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Abstract: The shale of different potential layers is studied by using rock pyrolysis analysis, total
organic carbon determination (TOC), kerogen microscopic component identification, mineral X-ray
diffraction, scanning electron microscopy, and low-temperature nitrogen adsorption experiments.
The results are as follows: (1) Shishui Formation of the Lower Carboniferous and Longtan Formation
of the Upper Permian are the two most important shale gas reservoirs in the Chenlei Depression. The
sedimentary environment of the target shale is a marine land interaction facies coastal bay lagoon
swamp sedimentary system. Two sedimentary facies of tidal flat facies, subtidal zone, and lagoon
swamp facies are developed. (2) The organic matter types of shale are Type III and II2, with TOC
content greater than 1%. The maturity of shale samples is relatively higher (Ro,max is above 2%),
which means they have entered the stage of large-scale gas generation. The overall brittle mineral
content of the target shale sample is relatively higher (above 40%), which is conducive to artificial
fracturing and fracture formation in the later stage, while an appropriate amount of clay minerals
(generally stable at 40%) is conducive to gas adsorption. (3) The overall pore structure of the water
measurement group and Longtan group is good, with a higher specific surface area and total pore
volume (average specific surface area is 12.21 and 8.36 m2/g, respectively), which is conducive to
the occurrence of shale gas and has good adsorption and storage potential. The gas content of the
water measurement group and the Longtan Formation varies from 0.42 to 5 cm3/g, with an average
of 2.1 cm3/g. It indicates that the water measurement group and the Longtan Formation shale gas in
the study area have good resource potential.

Keywords: shale gas; physical property; gas content; pore structure; resource potential

1. Introduction

With the development of oil and gas exploration in China, shale gas as an important
strategic alternative energy has received more and more attention [1]. The geological
conditions for shale gas accumulation are the theoretical basis for achieving breakthroughs
in shale gas exploration [2–6]. Related literature has systematically evaluated the geological
conditions for shale gas accumulation in different regions from the perspectives of sedi-
mentary environment, shale thickness, organic matter content, mineral composition, and
gas content [7–9]. Based on this, the main controlling factors affecting the enrichment of
shale gas reservoirs have also been determined [10,11].

Breakthroughs have been made in marine shale gas exploration in southern China
in the upper Yangtze region [12–14]. However, multiple rounds of exploration have been
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carried out in the middle and lower Yangzi regions over the years, but there have been no
large-scale gas fields [15–18]. As a key area of marine shale gas in the middle and lower
Yangzi regions of China, shale gas exploration in the Chenlei Sag, southeast of Hunan
Province, is still lower. In recent years, related literature has shown that the possibility
of shale gas accumulation in the Chenlei Depression in terms of hydrocarbon source con-
ditions, reservoir characteristics, and structural evolution [12,19]. Cao et al. studied the
hydrocarbon source and porosity of shale in the lower carboniferous Yanguanjie Forma-
tion [20]. Luo et al. and Cao et al. studied the mud shale of the Longtan Formation and
concluded that the mud shale of the Longtan Formation has good reservoir properties [2].
Yin et al. studied the relationship between geological structural characteristics and coal
seams [21]. Shi et al. discussed the tectonic evolution of the area and its relationship with
oil and gas accumulation [22].

Above all, some research has been done on the geological conditions for shale gas
reservoir formation. However, there are still several issues that need to be addressed. Firstly,
the method for determining the main controlling factors of shale gas reservoir formation
and geological conditions needs to be explored. In addition, further research is needed on
the geological conditions for shale gas accumulation in this study area. Finally, the target
shale rock layers in the study area are not yet clear.

In this paper, geological conditions for the formation of shale gas reservoirs in the
coal bearing strata of Chenlei Depression, Hunan Province, have been studied. The main
target layer for shale gas occurrence has been determined through shale thickness and
sedimentary facies analysis. Rock pyrolysis analysis, total organic carbon determination
(TOC), kerogen microscopic component identification, mineral X-ray diffraction, scan-
ning electron microscopy, and low-temperature nitrogen adsorption experiments are used
to study the geological conditions of shale gas. On this basis, the sedimentary environ-
ment/thickness/physical properties (porosity and permeability)/gas content of shale
reservoirs in different formations are studied, the basic geological conditions of shale gas
in the target rock layers are determined, and favorable areas for shale gas development are
determined.

