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Abstract: Construction projects require concurrent consideration of the three major objectives of con-
struction period, cost, and quality. To address the multi-objective optimization issues of construction
projects, mathematical models of construction period, quality, and cost are established, respectively,
and multi-objective optimization models are constructed for different construction objectives. A
hybrid optimization method combining an improved genetic algorithm (GA) with a time-varying
mutation rate and a particle swarm algorithm (PSO) is proposed to optimize construction projects,
which overcomes the shortcomings of the original GA and improves the global optimality and stabil-
ity of results. Various construction projects were considered, and different construction objectives
were analyzed individually. Finally, an uncertainty analysis is developed for the proposed GA-PSO
algorithm and compared with GA and PSO. The results indicate that the proposed hybrid approach
outperforms the PSO and GA algorithms in providing a better and more stable multi-objective opti-
mized construction solution, with performance improvements of 4.3–8.5% and volatility reductions
of 37.5–64.4%. This provides a reference for the optimal design of wind farms, buildings, and other
construction projects.

Keywords: construction project; multi-objective optimization; genetic algorithm; particle swarm
optimization; uncertainty analysis

1. Introduction

The construction process of subways, buildings, airports, and other projects not only
has a long period and huge cost but also has plenty of risks; hence, it is necessary to
consider the three major objectives of construction period, cost, and quality to realize
the shortest construction period, the lowest construction cost, and the highest project
quality [1]. For example, to put the subway into operation as soon as possible, some
cities will accelerate the construction period, which will easily lead to an increase in costs
and frequent accidents; while if excessive attention is paid to the quality of the subway
construction process, it will increase the corresponding construction period and costs.
Therefore, achieving multi-objective optimization of construction period, cost, and quality
is crucial for construction project managers. As a result, numerous scholars have centered
their research on multi-objective optimization of construction projects [2–4].

Multi-objective optimization algorithms can be classified into two broad classes: exact
algorithms and heuristics [5]. By formulating multi-objective programs as linear programs,
exact algorithms can solve optimization problems with exponential computational com-
plexity [6]. As pointed out by Ameri et al. [7], France-Mensah et al. [8], and Sun et al. [9],
scalarization methods can leverage existing techniques or platforms to solve multi-objective
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optimization problems, resulting in accurate solutions. However, larger optimization
problems have more complicated solution spaces and many constraints, making exact
algorithms slower and difficult to implement. Heuristic algorithms are inspired by the
characteristics of problems and constructed based on specific mathematical rules, which
usually produce only a fixed number of suboptimal solutions, e.g., greedy algorithm [10].
Their computational time is short, but optimality is not guaranteed. Metaheuristic algo-
rithms do not rely on problem characteristics but rather obtain near-optimal solutions by
successive iterations of randomized algorithms and local search. It explores and exploits
the search space by combining different intelligent concepts and uses a learning strategy to
organize the information to efficiently find near-optimal solutions, such as genetic algo-
rithm (GA) [11], particle swarm optimization (PSO) [12], evolutionary algorithm, random
search, etc.

GA is an evolutionary algorithm that mimics the natural law of survival of the fittest
and has been widely used to solve optimization solutions for problems of varying com-
plexity, including simple linear optimization and combinatorial optimization at the project
level [13]. It uses binary coding to randomly generate an initial population and then
mimics mating, mutation, and selection in nature by iterating to produce a more optimal
population, which, in turn, generates a new feasible solution. Sindi et al. [14] solved a
multi-objective optimization problem for pavement construction using GA by transform-
ing it into a single objective function. Santos et al. [15] incorporated a local search-based
algorithm into GA to enhance the overall efficiency. Some scholars adopted non-dominated
sorting GAs (NSGA-II) to obtain Pareto optimal solutions [16–18]. However, the more
objectives are considered, the more difficult it is to produce an overall solution. Even when
a set of solutions is obtained, it is often difficult to interpret the optimization performance
because each solution contains values associated with multiple objectives. Moreover, binary
coding reduces the space of feasible solutions, and increasing the binary length makes the
computation more intensive and time-consuming.

Compared to GA-based algorithms, PSO can break through the limitations of binary
coding, thus finding more available solutions. PSO starts with a randomly generated set
of particles, each representing a solution, and keeps updating these particles to get better
solutions. Ahmed et al. [19] applied a binary multi-objective PSO with chaos methods
for pavement maintenance management. Ji et al. [20] presented a hybrid method that
combines the Markov chain and PSO to optimize pavement maintenance strategies. Never-
theless, PSO-based algorithms are prone to precociousness and falling into local optimality.
Yang et al. [21] proposed an adaptive inertia-weighted PSO based on the optimized results
of the GA stage for wind farm layout optimization. This approach can break through
the low-resolution limitation of GA to quickly obtain the global optimum. However, the
optimized results may be mainly determined by the GA.

This study aims to propose a hybrid approach for the optimization of construction
projects based on improved GA and PSO (i.e., GA-PSO) to utilize the advantages of GA
and PSO algorithms and to obtain solutions that are closer to the global optimum and more
stable. The main contributions of this study are summarized as follows:

(i) Mathematical models of the construction project period, cost, and quality were estab-
lished, respectively, on the basis of which six optimization objectives were determined,
forming six multi-objective optimization models of period–cost–quality.

(ii) An improved GA with a time-varying mutation rate is proposed for the construction
project for optimization, based on which PSO is used for further optimization to avoid
falling into the local optimum and to improve the stability of performance.

