each criterion can be expressed as F1
Ai, F2

Ai, . . . , Fm
Ai

(i = 1, 2, 3, . . . , n), where Fj
Ai(j = 1, 2, 3, . . . , m) represents the TFNs.

Utilizing fuzzy numbers facilitates improved the management of ambiguity and
uncertainty within expert evaluations. By employing fuzzy numbers, experts can articulate
their judgments using qualitative terms like “low”, “medium”, and “high”, which can
then be translated into fuzzy numbers. This approach offers greater flexibility compared to
traditional methods that demand precise score values, particularly beneficial when experts
are uncertain about their assessments. Additionally, fuzzy numbers enable a more nuanced
aggregation of diverse judgments, capturing the breadth of expert opinions and evaluations,
a capability that conventional methods may lack. For instance, in a traditional scenario,
an expert might assign a score of 3 out of 10 for the importance of the criterion “Cost”.
In contrast, employing fuzzy numbers, the expert could rate this criterion as “Medium
High”, resulting in a conversion to a triangular fuzzy number (2, 3, or 4). This method
enhances the accuracy of representing the uncertainties and ambiguities inherent in the
expert’s evaluation.

2.2. Fuzzy AHP

The AHP is a MCDM technique used in order to establish priorities among various
criteria. It involves making pairwise comparisons between the criteria and alternatives,
which are utilized to calculate the weights used to rank the alternatives (Figure 1).
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However, in real-life decision-making scenarios, making clear and accurate compar-
isons can be challenging due to the presence of imprecision and subjectivity. Moreover,
traditional AHP may not fully capture human reasoning and accurately represent expert
opinions when comparing alternatives. The Fuzzy-AHP is an extension of the traditional
AHP method that incorporates fuzzy number theory into its framework. This approach
addresses the limitations of the conventional AHP by allowing decision makers to commu-
nicate their assessments utilizing linguistic variables or fuzzy numbers. By considering
uncertainty in decision criteria and alternatives, the Fuzzy-AHP method facilitates a more
flexible and diverse decision-making process. It is a widely employed method in the field
of MCDM [80–83]. The Fuzzy-AHP approach makes use of a fuzzy pairwise compari-
son matrix. The priority weights are obtained by solving a fuzzy linear equation system.
These resulting weights are then used to rank the alternatives based on their overall scores.
In the Fuzzy-AHP method, the weight vector is determined by following these steps.
F = ( f̃ )n×m = ( f

ij
, fij, f ij)n×m

is a fuzzy pairwise comparison matrix:

Step 1: Calculate the fuzzy aggregation range. For each object, the fuzzy synthetic
extent value is computed as follows:
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Ui =
m

∑
j=1

Fj
Ai ⊗

(
n

∑
i=1

m

∑
j=1

Fj
Ai

)−1

=

(
m

∑
j=1

f
j
,

m

∑
j=1

f j,
m

∑
j=1

f j

)
⊗
(

n

∑
i=1

(
m

∑
j=1

f
j
,

m

∑
j=1

f j,
m

∑
j=1

f j

))−1

(2)

We calculate the fuzzy set value as follows:

n

∑
i=1

(
m

∑
j=1

f
j
,

m

∑
j=1

f j,
m

∑
j=1

f j

)
=

(
n

∑
i=1

f
i
,

n

∑
i=1

fi,
n

∑
i=1

f i

)
(3)

Thus, Equation (2) becomes

Ui =
m

∑
j=1

Fj
Ai ⊗

(
n

∑
i=1

m

∑
j=1

Fj
Ai

)−1

=

(
m

∑
j=1

f
j
,

m

∑
j=1

f j,
m

∑
j=1

f j

)
⊗

 1
n
∑

i=1
f

i

,
1

n
∑

i=1
fi

,
1

n
∑

i=1
f i

 (4)

Step 2: The degree of possibility of F2 = ( f
2
, a2, f 2) ≥ F1 = ( f

1
, a1, f 1) is defined

as follows:

