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Abstract: As global energy demand rises and climate change poses an increasing threat, the devel-
opment of sustainable, low-carbon energy solutions has become imperative. This study focuses on
optimizing shared energy storage (SES) and distribution networks (DNs) using deep reinforcement
learning (DRL) techniques to enhance operation and decision-making capability. An innovative
dynamic carbon intensity calculation method is proposed, which more accurately calculates indirect
carbon emissions of the power system through network topology in both spatial and temporal dimen-
sions, thereby refining carbon responsibility allocation on the user side. Additionally, we integrate
user-side SES and ladder-type carbon emission pricing into DN to create a low-carbon economic
dispatch model. By framing the problem as a Markov decision process (MDP), we employ the DRL,
specifically the deep deterministic policy gradient (DDPG) algorithm, enhanced with prioritized
experience replay (PER) and orthogonal regularization (OR), to achieve both economic efficiency and
environmental sustainability. The simulation results indicate that this method significantly reduces
the operating costs and carbon emissions of DN. This study offers an innovative perspective on
the synergistic optimization of SES with DN and provides a practical methodology for low-carbon
economic dispatch in power systems.

Keywords: shared energy storage; ladder-type carbon price; low-carbon optimal scheduling; deep
reinforcement learning; deep deterministic policy gradient algorithm

1. Introduction

As global energy demand rises and climate change poses an increasing threat, the de-
velopment of sustainable, low-carbon energy solutions has become imperative. According
to the International Energy Agency (IEA) [1], global energy demand is expected to nearly
double in the next two decades, while the latest assessment report of the United Nations
Framework Convention on Climate Change (UNFCCC) highlights the need for significant
reductions in greenhouse gas emissions in order to limit the rise in global temperature to
more than 1.5 °C [2]. Direct carbon emissions refer to the greenhouse gases emitted by
power generation companies during energy consumption and production processes, which
can be directly controlled and managed. In contrast, indirect carbon emissions are those
resulting from the energy (such as electricity, steam, heating, and cooling) purchased by
companies. Although these emissions are not produced directly by the companies, they are
intrinsically linked to their operations.

The power sector is the largest consumer of energy, making it crucial to control
and reduce user-side indirect carbon emissions, particularly on the distribution network
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side. This not only helps to decrease the overall carbon footprint but also promotes the
sustainable development of the energy supply chain. Low-carbon optimization refers
to the systematic approach taking the objective of minimizing carbon emissions across
various operational processes while maintaining or enhancing system performance. In the
context of energy systems, this involves the optimization of energy production, distribution,
and consumption to reduce both direct and indirect carbon emissions. Kang et al. [3]
introduced a method for calculating indirect carbon emissions in power systems using
a carbon emission flow model. This approach refines the calculation of carbon emission
intensity to smaller spatial and temporal granularities, clarifying the concept of indirect
carbon emission flow. Building on this, utilizing locational marginal prices and dynamic
carbon intensity signals has demonstrated economic and environmental benefits within
distribution networks (DN) [4]. Moreover, a low-carbon economic dispatch model enhances
energy flexibility and decreases pressure in these networks [5]. Additionally, a tiered carbon
emission model, addressing uncertainties in wind, photovoltaic generation, and loads, has
been developed to minimize emissions and costs within a carbon trading framework [6].
Finally, a production simulation method that integrates diverse energy outputs with a
carbon trading mechanism has also been proposed [7], paving the way for advances in
energy system optimization.

By integrating advanced smart grid technology, renewable energy, and energy storage
systems, DN can respond more flexibly to complex and variable energy demands [8,9]. This
integration can not only promote the widespread use of renewable energy but also enhance
the system’s flexibility in responding to fluctuations in energy demand, thereby providing
more reliable and efficient power services [10]. Applying various scheduling strategies and a
dynamic carbon emission trading system, the efficient maximization of renewable energy for
power generation and the reduction of carbon emissions have been achieved [11]. Mitigating
indirect carbon emissions on the user side is crucial. However, research on user-side SES
systems has not fully considered the application of dynamic carbon emission intensity. The
importance of dynamic carbon emission intensity in storage operation strategies are not well
addressed. Thus, this paper aims to explore the effective integration of dynamic carbon factors
and carbon emission flow theory into user-side shared energy storage—distribution network
systems, addressing the research gap in this critical area.