(iii) The performance of the proposed GA-PSO method has been thoroughly investigated
using four different real construction projects with uncertainty analysis, and the
results have been compared with other existing methods.

This paper is organized as follows: Section 2 introduces the methods for multi-objective
optimization of construction projects. Section 3 presents case studies of construction project
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optimization, and Section 4 provides an in-depth discussion of the results. Finally, Section 5
summarizes the main conclusions of this study.

2. Methods for Multi-Objective Optimization of Construction Project
2.1. Flowchart

The proposed hybrid approach for multi-objective optimization of construction projects
is shown in Figure 1.

Processes 2024, 12, x FOR PEER REVIEW 3 of 32 
 

 

This paper is organized as follows: Section 2 introduces the methods for multi-objec-
tive optimization of construction projects. Section 3 presents case studies of construction 
project optimization, and Section 4 provides an in-depth discussion of the results. Finally, 
Section 5 summarizes the main conclusions of this study. 

2. Methods for Multi-Objective Optimization of Construction Project 
2.1. Flowchart 

The proposed hybrid approach for multi-objective optimization of construction pro-
jects is shown in Figure 1. 

 
Figure 1. Flowchart for multi-objective optimization of construction projects. 

The improved GA can be utilized for multi-objective preliminary optimization 
through binary coding of construction variables, population initialization, binary decod-
ing, multi-objective fitness calculation, population selection, individual crossover, indi-
vidual mutation, etc. It is recommended to use the mutation rate over time to avoid falling 
into a local optimum. A few best-performing individuals are selected as initial particles 
for PSO with chaotic perturbations. Then, the PSO-based multi-objective optimization is 

Preliminary settings

Binary coding of 
variables

Initialization of 
population

Multi-objective fitness 
calculations

Crossover of individuals

Time-varying mutations 
of individuals

Selection of population 

Convergence?

YES

NO

Binary decoding of 
variables

Top individuals for 
initialization of particles

Binary decoding of 
variables

Updating of velocity and 
position of particles

Limiting position to defined 
range

Multi-objective fitness 
calculations

Updating of local and global 
particle information

Convergence?

Decoding to obtain Period, 
Cost and Quality of best 

particle

Output position of best 
particle

YES

NO

Figure 1. Flowchart for multi-objective optimization of construction projects.

The improved GA can be utilized for multi-objective preliminary optimization through
binary coding of construction variables, population initialization, binary decoding, multi-
objective fitness calculation, population selection, individual crossover, individual mutation,
etc. It is recommended to use the mutation rate over time to avoid falling into a local
optimum. A few best-performing individuals are selected as initial particles for PSO with
chaotic perturbations. Then, the PSO-based multi-objective optimization is completed
sequentially by binary decoding, updating particle positions, constraining particles, multi-
objective fitness calculation, and updating particle information. Finally, the best solution for
a construction project can be obtained by decoding the optimal particle, as shown in the last
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two steps in Figure 1. The pseudo code for the proposed GA-PSO is shown in Algorithm 1,
and the validation is performed by four different construction projects in Section 3.

Algorithm 1: GA-PSO method

1. Parameter setting.
2. Binary coding of variables.
3. Initialization of GA.
4. for i = 1:MaxIteration
Decoding of binary variables.
Multi-objective fitness calculation.
Selection with roulette wheel selection method to obtain new individuals.
Random crossover of individuals.
Mutation of individuals with time-varying mutation rate.
end
5. Obtain top individuals by GA.
6. Initialization of PSO by Binary decoding of variables.
7. for j = 1:MaxIteration
Updating particles in terms of velocity and position.
Limiting positions for particles.
Multi-objective fitness calculation.
Updating particles in terms of local and global information.
end
8. Obtain the best particle.
9. Decoding of the best particle.

2.2. Models

In multi-objective optimization of construction projects, three main parameters are
considered, i.e., construction period, cost, and quality. Mathematical modeling of the three
objectives is introduced in this section.

2.2.1. Construction Period Modeling

The total period of the construction project should be the sum of the periods of the
processes on the “critical routes” in the network plan. Thus, the construction period can be
calculated according to Equation (1).

T = max
i∈A

n

∑
j=1

tjxi,j (1)

where T denotes the construction period; n denotes the total number of construction
processes; tj denotes the construction period of j th construction process; xi,j denotes the
index variable, xi,j = 1 when j th process is contained in i th route in the network plan,
otherwise xi,j = 0; and A denotes the set of feasible routes.

2.2.2. Cost Modeling

Construction costs for the project from the beginning of construction preparation to
the end of the project throughout the construction process of all production costs, including
direct costs and indirect costs. Direct costs are the costs incurred by the construction unit
for the construction of the project, including labor, materials, machinery, etc., while indirect
costs are the costs incurred by the construction unit for the management of the project,
including salaries, depreciation of fixed assets, and repair costs, etc. Direct costs decrease
over the construction period, while indirect costs increase over the construction period [22].
The function relationship between construction cost and construction period in Equation (2)
can be obtained based on the parabolic hypothesis [23].
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C =
n

∑
j=1

Cmax
1,j +

Cmin
1,j − Cmax

1,j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2

+
n

∑
j=1

Cmin
2,j +

Cmax
2,j − Cmin

2,j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2

 (2)

where C denotes the construction cost; tmax
j and tmin

j denotes the maximum and minimum

construction period of j th construction process, respectively; Cmax
1,j and Cmin

1,j denotes the
maximum and minimum direct construction cost of j th construction process, respectively;
and Cmax

2,j and Cmin
2,j denotes the maximum and minimum direct construction cost of j th

construction process, respectively.