V(F2 > F1) = height(A1 ∩ A2) =


1 f2 ≥ f1

0 f
1
≤ f 2

f
1
− f 2

( f2− f 2)−( f1− f
1
)

otherwise

(5)

To compare two fuzzy numbers F1 and F2, regarding the values of V(F1 ≥ F2) or
V(F2 ≥ F1), we consider the highest intersection point G between their corresponding
membership functions µF1 and µF2 , with corresponding value g (Figure 2). The values of
V(F1 ≥ F2) and V(F2 ≥ F1) can be calculated to compare between two fuzzy numbers of
F1 and F2.
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Step 3: We calculate the minimum level at which fuzzy number F is greater than fuzzy
number Fi(i = 1, 2, 3, . . . , k) as follows:

V(F ≥ F1, F2, . . . , Fk) = minV(F ≥ F1) (6)

The weight vector is given by

W = (minV(F ≥ F1), minV(F ≥ F2), . . . , minV(F ≥ Fn))
T (7)

Step 4: We calculate the normalized weight vectors as follows:

W = (W1, W2, . . . , W3)
T (8)

where W is a non-fuzzy number.

2.3. Fuzzy TOPSIS

The classic TOPSIS method operates under the assumption that if each local criterion
increases or decreases monotonically, determining the ideal solution becomes straightfor-
ward. The ideal solution includes the highest achievable values for each local criterion,
whereas the negative ideal solution includes the lowest obtainable values. To account for
uncertainty and imprecision, the traditional TOPSIS approach was expanded to include
a fuzzy variant [84–88]. The idea behind the Fuzzy-TOPSIS approach is that the chosen
option ought to be closest to the positive ideal solution (PIS), which reduces the cost crite-
ria and maximizes the benefit criterion, while being the furthest from the negative ideal
solution (NIS). The implementation procedure for Fuzzy-TOPSIS is as follows (Figure 3):

Step 1: Determine the evaluation of criteria and alternative options. Suppose we have
a decision group consisting of K individuals. The fuzzy evaluation of the Cj criterion for
the Ai alternative by the kth decision maker is represented by x̃k

ij = (a1
k
ij, a2

k
ij, a3

k
ij). The

weight of the Cj criterion is represented as w̃k
j = (wk

j1, wk
j2, wk

j3).
Step 2: Determine the combined fuzzy weight for the criterion as well as the overall

fuzzy ranking for the possibilities. The following approach may be used to obtain the
aggregate fuzzy evaluation (abbreviated as x̃k

ij = (a1
k
ij, a2

k
ij, a3

k
ij)) of the ith criteria that

replaces the jth criterion: 
a1ij = min

k

{
ak

1ij

}
a2ij =

1
K

K
∑

k=1
ak

2ij

a3ij = max
k

{
ak

3ij

} (9)

The aggregated fuzzy weight, w̃j = (wj1, wj2, wj3), for the Cj criterion is given by
wj1 = min

k

{
wk

j1

}
wj2 = 1

K

K
∑

k=1
wk

j2

wj3 = max
k

{
wk

j3

} (10)

Step 3: Compute the normalized fuzzy decision matrix R̃ =
[
r̃ij
]
, in which

ψ̃ij =

(
aij

ĉij
,

bij

ĉij
,

cij

ĉij

)
and ĉij = max

i

{
cij
}
(forthebenefitcriteria) (11)

ψ̃ij = (
âij

cij
,

âij

bij
,

âij

aij
) and âij = min

i

{
aij
}
(forthecostcriteria) (12)
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Step 4: Compute the matrix Ṽ using the equation below:

Ṽ = ṽij = ψ̃ij × wj (13)

Step 5: Determine the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal
solution (FNIS) as described below:

T̂max = (v̂max1, v̂max2, v̂max3, . . . , v̂maxn), v̂maxj = max
i

{
ṽij
}

(14)
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T̂min = (v̂min1, v̂min2, v̂min3, . . . , v̂minn), v̂minj = min
i

{
ṽij
}

(15)

Step 6: Compute the distance from each alternative to the FPIS and to the FNIS.
d+i =

n
∑

j=1
d(ṽij, v̂maxj)

d−i =
n
∑

j=1
d(ṽij, v̂minj)

(16)

Step 7: Calculate the closeness coefficient FTi using the following formula:

FTi =
d−i

d−i + d+i
(i = 1, 2, 3, . . . , n) (17)

Step 8: Rank the alternatives based on FTi. The best choice is shown by the alternative
with the highest FTi.