2. Geological Setting and Experimental Methods
2.1. Geological Setting

The study area is located in the southeastern margin of the southeastern Hunan
Depression. The Chenlei Depression is a secondary tectonic unit of the southeastern Hunan
Depression. It is bounded by a fault zone to the northwest and adjacent to the Hengshan
uplift zone, separated by a fault zone to the north and east from the Cathaysia fold belt, and
gradually transitioning to the Ningjiang bulge in the southwest in the form of a slope zone
(Figure 1). The southeast Hunan Depression is located in the southeast of Hunan Province,
geotectonically situated in the south china plate and Yangzi plate junction, as a whole is
part of the south china fold system [23]. The study area has experienced the superimposed
influence of multi-stage tectonic cycles, and the tectonic lines are crisscrossing and extremely
complex, and the folds and faults are developed. The southeastern part of the Chenlei
Depression in the Linwu area is a Caledonian fold belt, with structural lines mainly trending
NNE~SSW and dipping southeast. It is a tight anticline with a reverse fault parallel to
the fold axis, accompanied by the intrusion of granodiorite and diorite. In the central and
western parts of the depression, there is an Indonesian fold belt that runs through the entire
area from north to south [24–27].

The study area is well developed and distributed from the Proterozoic to Cenozoic
(Figure 1). The basement is built of flysch in the Proterozoic and Lower Paleozoic. The
lithology is mainly slate and carbonate. From the Devonian Period of the Late Paleozoic
Era to the Early Triassic Period of the Mesozoic Era, the deposits were platform-type
littoral-shallow marine strata, the lithology was carbonate rock and coal-bearing clastic
rock, and a variety of shale strata were developed. The study area entered the continental
sedimentary period from the Middle Triassic. Only the Middle Jurassic strata remain today.
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The lithology is interbedded sandstone and mudstone. After the Late Mesozoic Cretaceous
period, multiple phases of fault depression occurred due to extensional movements caused
by mantle uplift, resulting in the deposition of a set of red clastic rocks. The fourth
department is the residual slope, and the accumulation layer is not developed [17]. Dark
mudstones and shales developed in the Middle to Upper Devonian, Lower Carboniferous,
and Upper Permian of the Late Paleozoic within cratonic platform-type coastal shallow
marine and coal-bearing clastic rock formations of marine–terrestrial transitional facies.
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Figure 1. Study area location and stratum formation.

2.2. Experimental Methods

High-pressure mercury intrusion test (HPMI). The most commonly used method to
analyze the seepage pore structure of coal reservoirs is the HPMI method. It determines
essential information such as porosity, pore structure, pore connectivity, and the pore
compression coefficient of coal. This test overcomes capillary forces by gradually increasing
the pressure of the mercury injection. The maximum mercury inlet pressure for this test is
14.7 MPa, covering a test pore size range of 3~10,000 nm.

Low-temperature carbon dioxide/nitrogen adsorption test (LTCO2/N2 GA). In this
test, 20 g of each sample is selected and ground to a particle size of 40–60 mesh. LTCO2/N2
GA is the prevailing method for analyzing the adsorption pore structure of coal reservoirs,
providing insights into parameters such as porosity, pore structure, and pore connectivity.
The TriStar III 3020 surface area and pore size distribution analyzer was used to detect the
surface morphology of adsorption pores at 77 K. The PV and SSA of meso-pores (2~100 nm)
are determined using the Barrett–Joyner–Halenda (BJH) model, whereas the PV and SSA
of micro-pores (<2 nm) are determined using the density function theory (DFT) model.

3. Results and Discussion
3.1. Sedimentary and Distribution of Shale

From the Late Paleozoic to the Middle Triassic of the Mesozoic, the tectonic envi-
ronment was stable, and the clastic rock was widely accepted as the main clastic rock.
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Several sets of mud shale formations were developed. Among them, the thick dark black
carbonaceous shale is developed in the Lower Cambrian Formation of the Carboniferous
and upper Longtan Formation of the Permian, and the target shale is the most important
potential source of shale gas in the Chenlei Depression.