On the distribution network side, the application of energy storage systems, par-
ticularly within user-side shared energy storage—distribution grids, has proven effective
in reducing user electricity costs and decreasing indirect carbon emissions. To enhance
this, a proposal suggests utilizing energy storage efficiently and safely as a flexible grid
asset by employing an energy management system (EMS) and optimization techniques to
deliver various electric power services to users [12,13]. Furthermore, ref. [14] introduces a
double-layer optimal distribution method for the cooperative optimization of distributed
shared energy storage within networks, along with a corresponding operational model.
Simulation analysis of numerical examples verifies the effectiveness and economic viability
of this proposed configuration method.

Unlike traditional models that dedicate energy storage to individual users, “User-Side
Shared Energy Storage-Distribution Grids” offer a modern approach by pooling storage
assets to serve multiple users within a distribution network. This system is managed
by a centralized EMS, which optimizes energy distribution based on real-time demand,
pricing, and carbon emission signals [15,16]. This setup not only enhances system flexibility
but also significantly improves the efficiency of energy storage utilization. By sharing
storage costs and leveraging load complementarity among users, these systems effectively
reduce the overall carbon footprint [17,18]. Shared energy storage (SES) plays a crucial
role by assessing complementary storage capacities and proposing coordinated operation
strategies to efficiently serve customers [19]. Additionally, using Nash bargaining theory,
a dynamic zonation optimization strategy for centralized SES power stations has been
developed, further enhancing storage utilization and benefiting various stakeholders [20].
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Several existing studies have demonstrated that SES provides considerable advantages
in terms of environmental economic benefits and practical engineering value [21,22] have
shown that SES not only increases the flexibility and efficiency of the system, but also is
a key technology to support the development of low-carbon power grids. This forward-
looking mechanism not only promotes the integration of energy storage resources, but
also increases the flexibility and efficiency of the system, making SES a key component to
support low-carbon power grids. The development and implementation of low-carbon
optimization strategies has become a necessary measure to reduce environmental impact,
and SES shows great potential to address climate change by reducing carbon emissions [23].
A double-layer carbon-aware planning method for SES stations for multi-component
integrated energy systems was proposed [24]. The conditional value-at-risk method was
adopted as a risk measurement to effectively reduce the carbon emissions and system
operating costs of SES stations. A power system interval optimization model based on SES
and refined demand response is proposed to effectively deal with the uncertainty of source
load through interval optimization and enhance the utilization rate of energy storage as
well as the overall system economy [25].

However, traditional optimization algorithms struggle with high computational com-
plexity, dynamic environments, and uncertainty in distribution network (DN) optimization
problems [26]. With advancements in artificial intelligence, deep reinforcement learning
(DRL) has emerged as a powerful tool for optimizing the operations of SES and DNs [27].
DRL’s ability to learn and adapt through continuous interaction with complex, dynamic
environments makes it particularly well-suited for DN optimization. This study specifi-
cally employs the deep deterministic policy gradient (DDPG) algorithm, a sophisticated
DRL technique, to revolutionize optimization and decision-making processes within these
systems. DDPG excels in handling complex optimization problems, adapting to dynamic
environments, managing uncertainties, and being model-independent, thus providing SES
and DN operators with highly flexible and efficient decision support tools [28,29]. As a
model-free reinforcement learning algorithm, DDPG can independently learn and make
decisions across successive actions and states [30]. Studies have shown that DRL agents
outperform stochastic optimization algorithms in extensive action and observation spaces
and can effectively manage uncertainty with high accuracy [31].

By integrating Lyapunov optimization strategies with DDPG, the challenges of real-
time operation in wind-storage integrated systems (WSISs) are effectively addressed, partic-
ularly under conditions of uncertainty and fluctuating electricity prices [32]. Case studies
demonstrate the effectiveness of DDPG in enhancing power system efficiency and reliabil-
ity [33]. Additionally, a reward function based on the long-term behavior of energy systems
enables optimization of online scheduling by learning the operational modes of renewable
energy generation and grid dynamics [34]. This demonstrates that DRL not only enhances
SES efficiency but also supports the low-carbon transformation of DN, offering significant
economic and environmental benefits.