2.2.3. Quality Modeling

The construction quality varies from one construction program to another due to
the different construction methods, labor, and machinery used. Generally, the shorter the
construction period required, the more difficult it is to ensure quality due to the need to
rush; vice versa, the longer the construction period, the better the construction quality. The
function relationship between construction quality and construction period in an equation
can be obtained based on the parabolic hypothesis.

Q =
n

∑
j=1

ωj

Qmax
j +

Qmin
j − Qmax

j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2

 (3)

where Q denotes the construction quality; Qmax
j and Qmin

j denotes the maximum and
minimum construction quality of j th construction process, respectively; and ωj denotes
the importance weighting factor of the j th process.

2.2.4. Multi-Objective Optimization Modeling

Multi-objective optimization aims to minimize the construction period, minimize the
cost, and maximize the quality while the construction period, cost, and quality satisfy
certain constraints, as described in Equations (4) and (5). Under such preconditions, a set of
Pareto optimal solutions can be obtained using optimization algorithms such as NSGA-II,
and the optimal solution can be decided by the decision-maker.



min(T) = min

(
max
i∈A

n
∑

j=1
tjxi,j

)

min(C) = min

 n
∑

j=1

Cmax
1,j +

Cmin
1,j − Cmax

1,j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2
+ Cmin

2,j +
Cmax

2,j − Cmin
2,j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2




max(Q) = max

 n
∑

j=1

Qmax
j +

Qmin
j − Qmax

j

(tmax
j − tmin

j )
2 (tj − tmin

j )
2




(4)

s.t


T ≤ Ttar
C ≤ Ctar
Q ≥ Qtar

(5)

where Ttar and Ctar denote the maximum requirement of construction period and cost,
respectively; and Qtar denotes the minimum requirement of construction quality.

For different construction projects, the decision-maker’s requirements for the three
objectives vary. Thus, a set of Pareto optimal solutions may be difficult to interpret and
select. To optimize the project comprehensively, the optimization objective functions of con-



Processes 2024, 12, 1737 6 of 31

struction period, cost, and quality are weighted to establish a comprehensive optimization
model of construction period–cost–quality, as shown in Equation (6).

F(T, C, Q) = wTT′ + wCC′ + wQQ′

= wT
Tmax−T

Tmax−Tmin
+ wC

Cmax−C
Cmax−Cmin

+ wQ
Q−Qmin

Qmax−Qmin

s.t


T ≤ Ttar
C ≤ Ctar
Q ≥ Qtar

(6)

where wT, wC and wQ denote the weights of the construction period, cost, and quality,
respectively, and wT + wC + wQ = 1; T′, C′ and Q′ denote the dimensionless construction
period, cost, and quality, respectively; Tmax and Tmin denote the maximum and minimum
of the construction period, respectively; Cmax and Cmin denote the maximum and minimum
of construction cost, respectively; and Qmax and Qmin denote the maximum and minimum
of construction quality, respectively. Weights can be determined by the decision-maker
based on different construction targets.

2.3. Optimization Methods

In this study, a hybrid GA-PSO method is proposed for multi-objective optimization
of construction projects. GA solves optimization problems by mimicking nature’s eutrophi-
cation. Using binary coding to represent the construction duration of each process, cost and
quality can be obtained according to Equations (2) and (3). Figure 2 displays the coding and
decoding of the construction project, where m denotes the binary length, and a and b denote
the lower and upper limits of the construction parameter, respectively. Each individual
in the population is represented by a string of binary symbols. Optimal population is
eventually obtained by repeated selection, crossover, and mutation of individuals.
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A variable mutation rate that varies linearly with the iteration steps is suggested to
avoid it easily falling into local optimum within a few steps, as described in Equation (7).

ri = min(
2i
N1

(rmax − rmin) + rmin, rmax) (7)

where ri denotes the mutation rate at i th step; N1 denotes the maximum iteration step of
GA; and rmax and rmin denote the maximum and minimum mutation rate, respectively.

The performance of GA optimization is affected by the binary length, and increasing
the binary length will greatly enlarge the computation and be time-consuming. Here,
the top 10 individuals in GA are chosen as the initial particles for PSO, where chaotic
randomness is considered to find more feasible solutions. The principles of PSO are
introduced in Equations (8)–(10).

wj = (w1 − w2)(1 − j/N2) + w2 (8)
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vi = wjvi + c1r1(xl
i − xi) + c2r2(xg − xi) (9)

xi = xi + vi (10)

where wj denotes the proposed time-varying inertial factor at j th step; w1 and w2 denote
the initial and final inertial factor, respectively; N2 denotes the maximum iteration step
of PSO; vi and xi denotes the velocity and position of i th particle, respectively; c1 and
c2 denote the individual learning factor and social learning factor, respectively; r1 and r2

denote random number in the interval [0, 1]; xl
i denotes the local optimal position of i th

particle; and xg denotes the global optimal position.

3. Case Study

In this section, four different construction projects are studied, including the con-
struction of the subway, airport, and building. It should be noted that the data are from
published papers, and the relevant papers are cited. Readers can check the details in
the references. Construction parameters for each project are presented, and probability
distribution analysis is performed using Monte Carlo simulation.