The sedimentary environment of the Lower Carboniferous Water (LCW) Formation is
the sea–land interlocking marina bay lagoon swamp sedimentary system, which develops
two sedimentary facies: tidal flat facies subtidal zone and lagoon swamp facies. The
subtidal zone of the tidal flat facies is composed of gray siltstone, silty mudstone, and gray
black mud shale; it could also contain thin coal seams, which developed in the eastern
part of the study area (Figures 2a and 3a). The lagoon swamp facies are composed of fine
sandstone, siltstone, sandy mudstone, and thick coal seams interbedded with gray-black
to black shale. It is developed in the western part (Figures 2b and 3a). The shale of the
Ceshui Formation is distributed in most parts of the depression, but the thickness is thinner,
with an average thickness of about 30 m, and the thickness is above the maximum in the
southern part of the center of the depression (up to nearly 70 m), corresponding to the
lagoon swamp facies deposits, which gradually thin to the north until they peak out.
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The development types of the Longtan Formation in the Upper Permian include two
types: continental sedimentation dominated by delta facies and transitional sedimentation
represented by shallow marine, underwater island, lagoon swamp, and coastal swamp
facies (Figure 3b). The delta facies are developed in the northwest of the study area,
forming a bird-foot-shaped pattern from northeast to southwest. The lithology is composed
of thick layers of siltstone and mudstone interbedded with coal seams (Figure 4a). The
shallow marine shelf facies are mainly distributed in the southeast. They are primarily
affected by the intrusion of seawater from the southeast. The lithology is composed of
high calcium content sandy mudstone and mudstone, and the overall thickness of the
shale is higher (Figure 4b). The underwater island facies are mainly distributed in the
southwest, influenced by ancient landforms, and they are composed of quartz sandstone,
medium to fine sandstone, and sand bar facies sedimentation (Figure 4c). The lagoon
swamp facies are developed in the central southern part of the Chenlei Depression, and
the underwater island facies are northeast. The overall grain size becomes finer, mainly
composed of black sandy mudstone, muddy siltstone, and mudstone. The mud shale is
thick, with siderite nodules visible (Figure 4d). The coastal swamp facies are distributed
in the upper part of the coastline before the ancient continent and are products of the
marshification of the coastal plain. They are developed in the eastern and northern parts of
the depression, northeast of the lagoon swamp facies, and the lithology is mainly black-gray
mud shale and sandy mudstone. The mud shale is thick and is the main environment for
mud shale deposition (Figure 4e). The underwater island sand bar is developed from the
southwest. The deltaic sediments developed from lagoon-swamp facies to land-facies in
the NW direction, indicating a gradual retreat from marine facies to the NE direction of
land (Figure 3b).
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The shale of the Longtan Formation is composed of sandy shale, black shale, carbona-
ceous shale, etc., and it contains abundant siderite nodules and bands, coexisting with coal
seams. The mud shale is almost distributed throughout the entire depression, with a cumu-
lative thickness of large and an average thickness of 100 m(Figure 5a). It is the stratum with
the highest thickness of mud shale in the target layer. The thickness of shale in the Longtan
Formation matches well with the distribution of sedimentary facies, mainly developed in
coal-accumulating environments such as lagoon swamp facies, coastal swamp facies, and
delta facies. The maximum thickness of shale in the area between Leiyang and Chenzhou
exceeds 200 m (Figure 5b), and it gradually decreases towards the northwest–southeast
edges of the depression, with a thickness from 0–50 m.
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3.2. Geochemical Characteristics of Shale
3.2.1. Organic Matter Abundance

Based on the total organic carbon (TOC) content of shale in the study area, the TOC
values of shale collected from Ceshui and Longtan formations in the Chenlei Depression,
southeastern Hunan, are higher (greater than 1%). The TOC of other layers is all below
0.4%, which are source rocks. Therefore, the main hydrocarbon source rock series in the
study area belongs to the Ceshui and Longtan formations (Figure 6). Among them, the
TOC value of the shale in the Ceshui Formation is the highest, followed by the Longtan
Formation. However, they belong to good to excellent high-quality source rocks and have
good hydrocarbon generation potential.
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3.2.2. Organic Matter Type