Traditional power grids face challenges in achieving environmentally friendly, low-
carbon operations while maintaining a stable power supply. [35].Although previous studies
have utilized various advanced deep reinforcement learning algorithms to optimize power
system scheduling, few have simultaneously considered dynamic carbon emission intensity,
photovoltaic generation uncertainty, and shared energy storage for low-carbon economic
dispatch. To achieve the dual goals of economic efficiency and environmental sustainability
in energy systems, this study aims to apply the DDPG algorithm with prioritized experience
replay and orthogonal regularization to achieve low-carbon optimization of shared energy
storage and DN under the conditions of uncertain carbon intensity and photovoltaic
output, ensuring real-time adaptability to fluctuating carbon intensities and renewable
energy outputs.

The main contributions of this study are as follows:

1.  To address the uncertainties in carbon emission intensity of the main grid and the
photovoltaic generation output within the DN, a low-carbon optimization model is
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proposed. This model incorporates tiered carbon trading and considers the dynamic
carbon emission intensity, aiming to optimize the operation of SES operators in
conjunction with the DN.

2. Based on the aforementioned model, the DDPG algorithm with prioritized experience
replay and orthogonal regularization is employed, which improves the convergence
and stability of the algorithm. This approach ensures real-time adaptability to fluctu-
ating carbon intensities and renewable energy outputs.

2. Problem Description and Framework

The framework of this study is illustrated in Figure 1. Within the DN, various dis-
tributed energy resources, energy storage systems, and photovoltaic (PV) installations are
distributed. The battery energy storage systems (BESS) in user microgrids are managed
by a SES operator, ensuring efficient utilization and management of energy resources. All
users within the DN participate in the carbon emission rights trading market, leveraging
market mechanisms to optimize and control carbon emissions, thus promoting low-carbon
development goals.

(T T T T T r ____________________________
Distributed Network
V4

5
2

47— —————— - —————————— | ————— -~

SES Microgrid

Carbon Market
M Carbon Emission Right Trading Price 5;
)

<—» Electricity Flow <—— Carbon Flow <« —=—= =9 Information
Figure 1. Shared energy storage-distribution system framework.

Notably, the DN is connected to the main grid, which provides time-segmented carbon
emission intensity data. Combined with the internal energy structure of the DN, the carbon
emission intensity within the entire DN dynamically changes. This dynamic characteristic
allows the DN to flexibly adjust its operational strategies, optimize carbon emissions, and
maximize the use of low-carbon energy at different times, thereby achieving more efficient
carbon emission management and energy utilization.

2.1. Distribution Network Modeling

The objective function of the economic low-carbon dispatch problem is demonstrated
in (1), aiming to minimize the total cost. This objective function consists of four terms,
including the cost of power purchased from the higher grid by distribution grid users Ck .,

the cost of gas turbine operation by microgrid users in the system C;S,i' the profit of the SES
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service provider C; BESS , and the cost of carbon trading for the system segmented carbon
price C!,, as deta11ed in (14).

T
minzr:z< Y CE+ £ C5+ ¢ CBESS+C§€)

t=1\icQAPN " ieQG " keQBESS
2
L APEPLAE © (@i(PGAN” + bPGAL+c;) 1
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o R R A
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where Q4PN is the set of all power buses in the system; QC is the set of consumer gas
turbines in the system; QBESS ig the set of SES; )LELE is the time-of-use tariffs; P t is the
nodal consumer loads; Pg,t is the generator outputs; a;, b;, and c; are the cost coefficients;
P,f’fE is the charging power of SES; P‘{’f is the discharging power of SES; and ABESS is the cost
of operation of SES, taking into account the lifetime of the batteries.
The constraints are established as follows.
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where P;; ; is the power flowing through the branch; r;; is the branch resistance; /;; is the
square of the current flowing through the branch; PY"C is the inflow power from the higher
grid; Pﬁ V is the active power output from the PV inverter; Qg/t is the reactive power load
at the bus; Qjj; is the reactive power flowing through the branch; Qup G is the reactive
power inflow from the higher grid; Q 1 is the reactive power output from the PV inverter;
Q¢ o+ is the reactive power output from the user’s micro-gas turbine; Sg‘ax is the maximum
capacity of the line; v;; is the square of the bus voltage; V™" and V;™®* are the minimum
and maximum values of the bus voltage; Il-r]‘-‘m and I};‘ax are the minimum and maximum
values of the branch current; P,fh’min and P,gh’max are the minimum and maximum values

d P]f 5MAX 4re the minimum and maximum values of

of the charging power; Pkdis,min an
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the discharging power; Pg'min and PgG'maX are the minimum and maximum values of the
microgrid users’ gas turbine output.