3.1. Case 1
3.1.1. Construction Parameters

Table 1 shows the construction process of a metro shield project in a city [24]. It
contains a total of 12 processes, and the detailed construction network plan is shown in
Figure 3. The tunnel construction adopts the shield method using a 6.4 m diameter mud–
water balanced shield, with a shield tunnel overburden thickness of 9.5–30.06 m. Along the
line is silty soft soil or a medium-coarse sand layer. The interval tunnel on both sides of the
high-rise residential and villa areas has a shield through a large number of structures; thus,
the construction is more difficult.

Table 1. Content of construction process of Case 1.

Process Content of Construction Process

1 Reinforcement of the formation at the end of the well
2 Construction of shield-supporting facilities
3 Pile driving
4 Preparation for the start of the shield structure on the left line
5 Left line shield 100 rings test boring
6 Left line of the south bank of the Minjiang River, normal digging
7 Left line under the Minjiang River, normal digging
8 Left line of the north bank of the Minjiang River, normal digging
9 Left line, digging to receive

10 Left shield disintegrated and lifted out
11 Construction of No. 1 contact tunnel
12 Construction of No. 2 contact tunnel
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Figure 3. Construction network plan of Case 1.

The quality weighting coefficients for each construction process and the quality scores
for the different construction methods were scored by 10 experienced experts. The detailed
construction parameters are shown in Table 2.
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Table 2. Construction parameters of Case 1.

Process Tmin
(d)

Tmax
(d)

Cmin
1

(104 ¥)
Cmax

1
(104 ¥)

Cmin
2

(104 ¥)
Cmax

2
(104 ¥) Qmin Qmax ω

1 38 42 793 821 190 210 0.86 0.89 0.070
2 50 50 375 375 250 250 0.90 0.90 0.053
3 54 61 96 122 54 61 0.83 0.85 0.053
4 53 56 62 73 53 56 0.82 0.85 0.072
5 25 28 375 403 125 140 0.80 0.84 0.091
6 62 64 2364 2379 310 320 0.78 0.82 0.110
7 70 74 1591 1622 350 370 0.78 0.84 0.172
8 19 20 1018 1028 95 100 0.78 0.80 0.110
9 18 20 414 428 90 100 0.79 0.81 0.085
10 22 22 14 14 11 11 0.80 0.80 0.056
11 184 186 55 62 36 37 0.75 0.78 0.064
12 180 185 69 75 36 37 0.75 0.78 0.064

3.1.2. Monte Carlo Simulation

A Monte Carlo simulation was carried out 10,000 times for Case 1, and the cumulative
distribution function (CDF) of the three objectives of the construction period, cost, and
quality was plotted, as shown in Figure 4.
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90% quartiles for quality, are informative and reflect the percentage of the current scheme’s
objectives that is exceeded.

3.2. Case 2
3.2.1. Construction Parameters

Table 3 displays the construction process of a subway project [25]. It contains a total
of 11 processes, and the detailed construction network plan is shown in Figure 5. The
subway tunnel project is located in the silty soil layer, coarse and medium sand layer, and
pebble layer; the interval span is large; and the construction period is long. The tunnel is
tunneled by a mud–water shield machine and is passed through by a two-lane operation.
The construction of the tunnel’s left-lane cut-through is taken as a research object.

Table 3. Content of construction process of Case 2.

Process Content of Construction Process

1 Reinforcement of the formation at the end of the well
2 Construction of shield-supporting facilities
3 Preparation for the start of the shield structure on the left line
4 Left line shield 100 m trial boring
5 Left line Wulong Jiangxi bank section, normal digging
6 Left line crossing the Wulong River, normal digging
7 Left line digging to wind shaft receiving
8 Left line digging through the middle air shaft
9 Left line east bank section of the Wulong River, normal digging

10 Left line digging to receive
11 Left shield disintegrated and lifted out
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Figure 5. Construction network plan of Case 2.

The quality scores and weighting coefficients for each construction process and scheme
were scored by the project manager, project general engineer, construction technical leader,
quality inspection unit leader, superintendent engineer, and five experts. Detailed construc-
tion parameters are illustrated in Table 4.

Table 4. Construction parameters of Case 2.

Process Tmin
(d)

Tmax
(d)

Cmin
1

(104 ¥)
Cmax

1
(104 ¥)

Cmin
2

(104 ¥)
Cmax

2
(104 ¥) Qmin Qmax ω

1 65 75 943 1023 227.5 262.5 0.72 0.85 0.0467
2 50 52 1388 1408 175 182 0.83 0.89 0.0205
3 60 62 107 108 210 217 0.82 0.89 0.0832
4 33 35 389 396 115.5 122.5 0.77 0.83 0.1224
5 88 90 2105 2137 308 315 0.75 0.82 0.1418
6 317 320 4495 4789 1109.5 1120 0.72 0.81 0.2244
7 5 7 98 102 17.5 24.5 0.77 0.83 0.0508
8 40 42 114 115 140 147 0.74 0.8 0.0508
9 92 105 2147 2202 322 367.5 0.79 0.82 0.1326
10 4 8 104 131 14 28 0.70 0.80 0.0758
11 45 50 192 232 157.5 175 0.78 0.82 0.0510

3.2.2. Monte Carlo Simulation

Figure 6 illustrates the CDF obtained from the Monte Carlo simulation for Case 2 for
the three objectives of schedule, cost, and quality. The key quartile of the three objectives
can be obtained.