3. Results and Discussion

In order to enhance the reliability of the MCDM model, we have incorporated two tech-
niques, namely Fuzzy-AHP and Fuzzy-TOPSIS, to select the optimal robot for our factory
based on specific criteria. Firstly, we utilize the Fuzzy-AHP to establish a set of weights
for the evaluation criteria. Subsequently, we employ the Fuzzy-TOPSIS to assess and rank
the available robot options. By employing the Fuzzy-AHP method to establish the weights
for the evaluation criteria, we have achieved greater objectivity and accuracy compared to
the conventional weight set determined by experts in Fuzzy-TOPSIS. The research process
diagram is illustrated in Figure 4.
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The Fuzzy-AHP-TOPSIS hybrid model is employed to assess and rank objects by
evaluating criteria through a pairwise comparison matrix and ranking objects based on
their proximity to positive and negative ideal solutions. Fuzzy numbers are utilized in the
model to mitigate uncertainty and subjectivity associated with the evaluator. The model
employs Fuzzy-AHP-TOPSIS to evaluate criteria, aiding in the selection of the optimal
robot. The process involves the following steps:

Step 1: Determine evaluation criteria.
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In order to make a decision in selecting the optimal robot, it is necessary to establish
criteria that align with the factory’s requirements. These criteria represent the specific
attributes that robot manufacturers have incorporated into their products. After careful
consideration of the factory’s operations, we identified and defined the criteria, which are
outlined in Table 2.

Table 2. List of criteria used in robot selection.

No. Criteria Units Symbol

1 Mechanical Weight Kg MW
2 Velocity m/s VL
3 Payload Kg PL
4 Maximum Reach Mm MR
5 Average Power Consumption Kw APC
6 Cost $ CO

The selection of criteria for evaluating and choosing the optimal robot in a manufactur-
ing environment is crucial for the effectiveness and accuracy of the decision-making process.
The six criteria chosen in this study are Mechanical Weight, Velocity, Payload, Maximum
Reach, Average Power Consumption, and Cost. These criteria were selected based on their
comprehensive relevance and critical importance in determining the suitability of a robot
for industrial applications. Descriptions of these criteria are as follows:

Mechanical weight pertains to the weight of the robot itself, impacting aspects such as
mobility, installation prerequisites, and the structural support essential in the production
setting. This weight factor influences the ease of integration into existing systems and the
overall adaptability for deployment across various sectors of the factory. Lighter robots may
offer easier installation and relocation, whereas their heavier counterparts might necessitate
sturdier infrastructure.

Velocity denotes the rate at which a robot can execute its assigned tasks, directly affect-
ing production efficiency and cycle durations. Enhanced speeds can enhance productivity,
diminishing the time needed for each operation and augmenting the factory’s output rate.
This aspect holds particular significance in high-speed manufacturing scenarios where time
optimization is paramount.

Payload signifies the maximum weight a robot can manage, a critical factor in ensur-
ing its capability to execute tasks without mechanical strain. This capacity significantly
influences the robot’s applicability for specific tasks, especially in handling hefty materials
or products during manufacturing processes. A higher load capacity empowers the robot
to handle larger or heavier components, thereby amplifying its versatility.

Maximum reach denotes the farthest distance a robot can extend to execute its tasks,
influencing its access to different parts of the work area. This metric determines the
robot’s operational range and its ability to function effectively in larger or more intricate
setups. A greater reach enables the robot to cover more ground without requiring frequent
repositioning, thereby enhancing its efficiency and adaptability across various applications.