Equations (2) and (3) denote the system’s active and reactive power balance equations,
respectively, ensuring that the total generated active and reactive power equals the total
consumed active and reactive power within the distribution network. This balance is
crucial for maintaining system stability. Equation (4) denotes the line capacity constraint,
ensuring that the power flow through each line does not exceed its maximum capacity.
Equation (5) denotes the bus voltage balance, ensuring that the voltage at each bus remains
within acceptable limits. Equation (6) represents the bus voltage magnitude constraint,
ensuring that the voltage magnitude at each bus stays within specified bounds. Equation (7)
denotes the branch current magnitude constraint, ensuring that the current in each branch
does not exceed its maximum limit. Equation (8) denotes the energy storage charging
constraint, which ensures that the charging power of energy storage systems remains
within their capacity limits. Equation (9) denotes the energy storage discharge constraint,
ensuring that the discharge power of energy storage systems does not exceed their capacity.
Equation (10) denotes the user microgrid gas turbine output constraint, which limits the
power output of gas turbines in microgrids. Equation (11) denotes the relationship between
the capacity of the energy storage during charging and discharging processes, ensuring
proper coordination between the two. Finally, Equation (12) denotes the capacity constraint
of the BESS, ensuring that the energy storage operates within its designated capacity.

2.2. System Carbon Intensity Calculation

Dynamic carbon emission intensity varies based on the proportion of different energy
sources utilized within the grid, fluctuations in load, and the generation capacity of re-
newable energy sources. Unlike static carbon factors, dynamic carbon emission intensity
provides real-time reflections of the environmental impact of electricity supply, thereby
offering users more accurate data on carbon emissions. The carbon intensity of the system
is given by Equation (13):

thPGCtl,IPG+ %G Pgth
& (13)

Pdis

7

C =
PIPC+ ¥ PG+ L P+ L
gGQG pGQPV keQBESS

where CHPC is the real-time dynamic carbon intensity of the superior grid and C© is the
carbon intensity of the gas turbine of the user microgrid.

2.3. Ladder-Type Carbon Emission Right Trading

Simulating a real carbon emission market trading scenario is complex; hence, the
ladder-type carbon trading approach, which is widely accepted [36,37], is used to mimic
real-world carbon trading scenarios. This method follows the market principle that the
scarcer the commodity, the higher the price, while maintaining a constant total quantity.
The total carbon emissions AQ = i (C( ¢ Pil,t + Y P,f’})) are calculated at the

t=1 icQADN ke(QBESS 7
end of all scheduling periods of the day, and then the growth interval d and the growth
rate of the carbon trading cost A are determined based on the historical data. The higher
the carbon emissions, the higher the corresponding carbon trading price. Equation (14)
denotes the ladder-type carbon emission trading cost.

e, AQ,0 < AQ < d

eld+ (1+A)el,(AQ—d),d < AQ < 2d

ebod + (14 A)el,d + (1 +2)0)el, (AQ — 2d),2d < AQ < 3d

ehod + (1+ A)el,d + (1 +2A)eld + (1 +37)el, (AQ — 3d), AQ > 3d

Cl, = (14)
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3. Markov Decision Process Framework of Dynamic Dispatch

In this study, deep reinforcement learning is utilized to solve the low-carbon economic
dispatch problem of a distribution grid-SES system. First, the mathematical formulation of
this low carbon economy scheduling problem is transformed into the MDP framework for
reinforcement learning. The design of state space, action space, and reward function is included.