The construction period ranges from 755 to 790 days, the cost ranges from ¥1.51 × 108

to ¥1.55 × 108, and the quality ranges from 0.76 to 0.80. The overall lower quality scores for
Case 2 compared to Case 1 indicate the variability in scoring by different experts, making
the use of quartiles of quality scores more informative than absolute values.
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3.3. Case 3
3.3.1. Construction Parameters

Table 5 displays the construction process of an airport field road [26]. The airport field
road consists of six parts, including a runway, parallel taxiway, fast taxiway, anti-blowout
apron, aircraft apron and paddock road, etc. The construction of the airport field road
includes five major processes, including construction preparation, earthwork construction,
subgrade construction, surface construction, and project completion. The construction
network plan of Case 2 is displayed in Figure 7.

Table 5. Content of construction process of Case 3.

Process Content of Construction Process

1 Construction preparation
2 Removal of humus layer
3 Excavation
4 Landfill
5 Level the surface
6 Compact
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Table 5. Cont.

Process Content of Construction Process

7 Substrate construction for runways and blowdown protection
8 Taxiway Subgrade Construction
9 Paddock Road Subgrade Construction

10 Subgrade construction for aprons
11 Construction of runway and blowdown protection surfaces
12 Taxiway Surface Construction
13 Paddock Road Surfacing
14 Aircraft surface construction
15 Project closeout
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Figure 7. Construction network plan of Case 3.

The quality scores and detailed construction parameters are shown in Table 6. In this
case, it is assumed that each construction process has the same quality weighting factor.

Table 6. Construction parameters of Case 3.

Process Tmin
(d)

Tmax
(d)

Cmin
1

(104 ¥)
Cmax

1
(104 ¥)

Cmin
2

(104 ¥)
Cmax

2
(104 ¥) Qmin Qmax

1 6 8 1432 5314 1032 1567 0.56 0.87
2 5 10 4500 10,321 2032 3210 0.68 0.8
3 100 108 65,046 69,431 33,162 41,537 0.82 0.95
4 60 70 480 577 165 210 0.77 0.97
5 48 55 577 605 160 231 0.68 0.92
6 28 35 8135 8861 2163 3263 0.86 0.93
7 53 62 356,351 368,716 98,005 110,236 0.78 0.82
8 39 43 366,547 387,752 63,165 67,533 0.78 0.91
9 14 18 51,328 55,654 9856 11,246 0.83 0.89

10 33 36 364,110 386,321 103,256 136,142 0.85 0.96
11 136 145 183,865 208,650 62,081 120,115 0.85 0.91
12 74 80 231,596 243,706 52,056 68,449 0.68 0.91
13 44 49 35,625 37,846 11,365 14,025 0.75 0.92
14 114 126 175,343 186,455 81,135 98,741 0.86 0.91
15 14 15 4782 5028 1452 1765 0.87 0.92

3.3.2. Monte Carlo Simulation

The CDF of the construction period, cost, and quality are obtained by Monte Carlo
simulation, as shown in Figure 8. The construction period ranges from 260 to 285 days,
the cost ranges from ¥2.47 × 106 to ¥2.55 × 106, and the quality ranges from 0.79 to 0.86.
Compared to Case 1 and Case 2, Case 3 has a greater dispersion of quality scores.
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3.4. Case 4
3.4.1. Construction Parameters

Table 7 displays the construction process of a company’s office building [27]. The
building is a three-story brick structure, and the construction network plan is shown in
Figure 9, consisting of 19 construction processes. The quality scores and weighting coeffi-
cients are offered by 10 experienced program managers. Detailed construction parameters
are shown in Table 8.
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Table 7. Content of construction process of Case 4.

Process Content of Construction Process

1 Foundation
2 1st-floor wall
3 1st-floor beams and slabs
4 1st- and 2nd-floor stairs
5 1st-floor cast-in-place
6 2nd-floor wall
7 2nd-floor beams and slabs
8 2nd- and 3rd-floor stairs
9 3rd-floor wall

10 3rd-floor beams and slabs
11 roofing
12 1st-floor windows, doors, and trim
13 Installation of equipment on the 1st floor
14 2nd-floor windows, doors, and trim
15 Installation of equipment on the 2nd floor
16 3rd-floor windows, doors, and trim
17 Installation of equipment on the 3rd floor
18 Exterior wall decoration
19 Steps and bulkheads, etc.
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Figure 9. Construction network plan of Case 4.

Table 8. Construction parameters of Case 4.

Process Tmin
(d)

Tmax
(d)

Cmin
1

(104 ¥)
Cmax

1
(104 ¥)

Cmin
2

(104 ¥)
Cmax

2
(104 ¥) Qmin Qmax ω

1 18 30 92,038 154,608 63,000 105,000 0.85 0.95 0.0875
2 15 18 85,563 119,788 52,500 63,000 0.90 0.91 0.0772
3 25 30 135,581 189,816 87,500 105,000 0.92 0.93 0.0637
4 12 13 9867 13,813 42,000 45,500 0.89 0.90 0.0557
5 7 7 9762 9762 24,500 24,500 0.87 0.87 0.0356
6 15 18 85,563 119,788 52,500 63,000 0.85 0.90 0.0678
7 25 30 135,581 189,816 87,500 105,000 0.80 0.89 0.0609
8 12 13 9867 13,813 42,000 45,500 0.87 0.88 0.0533
9 16 20 100,003 140,007 56,000 70,000 0.82 0.89 0.0661
10 25 30 135,581 189,816 87,500 105,000 0.85 0.87 0.0594
11 8 15 45,793 88,641 28,000 52,500 0.86 0.90 0.0476
12 9 13 67,997 95,195 31,500 45,500 0.86 0.88 0.0316
13 2 4 15,062 21,086 7000 14,000 0.87 0.89 0.0508
14 9 13 65,332 91,464 31,500 45,500 0.87 0.88 0.0331
15 2 4 15,062 21,086 7000 14,000 0.87 0.88 0.0523
16 9 13 65,332 91,464 31,500 45,500 0.87 0.88 0.0338
17 2 4 15,062 21,086 7000 14,000 0.87 0.88 0.0509
18 12 16 56,246 79,342 42,000 56,000 0.84 0.86 0.0367
19 3 5 5505 7708 10,500 17,500 0.86 0.87 0.0360