Average power consumption quantifies the energy utilized by the robot during its
operation, impacting operational expenses. Lower power consumption leads to reduced
operational costs and contributes to a more sustainable production process. This criterion holds
significance for factories striving to minimize energy usage and lower overall expenditures.

Cost encompasses the initial purchase price, installation expenses, and ongoing main-
tenance costs, all pivotal factors in any investment evaluation. It ensures that the investment
aligns with the financial constraints of the factory and aids in comparing the economic
viability of different robot options. Effectively managing costs is crucial for sustaining
profitability and attaining a favorable return on investment.

Once the essential criteria were established, we conducted a thorough search to identify
robots that possess the desired attributes. The robots, along with their corresponding
attribute parameters, are listed in Table 3.
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Table 3. Numerical data for robot selection [60].

Alternative MW VL PL MR APC CO

Robot 1 145 1.33 12 1441 1.0 722
Robot 2 27 1.11 8 911 0.5 485
Robot 3 170 1.26 4 1500 0.6 965
Robot 4 272 0.65 20 1650 3.4 671
Robot 5 250 0.04 25 2409 2 690
Robot 6 230 0.25 10 1925 5.6 325
Robot 7 501 1.01 6 4368 2.5 400
Robot 8 215 1.21 8 1801 5.05 690

Step 2: Survey experts’ opinions.
Initially, the study constructs a fuzzy evaluation table for the weight vector. The values

corresponding to the semantic level, ranging from low to high, are presented in Table 4.

Table 4. Fuzzy evaluation scores for the weight vector.

Linguistic Terms Scale of Fuzzy Number Units

Absolutely strong (AS) (2, 2.5, 3) 9̃
Very strong (VS) (1.5, 2, 2.5) 8̃
Fairly strong (FS) (1, 1.5, 2) 7̃

Slightly strong (SS) (1, 1, 1.5) 6̃
Equal (E) (1, 1, 1) 5̃

Slightly weak (SW) (2/3, 1, 1) 4̃
Fairly weak (FW) (0.5, 2/3, 1) 3̃
Very weak (VW) (0.4, 0.5, 2/3) 2̃

Absolutely weak (AW) (1/3, 0.4, 0.5) 1̃

To ensure practical applicability, we sought expert opinions by consulting individuals
who are recognized as experts in the field of industrial robots. These experts possess
extensive knowledge and experience in the domain, as listed in Table 5.

Table 5. List of the experts.

Experts Age Education Experience in the Field
(Years)

Decision maker 1
(DM 1) 58 Associate Professor of Mechanical Engineering >15

Decision maker 2
(DM 2) 62 Associate Professor of Robotics Engineering >20

Decision maker 3
(DM 3) 58 Associate Professor of Manufacturing Processes >25

Decision maker 4
(DM 4) 65 Professor of Management Science and

Engineering Management >20

Decision maker 5
(DM 5) 66 Professor of Mechatronics Engineering >30

The aforementioned experts assessed the criteria using a fuzzy evaluation table for the
weight vector, as outlined in Table 6.
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Table 6. Evaluation of criteria by experts.

Criteria DM 1 DM 2 DM 3 DM 4 DM 5

MW FS FS FS VS FS
VL AS VS VS AS VS
PL AS AS AS AS AS
MR VS VS VS VS AS
APC VW VW VW FW VW
CO FW FW FW FW FW

Step 3: Construct a pairwise comparison matrix for the criteria.
For each pair of criteria A and B, we establish their relationship using the value scale

determined by fuzzy numbers. Experts then assess the levels of superiority and inferiority
between the criteria. The semantic relationship between the evaluation criteria is depicted
in Table 7.

Table 7. Relationship between two criteria according to linguistic terms.

Criteria High Priority Equal Low Priority Criteria

A 9̃ 8̃ 7̃ 6̃ 5̃ 4̃ 3̃ 2̃ 1̃ B

Based on the established Fuzzy-AHP method, we have a pairwise comparison matrix
between the criteria, as shown in Table 8.