Based on microscopic identification of components, shale organic matter types in
the Chenlei Sag and Longtan Formation are mainly type III and type II2 (Table 1), and
the kerogen type of a small number of samples is type II1. The Carboniferous-Permian
period was a major period of transition from marine to terrestrial phases in geological
history. Organisms in the marine and terrestrial transitional phases were unprecedentedly
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prosperous. In their chemical composition, lignin, cellulose, and other abundant parent
materials were deposited in large quantities, forming a quantitatively superior Type III
kerogen, but the contribution of local, deeper organisms evolving into organic matter
cannot be ruled out [28,29]. This also shows that the types of organic matter in marine–
terrestrial transitional shale are not single. Humic type is the main type, supplemented by
mixed type, which provides multiple organic matter for shale hydrocarbon generation.

Table 1. Kerogen macerals of organic-rich shale in Chenlei Sag.

Sampling Layer
Microscopic Component Content/%

Kerogen Type Index
(TI)

Kerogen
TypeSapropel

Group Resin Body Exinite Vitrinite Inert Group

Ceshui
Formation

25 / 56 15 4 37.75 II2

21 / 62 14 3 38.5 II2

Longtan
Formation

12 / 66 16 6 27 II2

82 / 14 4 / 86 II1

64 / 34 2 / 79.5 II1

8 / 28 40 24 −32 III

5 / 20 54 21 −46.5 III

6 / 30 48 16 −31 III

8 / 28 50 14 −29.5 III

Rock pyrolysis experiment results show that the Ceshui and Longtan formation shales
have TOC values ranging from 1.22 to 10.79 mg/g, with an average of 6.88 mg/g. The
hydrogen index values are low, indicating that the organic matter is type III kerogen
(Table 2). The reason is that it is the source of humic organic matter. This is related to the
excessive maturation of shale (Tmax is greater than 500 ◦C) and large-scale occurrences
related to hydrocarbon generation. Based on the analysis of kerogen microcomponents and
rock pyrolysis, the lithofacies, paleogeography, and geological evolution processes of the
region have been studied. The results show that the main source of organic matter in shale
is input from terrestrial higher plants, and the main types of organic matter are II2 and III,
which are favorable for the generation of natural gas.

Table 2. Pyrolysis and Ro,max data of shale samples from Ceshui and Longtan formations in Chen-
lei Sag.

Sampling
Layer Sampling No.

Maximum
Temperature

Tmax (◦C)

Soluble
Hydrocarbons

S1 (mg/g)

Pyrolysis
Hydrocarbons

S2 (mg/g)

HI
(mg/g TOC) Ro,max (%) Maturity

Assessment

Ceshui
Formation

CLZH-06 584 0.03 0.84 9.23 2.91 Overmature

DCLC-03 587 0.04 0.35 9.54 2.99 Overmature

XJZ-04 585 0.03 0.05 4.39 2.95 Overmature

ZK3206-87 587 0.03 0.11 4.33 2.37 Overmature

XDY-74 540 0.04 0.12 15.38 3.51 Overmature

KJC-68 539 0.05 0.03 1.92 2.75 Overmature

GML-63 553 0.02 0.08 5.82 2.80 Overmature

JZC-41 532 0.08 0.52 6.14 3.23 Overmature

TMC-27 536 0.04 1.1 7.20 3.00 Overmature

LMQ-08 563 0.03 0.68 5.34 3.12 Overmature
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Table 2. Cont.