3.4.2. Monte Carlo Simulation

Figure 10 shows the CDF of the construction period, cost, and quality provided by
the Monte Carlo simulation. The construction period ranges from 190 to 220 days, the cost
ranges from ¥2.27 × 106 to ¥2.43 × 106, and the quality ranges from 0.86 to 0.89. The quality
score of Case 4 is much higher than the three cases mentioned above.
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3.5. Scheme Settings

Through the investigation of the construction project planning phase for the construc-
tion period, cost, and quality requirements, six optimization targets were identified to adapt
to the demands of various decision-makers, as shown in Table 9. The first three schemes
aim to make the third objective as good as possible while constraining the two objectives.
Constraints are determined based on Monte Carlo simulation results, e.g., the solution is
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required to be better than 90% of the feasible solutions in terms of cost and quality while
ensuring that the construction period is as short as possible.

Table 9. Optimization target of construction schemes.

Scheme Optimization Target

Scheme 1 Cost and quality are controlled within certain limits, and the
construction period is minimized.

Scheme 2 Period and quality are controlled within certain limits, and the
construction cost is minimized.

Scheme 3 Period and cost are controlled within certain limits, and the
construction quality is maximized.

Scheme 4 Multi-objective optimization of construction period, cost, and
quality with equal weights

Scheme 5 Multi-objective optimization of construction period, cost, and
quality with a weight of (0.3, 0.4, 0.3)

Scheme 6 Multi-objective optimization of construction period, cost, and
quality with a weight of (0.2, 0.2, 0.6)

The main parameters of the proposed hybrid approach are set as follows: population
size of 200, binary length of 6, cross rate of 0.9, minimum and maximum rate of 0.05 and
0.2, respectively, iteration step of 200, particle size of 100, iteration of 50 for PSO, and initial
and final inertial factor of 0.4 and 0.9, respectively. It is important to note that we assume
that once the optimized construction plan is finalized, workers will strictly follow the plan,
and there is no risk associated with ethics.

4. Results and Discussion
4.1. Case 1
4.1.1. Scheme 1

This scheme aims to minimize the construction period under the constraints of cost and
quality. The upper limit of construction cost and lower limit of quality are ¥8.962 × 107 and
0.8132, respectively. The iteration process for Scheme 1 of Case 1 can be found in Figure 11,
where the fitness denotes the reciprocal of T. It can be found that GA convergence requires
the most iterative steps, close to 150, and GA-PSO the shortest, about 20 steps. Furthermore,
GA-PSO can provide a better solution than GA and PSO.
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Due to the stochastic nature of the optimization results of GA-based or PSO-based
algorithms, uncertainty analysis is required to compare them statistically. Figure 12 shows
the uncertainty analysis for Scheme 1 of Case 1 based on 30 replications, where 25% and
75% denote the quartiles and [25%, 75%] denotes the interval between the 25% quartile and
the 75% quartile.
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The results show that PSO has the largest solution volatility, GA is second, and GA-
PSO is the most stable. From the optimization performance, GA-PSO > PSO > GA. To
quantitatively compare the optimization effects of the three algorithms, three metrics, the
mean, median, and interval between 25% quartile and 75% quartile (denoted as volatility),
are selected for comprehensive analysis. Compared to PSO and GA, the GA-PSO algorithm
reduces the mean and median construction period by 1.18 and 2.26 days, and 1 and
2.42 days, respectively, while the volatility is reduced by 73.8% and 42.1%, respectively.

4.1.2. Scheme 2

Figure 13 shows the uncertainty analysis for Scheme 2 of Case 1. The upper limit of
the construction period and the lower limit of quality are 516.5 d and 0.8113, respectively.
Compared to PSO and GA, the GA-PSO algorithm reduces the mean and median construc-
tion cost by ¥22,000 and ¥36,000, and ¥16,000 and ¥28,000, respectively, while the volatility
is comparable.
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4.1.3. Scheme 3

Figure 14 illustrates the uncertainty analysis for Scheme 3 of Case 1. The upper limit
of construction period and cost are 516.5 d and ¥8.966 × 107, respectively. The GA-PSO
algorithm can provide the best quality in terms of mean and median values. Moreover, the
volatility can be reduced by 45.4% compared to PSO.
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4.1.4. Scheme 4

This scheme aims to find the optimal solution by combining normalized construction
period, cost, and quality into a composite index through weighting. Figure 15 illustrates
the uncertainty analysis for Scheme 4 of Case 1. Compared to PSO and GA, the GA-
PSO algorithm enhances the mean and median by 3.4% and 5.3%, and 2.9% and 5.6%,
respectively, while decreasing the volatility by approximately 100%.
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4.1.5. Scheme 5

The uncertainty analysis for Scheme 5 of Case 1 is shown in Figure 16. Compared to
PSO and GA, the GA-PSO algorithm enhances the mean and median by 4.1% and 5.7%,
and 3.6% and 5.6%, respectively, while decreasing the volatility by approximately 100%.
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4.1.6. Scheme 6