Table 8. Pairwise comparison matrix between criteria.

Criteria MW VL PL MR APC CO

MW (1, 1, 1) (1, 15/14, 30/19) (1, 15/13, 5/3) (15/14, 30/19, 25/12) (1, 8/5, 21/10) (1, 11/10, 8/5)
VL (19/30, 14/15, 1) (1, 1, 1) (1, 11/10, 8/5) (1, 6/5, 17/10) (8/5, 21/10, 13/5) (1, 8/5, 21/10)
PL (3/5, 13/15, 1) (5/8, 10/11, 1) (1, 1, 1) (1, 15/14, 30/19) (13/10, 9/5, 13/10) (13/10, 9/5, 23/10)
MR (12/25, 19/30, 14/15) (10/17, 5/6, 1) (19/30, 14/15, 1) (1, 1, 1) (1, 7/5, 19/10) (1, 13/10, 9/5)
APC (10/21, 5/8, 1) (5/13, 10/21, 5/8) (10/13, 5/9, 10/13) (10/19, 5/7, 1) (1, 1, 1) (1, 7/5, 19/10)
CO (5/8, 10/11, 1) (10/21, 5/8, 1) (10/23, 5/9, 10/13) (5/9, 10/13, 1) (10/19, 5/7, 1) (1, 1, 1)

Step 4: Determine the fuzzy weight of each criterion.
Based on the evaluation of the criteria, we have a table of fuzzy weight values of each

criterion, as seen in Table 9 below.

Table 9. Fuzzy weight value of each criterion.

Fuzzy Weight
~
wj Value

w̃1 (0.132, 0.2, 0.33)
w̃2 (0.131, 0.206, 0.3190)
w̃3 (0.121, 0.192, 0.263)
w̃4 (0.098, 0.16, 0.247)
w̃5 (0.085, 0.121, 0.2)
w̃6 (0.076, 0.121, 0.195)

Step 5: Expert evaluation of alternative options based on criteria.
Initially, we have a fuzzy evaluation score table for the alternatives, which captures

the expert assessments for each criterion listed in Table 10.
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Table 10. Fuzzy evaluation scores for alternatives.

Linguistic Terms Fuzzy Core

Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)

Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)

Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)

Very good (VG) (9, 10, 10)

We consulted experts to gather their perspectives on alternative options for each
criterion. Appendix A contains Tables A1–A6, which present the various issues discussed.

Step 6: Construct a decision matrix.
We establish a fuzzy decision matrix for the criteria, which summarizes the evaluations

and scores for each criterion. The decision matrix for all criteria is depicted in Table 11.

Table 11. Decision matrix.

Alternative MW VL PL MR APC CO

Robot 1 (0, 0.6, 2.2) (8.6, 9.8, 10) (5.4, 7.4, 9.2) (0, 0.8, 2.6) (5.8, 7.8, 9.4) (0, 0.6, 2.2)
Robot 2 (0, 0, 1) (2.2, 4.2, 6.2) (0, 0.8, 2.6) (0, 0, 1) (9, 10, 10) (5.8, 7.8, 9.4)
Robot 3 (0, 1, 3) (7.4, 9.2, 10) (0, 0.6, 2.2) (0, 1, 3) (7.4, 9.2, 10) (0, 0.2, 1.4)
Robot 4 (6.6, 8.6, 9.8) (0, 0.4, 1.8) (7.8, 9.4, 10) (1.4, 3.4, 5.4) (0, 1, 3) (2.2, 4.2, 6.2)
Robot 5 (5.4, 7.4, 9.2) (0, 0.8, 2.6) (8.6, 9.8, 10) (7.8, 9.4, 10) (2.6, 4.6, 6.6) (0.8, 2.6, 4.6)
Robot 6 (2.2, 4.2, 6.2) (0, 0, 1) (2.6, 4.6, 6.6) (5, 7, 9) (0, 0.2, 1.4) (9, 10, 10)
Robot 7 (8.6, 9.8, 10) (0.6, 2.2, 4.2) (0.2, 1.4, 3.4) (9, 10, 10) (1.4, 3.4, 5.4) (7.8, 9.4, 10)
Robot 8 (0.6, 2.2, 4.2) (5.4, 7.4, 9.2) (1, 3, 5) (3.4, 5.4, 7.4) (0, 0.4, 1.8) (3.8, 5.8, 7.8)