Longtan
Formation

WBD-01 586 0.05 0.09 6.72 2.86 Overmature

WBD-05 595 0.03 0.11 4.20 2.99 Overmature

MT-YP-09 585 0.02 0.09 9.47 2.16 Overmature

MT-YP-11 582 0.02 0.15 10.79 2.08 Overmature

MT-YP-19 587 0.01 0.03 3.90 2.19 Overmature

MT-YP-21 593 0.02 0.13 7.10 2.55 Overmature

MT-YP-25 589 0.01 0.06 5.00 2.36 Overmature

MT-YP-35 528 0.12 5.97 10.14 2.08 Overmature

MT-YP-38 591 0.01 0.36 7.88 2.23 Overmature

MT-YP-40 595 <0.01 0.01 1.22 2.37 Overmature

3.2.3. Maturity

In order to become a potential shale gas exploration target, the maturity of shale must
enter the gas-producing window [30,31]. Ro,max of shale samples indicate that the shale
collected from Ceshui and Longtan formations has entered the large-scale gas production
stage. The Ro,max value of shale from the Ceshui Formation is between 2.37 and 3.51%, with
an average of 2.95%. The Ro,max value of all samples is greater than 2%. It indicates that
the samples of the Ceshui Formation are all in the overmature stage. The sample Ro,max of
the Longtan Formation was lower than that of the Ceshui Formation, ranging from 1.34 to
2.99%, with an average of 2.16%. Most of the samples’ Ro,max is above 2%, indicating that
most of the samples are in the over-mature stage.

In short, the shale of the Chenlei Sag’s hydrometric and Longtan Formation has a high
organic matter abundance, and its types are humic, such as II2 and III types. The overall
maturity is high and has exceeded the high-mature to over-mature stage. It has begun
to generate large-scale gas and has a certain thickness. It is a favorable source rock for
large-scale shale gas generation in the study area.

3.3. Shale Reservoir Characteristics
3.3.1. Mineral Composition Characteristics

Shale gas is generally adsorbed on the surface of organic matter, kerogen, and clay
minerals, or is free in micropores and microfractures. The mineral composition is the basis
for an in-depth study of the adsorption capacity and matrix porosity of shale reservoirs [32].
The mineral components of shale mainly include brittle minerals (quartz, calcite, feldspar,
etc.) and clay minerals such as illite, kaolinite, chlorite, and illite mixed layers. Brittle
minerals mainly control the development of fractures and affect the reservoir space and
permeability of the reservoir, which in turn determines the effect of reservoir fracturing.
A certain amount of clay minerals can adsorb gas [33,34]. Therefore, the key to shale gas
research is to find mud shale with high organic matter content, high brittle mineral content,
moderate clay mineral content, and crack development that is easy to artificial fracturing.

The whole rock mineral composition of the Ceshui Formation in Chenlei Depression
is mainly quartz and clay minerals; some samples are rich in calcite, and the content of
feldspar is low. The brittle mineral content is 30–80% and the clay mineral content is 10–40%
(Figure 7). The whole rock mineral composition of the Longtan Formation is mainly quartz
and clay minerals (Figure 8). Some samples are rich in calcite; the content of brittle minerals
is 20–60%; and the content of clay minerals is 20–70%, which is not conducive to the
formation of fractures but is conducive to the adsorption of shale gas. The content of brittle
minerals in the shale of the Ceshui and Longtan formations in the Chenlei Depression is
more than 40%, which is conducive to artificial fracturing in the later stage. Appropriate
clay minerals are beneficial to gas adsorption.
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3.3.2. Porosity and Permeability Characteristics

Shale reservoirs have typical characteristics of low porosity and low permeability [35],
with porosity often less than 10% and permeability generally less than 1 × 10−3 µm2.
Physical property analysis of shale samples from the Ceshui and Longtan formations in
the Chenlei Sag shows that the porosity and permeability of the shale from the Ceshui
and Longtan formations are generally low (Figure 9), among which the porosity of the
shale from the Ceshui Formation is 0.5~5.4%, with an average of 2.8%. Samples with
porosity less than 3% account for more than 65% of the total samples. The permeability
is 0.0002~1 × 10−3 µm2, with an average of 0.013 × 10−3 µm2, and more than 50%. The
sample permeability is lower than 0.01 × 10−3 µm2. The Longtan Formation mud shale
has good porosity and permeability characteristics, with a porosity between 1.1% and 4.8%,
with an average of 26%, and a permeability of 0.004–0.46 × 10−3 µm2, with an average of
0.045 × 10−3 µm2. In contrast, the porosity of major gas-producing shale reservoirs in the
United States is concentrated at 4.22% to 6.51%, and the permeability is generally lower
than 0.1 × 10−3 µm2 [36]. The porosity of the mud shale in the Chenlei Sag is slightly lower
than that in the Longtan Formation, and the permeability is not much different, indicating
that the mud shale reservoir characteristics in the study area are better.
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The low-temperature nitrogen adsorption experimental data also show (Table 3) that
the overall pore structure of the shale in the Chenlei Sag’s Ceshui and Longtan formations
is better, and its specific surface area and total pore volume are both higher (the average
specific surface area is 12.21 m2/g, respectively) and 8.36 m2/g. The total pore volumes
are 24.87 × 10−3 cm3/g and 14.32 × 10−3 cm3/g, respectively, and the most probable pore
diameters are larger (7.05 and 4.07 nm, respectively), which is beneficial to the development
of shale gas. It has good adsorption and storage potential.