The uncertainty analysis for Scheme 6 of Case 1 is illustrated in Figure 17. Compared
to PSO and GA, the GA-PSO algorithm improves the mean and median by 4.8% and 8.6%,
and 4.7% and 8.2%, respectively, while eliminating the volatility.
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4.2. Case 2
4.2.1. Scheme 1

Figure 18 shows the uncertainty analysis for Scheme 1 of Case 2. The upper limit of
construction cost and lower limit of quality are ¥1.517 × 108 and 0.7899, respectively. Com-
pared to PSO and GA, the GA-PSO algorithm reduces the mean and median construction
period by 1.71 and 3.69 days, and 1.71 and 4.03 days, respectively, while the volatility is
reduced by 68.2% and 39.8%, respectively.
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4.2.2. Scheme 2

Figure 19 shows the uncertainty analysis for Scheme 2 of Case 2. The upper limit of the
construction period and the lower limit of quality are 764.5 d and 0.7899, respectively. Com-
pared to PSO and GA, the GA-PSO algorithm reduces the mean and median construction
cost by ¥20,000 and ¥166,000, and ¥10,000 and ¥170,000, respectively, while the volatility
decreases by 78.1% and 71.8%, respectively.
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4.2.3. Scheme 3

Figure 20 illustrates the uncertainty analysis for Scheme 3 of Case 2. The upper limit
of the construction period and cost are 764.5 d and ¥1.517 × 108, respectively. The GA-PSO
algorithm can provide the best quality in terms of mean and median values. In addition,
volatility is reduced by 97.0% and 85.7% compared to PSO and GA, respectively.
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4.2.4. Scheme 4

Figure 21 illustrates the uncertainty analysis for Scheme 4 of Case 2. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 1.8% and 5.5%, and 2.2%
and 5.9%, respectively, while decreasing the volatility by 85.8% and 66.3%, respectively.
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4.2.5. Scheme 5

Figure 22 illustrates the uncertainty analysis for Scheme 5 of Case 2. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 2.1% and 4.7%, and 2.0%
and 5.0%, respectively, while decreasing the volatility by 77.8% and 30.9%, respectively.
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4.2.6. Scheme 6

The uncertainty analysis for Scheme 6 of Case 2 is illustrated in Figure 23. Com-
pared to PSO and GA, the GA-PSO algorithm improves the mean and median by 2.4%
and 7.8%, and 1.7% and 7.9%, respectively, while decreasing the volatility by 95.6% and
88.0%, respectively.
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4.3. Case 3
4.3.1. Scheme 1

Figure 24 shows the uncertainty analysis for Scheme 1 of Case 3. The upper limit
of construction cost and lower limit of quality are ¥2.492 × 106 and 0.8359, respectively.
Compared to PSO and GA, the GA-PSO algorithm reduces the mean and median construc-
tion period by 0.44 and 1.64 days, and 0 and 1.79 days, respectively, while the volatility is
reduced by approximately 100%.
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4.3.2. Scheme 2

Figure 25 shows the uncertainty analysis for Scheme 2 of Case 3. The upper limit of the
construction period and the lower limit of quality are 268.4 d and 0.8359, respectively. Com-
pared to PSO and GA, the GA-PSO algorithm reduces the mean and median construction
cost by ¥1400 and ¥5000, and ¥400 and ¥5100, respectively, while the volatility decreases by
95.0% and 88.3%, respectively.
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4.3.3. Scheme 3

Figure 26 illustrates the uncertainty analysis for Scheme 3 of Case 3. The upper limit
of the construction period and cost are 268.4 d and ¥2.492 × 106, respectively. The GA-PSO
algorithm can provide the best quality in terms of mean and median values. In addition,
volatility is reduced by 55.9% compared to PSO.
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4.3.4. Scheme 4

Figure 27 illustrates the uncertainty analysis for Scheme 4 of Case 3. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 3.0% and 9.1%, and 3.0%
and 9.7%, respectively, while decreasing the volatility by 89.1% and 68.9%, respectively.
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4.3.5. Scheme 5

Figure 28 illustrates the uncertainty analysis for Scheme 5 of Case 3. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 2.5% and 7.9%, and 2.4%
and 8.0%, respectively, while decreasing the volatility by 83.6% and 39.5%, respectively.
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4.3.6. Scheme 6

The uncertainty analysis for Scheme 6 of Case 3 is illustrated in Figure 29. Compared
to PSO and GA, the GA-PSO algorithm improves the mean and median by 2.0% and
13.5%, and 1.2% and 14.1%, respectively, while decreasing the volatility by 69.2% and
20.8%, respectively.
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4.4. Case 4
4.4.1. Scheme 1

Figure 30 shows the uncertainty analysis for Scheme 1 of Case 4. The upper limit of
construction cost and lower limit of quality are ¥2.328 × 106 and 0.8782, respectively. Com-
pared to PSO and GA, the GA-PSO algorithm reduces the mean and median construction
period by 4.95 and 9.02 days, and 6.23 and 9.81 days, respectively, while the volatility is
reduced by 79.8% and 43.2%, respectively.
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4.4.2. Scheme 2

Figure 31 shows the uncertainty analysis for Scheme 2 of Case 4. The upper limit of
the construction period and the lower limit of quality are 198.0 d and 0.8782, respectively.
Compared to PSO and GA, the GA-PSO algorithm reduces the mean and median construc-
tion cost by ¥33,400 and ¥28,200, and ¥26,800 and ¥32,700, respectively, while the volatility
decreases by 72.2% compared to PSO.
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4.4.3. Scheme 3