Step 7: Compute the distance from each alternative to the FPIS and FNIS.
The values of the FPIS and FNIS are determined using Equation (16). The distances

from the options to the FPIS and FNIS are presented in Table 12.

Table 12. Distance from alternatives to FPIS and FNIS.

Alternative Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 Robot 8

d+i 0.2656 0.4608 0.3525 0.2307 0.1653 0.3168 0.2131 0.2673
d−i 0.2803 0.0819 0.1953 0.3183 0.3835 0.2319 0.3301 0.2843

Step 8: Utilize the Fuzzy-TOPSIS method to evaluate the robots.
For each option Ai, we calculate a closeness coefficient FTi, which is presented in

Table 13, indicating the relative closeness of each option to the ideal solution.

Table 13. Ranking of alternatives.

Alternative Robot 1 Robot 2 Robot 3 Robot 4 Robot 5 Robot 6 Robot 7 Robot 8

FTi 0.5134 0.1508 0.3565 0.5798 0.6987 0.4227 0.6077 0.5154
Rank 5 8 7 3 1 6 2 4

Within the proposed model, a higher coefficient value FTi signifies a greater preference
or optimality as per the decision maker’s inclinations. As per the closeness coefficients
FTi detailed in Table 13, Robot 5 emerges as the most optimal choice to meet the factory’s
needs, while Robot 2 is identified as the least favorable option. This ranking highlights
the model’s efficacy in accurately distinguishing among alternatives. The key innovation



Processes 2024, 12, 1723 15 of 20

of this method lies in its fusion of the strengths of both methodologies within a fuzzy
logic framework, effectively addressing the inherent uncertainty and subjectivity in expert
evaluations. Traditional methods often falter in handling the ambiguity and imprecision
intrinsic to expert judgments, as they necessitate precise numerical inputs. In contrast,
the fuzzy logic framework empowers experts to convey their preferences using linguistic
terms that are subsequently transformed into triangular fuzzy numbers. This approach
diminishes the reliance on exact figures and better encapsulates the uncertainty in expert
evaluations. By employing this dual approach, the chosen robot optimizes benefits while
minimizing costs and other adverse factors.

4. Conclusions

The solution to the problem of selecting optimal robots in production brought signifi-
cant benefits to the factory. It not only alleviates the challenges associated with choosing
the most suitable robot from a multitude of conflicting criteria but also delivers numerous
advantages to the factory as a whole. Appropriately designed and selected robots can
operate with enhanced efficiency, thereby increasing production output and labor produc-
tivity. In this study, the integrated Fuzzy-AHP-TOPSIS model is employed, leveraging
the AHP technique to establish criteria weights and employing the TOPSIS method to
evaluate and rank robot options. The proposed fuzzy solution enhances objectivity in
evaluating criteria by utilizing nine fuzzy numbers for pairwise comparisons. Triangular
fuzzy numbers are employed to expand the evaluation possibilities. The expert system
is coordinated to construct a criteria comparison matrix, which is then used to determine
the weights for the set of objective criteria. Based on the established fuzzy weight set,
the TOPSIS fuzzification strategy is employed to select the option that is closest to the
positive ideal solution (PIS), optimizing the benefit criterion while minimizing the cost
criteria, and farthest from the negative ideal solution (NIS). The incorporation of fuzzy
numbers mitigates uncertainty and subjectivity in the evaluation process, resulting in a
more accurate ranking of alternatives compared to traditional MCDM methods. Based on
this ranking, the optimal robot option can be selected for the factory, facilitating effective
decision-making in manufacturing environments. However, it is important to note that
this study has certain limitations. The number of robots included in the evaluation is
relatively small. Nevertheless, this serves as a foundation for testing the Fuzzy-AHP-
TOPSIS-integrated model and paves the way for its application to broader problems with a
more diverse range of options. In the near future, we plan to implement this model with
a larger dataset and enhance it by integrating additional MCDM methods to achieve the
highest level of accuracy. Nevertheless, it is essential to acknowledge that this study has
certain constraints. The evaluation includes a relatively small number of robots, potentially
limiting the ability to comprehensively encompass the diversity and intricacies of available
market options. Additionally, the model’s current applicability is restricted to a specific set
of criteria and may necessitate adjustments for various industrial contexts or additional
criteria. Despite these limitations, this study establishes the groundwork for testing the
Fuzzy-AHP-TOPSIS-integrated model and sets the stage for its application to broader
issues with a wider array of options, such as expanding the dataset, integrating additional
MCDM methods, and incorporating real-time data.
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Appendix A