Table 3. Statistics of experimental data of low-temperature nitrogen adsorption of shale samples.

Sampling Layer Sampling No. Specific Surface
Area/m2/g

The Most Probable
Aperture/nm

Total Pore
Volume/10−3 cm3/g

Ceshui Formation

CLZH-06 12.61 4.05 20.49

DCLC-03 11.38 4.07 16.33

XJZ-04 12.84 4.04 20.64

ZK3206-87 15.64 18.80 39.12

XDY-74 10.81 18.79 47.21

KJC-68 12.59 18.88 27.54

GML-63 12.79 5.87 18.63

JZC-41 12.88 5.37 20.04

TMC-27 13.97 3.71 13.52

LMQ-08 12.87 4.84 16.85

Longtan Formation

WBD-01 16.698 4.042 26.07

WBD-05 13.073 4.065 19.65

MT-YP-09 6.987 4.066 14.87

MT-YP-11 7.602 4.3 11.53

MT-YP-19 2.83 4.03 5.947

MT-YP-21 7.668 4.068 16.23

MT-YP-25 7.017 4.048 16.4

MT-YP-35 8.489 4.037 11.58

MT-YP-38 5.368 4.059 11.34

MT-YP-40 7.533 4.063 18.41

3.3.3. Pore and Crack Characteristics

The development of shale pores and fractures in the reservoir directly affects the
storage performance of the reservoir and has a great impact on the accumulation, later
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preservation, and reservoir modification of shale gas [37]. This paper divides the pores in
the Chenlei Sag Ceshui and Longtan formations into inorganic pores, organic pores, and
micro-cracks based on their development locations and pore origins. Inorganic pores are
further divided into intergranular pores, intercrystalline pores, and intragranular pores.

Intergranular pores in shale are developed at the contact point of mineral particles,
which are mainly lamellar clay minerals (Figure 10a,b). They are characterized by concen-
trated development, complex cementation, poor sorting, and diverse pore shapes, with
polygonal shapes and elongated strip shapes being the main ones. In the shale samples, the
pyrite intergranular pores are well developed (Figure 10c), and the pyrite is mostly in the
form of a regular cube or pentagonal dodecahedron. Organic matter and partial symbiosis.
The integrate pores developed in the particles, and the integrate pores developed well in
the clay mineral layer, mainly the Imon mixed layer. (Figure 10d). The pores formed by
other minerals are few, and the dissolution pores of carbonate minerals can be seen under
the microscope (Figure 10e).
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Figure 10. Pore morphology and characteristics of shales from the Ceshui and Longtan formations
in Chenlei Sag. ((a) Flaky clay mineral interstices; (b) illite intergranular pores; (c) strawberry
pyrite, intergranular pores; (d) mineral dissolution pores; (e) carbonate mineral dissolution pores;
(f) organic matter pores; (g) organic matter micro-cracks are filled; (h) asphaltene body mold pores;
(i) Micro-cracks).
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Organic matter pores are ubiquitous in shale [38], with pore sizes ranging from a few
nanometers to hundreds of nanometers. The connectivity between pores is excellent, and
most organic matter pores are distributed in circular or elliptical shapes (Figure 10f). In
some samples, an organic matter particle with a diameter of several microns can contain
many nanopores, but some organic matter does not develop pores. Asphaltene mold pores
formed by mineral exfoliation were found in some samples (Figure 10h).