Figure 32 illustrates the uncertainty analysis for Scheme 3 of Case 4. The upper limit
of the construction period and cost are 198.0 d and ¥2.328 × 106, respectively. The GA-PSO
algorithm can provide the best quality in terms of mean and median values, while the
volatility is comparable.
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4.4.4. Scheme 4

Figure 33 illustrates the uncertainty analysis for Scheme 4 of Case 4. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 5.9% and 9.9%, and
7.0% and 10.9%, respectively.
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4.4.5. Scheme 5

Figure 34 illustrates the uncertainty analysis for Scheme 5 of Case 4. Compared to PSO
and GA, the GA-PSO algorithm enhances the mean and median by 4.7% and 9.1%, and
4.9% and 10.2%, respectively.
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The uncertainty analysis for Scheme 6 of Case 4 is illustrated in Figure 35. Compared
to PSO and GA, the GA-PSO algorithm improves the mean and median by 14.9% and
14.6%, and 17.4% and 15.1%, respectively, while decreasing the volatility by 82.9% and
56.4%, respectively.
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4.5. Comprehensive Analysis

Table 10 shows the improvements of the proposed GA-PSO compared to PSO and
GA for all cases. For the first three schemes, i.e., making the third objective as good
as possible while constraining the two objectives, GA-PSO can provide the optimized
solution to shorten the construction period by 0.44–4.95 days and 1.64–9.02 days, reduce
the cost by ¥1400–33,400 and ¥5000–166,000, and improve the quality by 0.0028–0.0101 and
0.0009–0.0244, respectively, compared with PSO and GA. For the last three objectives, i.e.,
the three objectives are weighted to form a composite indicator, GA-PSO improves the
optimized solution by 4.3% and 8.5% compared to PSO and GA, respectively. Furthermore,
GA-PSO can significantly diminish the volatility of optimized solutions. Compared to PSO
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and GA, GA-PSO reduces volatility by 62.3% and 19.5% for the first three schemes and
66.5% and 55.6% for the last three schemes, respectively. In summary, the proposed hybrid
algorithm can reduce volatility by 64.4% and 37.5%, respectively, compared to PSO and GA.
The results show that compared to the existing methods, the proposed method provides
a superior and more stable solution when performing multi-objective optimization for
construction projects. The main reason is that the original GA and PSO can easily fall
into the local optimum, while the proposed GA-PSO can break through the low-resolution
limitation of the original GA and provide quite good initial particles for the PSO, thus
always obtaining the optimization results with better performance.

Table 10. Improvements of proposed GA-PSO for all cases.

Case Scheme
Performance Volatility

PSO GA PSO GA

1

1 1.18 d 2.26 d 73.8% 42.1%
2 ¥22,000 ¥36,000 −7.0% −5.8%
3 0.0028 0.0009 45.4% −66.7%
4 3.4% 5.3% 100% 100%
5 4.1% 5.7% 100% 100%
6 4.8% 8.6% 100% 100%

2

1 1.71 d 3.69 d 68.2% 39.8%
2 ¥20,000 ¥166,000 78.1% 71.8%
3 0.0030 0.0072 97.0% 85.7%
4 1.8% 5.5% 85.8% 66.3%
5 2.1% 4.7% 77.8% 30.9%
6 2.4% 7.8% 95.6% 88.0%

3

1 0.44 d 1.64 d 100% 100%
2 ¥1400 ¥5000 95.0% 88.3%
3 0.0101 0.0244 55.9% −39.1%
4 3.0% 9.1% 89.1% 68.9%
5 2.5% 7.9% 83.6% 39.5%
6 2.0% 13.5% 69.2% 20.8%

4

1 4.95 d 9.02 d 79.8% 43.2%
2 ¥33,400 ¥28,200 72.2% −48.9%
3 0.0031 0.0037 −10.5% −76.2%
4 5.9% 9.9% −45.6% 57.7%
5 4.7% 9.1% −40.6% −61.8%
6 14.9% 14.6% 82.9% 56.4%

5. Conclusions

A novel hybrid approach combining improved GA and PSO is proposed to optimize
construction projects, and various construction projects and optimization targets are studied
in-depth. The main findings of this paper can be summarized as follows:

(1) Compared with existing PSO and GA methods, the proposed GA-PSO improves
the optimization performance by shortening the construction period by 0.44–9.02 d,
reducing the cost by ¥1400–166,000, and enhancing the quality by 0.0009–0.0244
when constraining the two objectives while optimizing the third objective, while
improving the performance by 4.3–8.5% when utilizing comprehensive multi-objective
optimization targets.

(2) The proposed GA-PSO can reduce the volatility of optimized plans by 19.5–66.5%
compared to PSO and GA.

(3) In the comprehensive analysis, the proposed multi-objective hybrid optimization
algorithm can improve the optimized construction plan by 4.3–8.5% and, meanwhile,
decrease the volatility of the optimized plan by 37.5–64.4%, which can provide a
reference for the optimization of construction organization of the construction project.
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The main difference in optimization for different projects is the calculation of the fitness
function. Although the multi-objective optimization method for construction engineering
proposed in this paper is better compared with the existing methods, the provided scheme
does not take into account the continuity of the actual construction, such as the duration
of the programmed process may be an integer multiple of 1 h, for example, 3 h or 12 h.
Therefore, there is a subsequent need to take into full consideration the constraints of the
construction process and the feasibility of multi-objective optimization design.
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