For the mechanical weight criterion, we have an expert evaluation table for the alter-
native options, as illustrated in Table A1.

Table A1. Expert’s assessment of alternatives according to the MW.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

MW

Robot 1 P P P VP VP
Robot 2 VP VP VP VP VP
Robot 3 P P P P P
Robot 4 G G G G MG
Robot 5 MG MG MG G MG
Robot 6 F F F MP MP
Robot 7 VG VG VG G VG
Robot 8 MP MP P MP P

For the velocity criterion (VL), we have an expert evaluation table for the alternative
options, as illustrated in Table A2.

Table A2. Expert’s assessment of alternatives according to the VL.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

VL

Robot 1 VG VG G VG VG
Robot 2 F F MP F MP
Robot 3 G G VG G G
Robot 4 P VP VP VP P
Robot 5 P P P P VP
Robot 6 VP VP VP VP VP
Robot 7 MP MP MP P P
Robot 8 MG MG MG G MG

For the payload criterion, we have an expert evaluation table for the alternative
options, as illustrated in Table A3.

Table A3. Expert’s assessment of alternatives according to the PL.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

PL

Robot 1 MG G MG MG MG
Robot 2 P P P P VP
Robot 3 VP VP P P P
Robot 4 G VG G VG G
Robot 5 VG VG VG VG G
Robot 6 F F F F MP
Robot 7 P P P MP P
Robot 8 MP MP MP MP MP

For the maximum reach criterion, we have an expert evaluation table for the alternative
options, as illustrated in Table A4.
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Table A4. Expert’s assessment of alternatives according to the MR.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

MR

Robot 1 P P P P VP
Robot 2 VP VP VP VP VP
Robot 3 P P P P P
Robot 4 MP MP MP MP F
Robot 5 G G G MG MG
Robot 6 MG MG MG MG MG
Robot 7 VG VG VG VG VG
Robot 8 F F F MG F

For the average power consumption criterion, we have an expert evaluation table for
the alternative options, as illustrated in Table A5.

Table A5. Expert’s assessment of alternatives according to the APC.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

APC

Robot 1 MG G G MG MG
Robot 2 VG VG VG VG VG
Robot 3 G VG G G G
Robot 4 P P P P P
Robot 5 F F F F MP
Robot 6 VP VP VP VP P
Robot 7 MP MP MP MP F
Robot 8 VP VP VP P P

For the cost criterion, we have an expert evaluation table for the alternative options,
as illustrated in Table A6.

Table A6. Expert’s assessment of alternatives according to the CO.

Criteria Alternative DM 1 DM 2 DM 3 DM 4 DM 5

CO

Robot 1 P P P MP MP
Robot 2 MG G G MG MG
Robot 3 VP VP VP VP P
Robot 4 F F MP F MP
Robot 5 MP MP MP MP P
Robot 6 VG VG VG VG VG
Robot 7 G VG G G VG
Robot 8 F F MG MG F
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