Microfractures play an important role in the seepage of shale gas and are the bridge
connecting microscopic pores and macroscopic fractures, which are generally micron-
scale [39]. Experiments have found that both organic matter particles and clay minerals
can develop micro-cracks. Micro-cracks developed inside organic matter are generally
straight, small, and do not extend long. Some organic matter micro-cracks are filled with
minerals (Figure 10g). The shapes of micro-cracks between minerals are diverse (Figure 10i).
Some of them may be formed due to dehydration and shrinkage of the mineral matrix.
They are densely developed, mostly obtuse triangle shapes, with large pore sizes and
good connectivity.

3.4. Gas-Bearing Characteristics of Shale

Gas-bearing property is an important criterion for evaluating shale gas resource
potential and whether it has development value [40]. The desorption method was used to
perform on-site analysis on the shale cores of the Ceshui and Longtan formations obtained
from four drilling wells in the study area. The results showed that the gas content of the
shale in the Ceshui Formation varied from 0.31 to 2.6 cm3/g, with an average of 1.6 cm3/g.
The gas content of the Longtan Formation shale varies from 0.42 to 5 cm3/g, with an average
of 2.1 cm3/g. The overall gas content is high, confirming that the shale gas of the Ceshui
and Longtan formations in the study area has good resource potential. The isothermal
adsorption experiment shows that the maximum adsorption volume of the shale Ceshui
Formation is balanced at 1~2 MPa, and the maximum adsorption capacity is between
1.2~6 cm3/g, showing good adsorption capacity (Figure 11a,b). The Longtan Formation of
shale samples maximum adsorption volume in the balance of 1.5 MPa, adsorption capacity
of 0.5~5.2 cm3/g (Figure 11c,d). The shale of the Ceshui and Longtan formations is the
lowest industrial standard at 1 cm3/g under pressure less than 2 MPa, showing good
mining potential.
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Based on the isothermal adsorption results and analytical gas content results, there
are good shale gas displays in the study area, which has the potential to form a good shale
gas reservoir.

4. Conclusions

In this paper, we discuss total organic carbon determination (TOC), kerogen micro-
scopic component identification, mineral X-ray diffraction, scanning electron microscopy,
and low-temperature nitrogen adsorption experiments. The geological conditions for the
formation of shale gas reservoirs in the coal bearing strata of Chenlei Depression, Hunan
Province, have been studied in detail. Moreover, the main shale gas-bearing strata and their
physical characteristics in the coal bearing strata of Chenlei Depression, Hunan Province,
have been studied. On this basis, the gas content of shale in the water and Longtan for-
mations has been determined by using high-temperature and high-pressure isothermal
adsorption tests. The results are as follows:

(1) The shale thickness of the water measuring group is lower, with an average
thickness of about 30 m. The thickness is highest in the southern part of the depression
center (nearly 70 m), then decreases towards the north. In the Leiyang and Chenzhou
areas, the shale thickness of the Longtan Formation is the highest (up to 200 m), decreasing
towards the northwest and southeast edges of the depression with a thickness from 0–50 m.

(2) The TOC values of the water measurement group and the Longtan group are
higher, both greater than 1%, while the other layers are below 0.4%. The organic matter
types are type III and II2, and kerogen in a small amount of samples belongs to type II1.
The maturity of shale is higher, and it has entered the stage of large-scale gas generation.
The Ro of the sample collected from the water measurement group is 2.37–3.51%, with an
average of 2.95%.

(3) The mineral composition of the water measurement group is composed of quartz
and clay minerals, with some samples rich in calcite and a low content of feldspar. The
content of brittle minerals is higher, distributed in 30~80%, while the content of clay
minerals is moderate, mostly distributed at 10~40%. The mineral composition of the
Longtan Formation is composed of quartz and clay minerals.

(4) The overall pore structure of the water measurement group and Longtan group
shale is good, with a higher specific surface area and total pore volume (average specific
surface area is 12.21 and 8.36 m2/g, respectively), which is conducive to the occurrence
of shale gas and has good adsorption and storage potential. The gas content of the water
measurement group varies from 0.31 to 2.6 cm3/g, with an average of 1.6 cm3/g; the gas
content of the Longtan Formation varies from 0.42 to 5 cm3/g, with an average of 2.1 cm3/g.
It indicates that the water measurement group and the Longtan Formation shale gas in the
study area have good resource potential.
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