A Markov decision process (MDP) [38] is a mathematical model used to describe
decision-making in environments that involve randomness and decision-making. In re-
inforcement learning and decision theory, MDP provides a systematic framework that
allows complex decision problems to be solved through mathematical and algorithmic
methods. An MDP typically consists of the following four components: State Set (S):
A set representing all possible states the system can be in. At any given time, the system
is in a specific state. Action Set (A): A set representing all possible actions. The agent
(decision-maker) can choose an action a € A in each state s. State Transition Probability
(P): This describes the probability of transitioning from one state to another. Specifically,
P(s' | s,a) represents the probability of transitioning to state s’ after taking action a in
state s. Reward Function (R): This describes the immediate reward received after taking a
specific action in a specific state. It is usually represented as R(s, a), which is the reward
received after taking action 4 in state s. The MDP framework in our study is designed to
optimize the low-carbon economic dispatch of the SES—distribution grid system. The state
space includes variables such as electrical load, energy prices, carbon emissions, and the
state of charge of the SES. The action space comprises the control actions for the SES and
microgrid generators. The reward function is designed to minimize the total operating cost
and carbon emissions, incorporating penalties for violating constraints.

The agent obtains state observations s; through interaction with the actual environ-
ment, and these observations provide key data for effective training of the agent based
on the perceived state information. The study utilizes a 24 h time frame, during which
the system observations collected include electrical load data at a specific time period
(period t), energy prices, carbon emissions trading volume, tiered carbon prices, and the
state of charge of the BESS system. For this problem, the state can be expressed as

5 = {p}/t, Pir, ke, AFLE,SOC,EEEf,AQ},Vk c O (15)
The scheduling objective is to determine the optimal SES as well as PV and wind

generation outage scenarios, and the set of actions is denoted as A;, a; € A;. Actions in
low-carbon scheduling can be expressed as follows:

a = { PeH?, ,5555},\@ € 0F,vk € OK (16)

gLt 77 g2t 77 g3t

: BESS __ BESS pBESS pBESS pBESS pBESS :
bine, and Pk,t = {Pkl,t , Pk2,t , Pk3,t , Pk4,t , Pk5,t } denotes the action of each storage

where chrflp = {PCHP pCHP pCHP } denotes the action of each microgrid user’s gas tur-

battery for SES. A is the continuous action space that satisfies the energy and capacity
constraints that satisfy the action constraints.

The state transfer is p(s;+1 ‘st, .At) , and in any time step, state s; and action a; for a
given time step f are transitioned to the next state s;1 via the distribution grid-SES.

The reward received by the intelligent agent during the time period ¢ is given by
the environment in order to guide the intelligent agent to update its strategy to minimize
the carbon trading price and operation cost to achieve the goal of low-carbon economy
operation by designing a suitable reward function. After the agent makes an action and
interacts with the environment, the environment gives it a reward value.
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The reward function contains five terms: the first four terms correspond to the objective
function of the modeling approach in Section 2 as Equation (1), C!, is added to the reward
in the last step of each episode as the settlement of daily carbon emissions trading, and the
last term is the penalty term for constraint Equations (10) and (12).

(17)

)
+ (MEPESS + A2Pg))

4. DDPG Algorithm for Online Dispatch Problem

This study uses the DDPG algorithm enhanced with prioritized experience replay
(PER) and orthogonal regularization (OR) to solve the above MDP problem, and works to
learn the optimal economic low-carbon green scheduling strategy. DDPG combines the ad-
vantages of deep learning (DL) and reinforcement learning (RL), and is particularly suitable
for dealing with problems in continuous action space. The algorithm mainly consists of
two parts: the strategy network p(s|6#) and its corresponding goal network (s|6"'); and
the value network Q(s¢, (s¢)|69) and its corresponding goal network Q(sy, pi(s¢)|09).

The policy network generates the action a; based on the current state of the environ-
ment s;, while the value network evaluates the expected payoff of this action for taking a
particular action under the current policy. Thus, the strategy network is trained to maximize
the action evaluation given by the value network:

r%%x](@”) (18)

where ](9}4) = Es,NPﬁ [Q(Sra QQ) s:s[,u:y(st\(?l‘)]
The gradient rise is utilized to increase J(6*), as shown in Equation (19):

Vo] = K, o [VWQ( ,
LN {m( Q)

QQ) ’s:st,u:M(StW”)} (19)

s=st,a=pu(st) Vgﬂ I3 (S ‘ 9”) ‘s:st
Thus, the algorithm for updating the policy network 6/ is obtained by randomly
drawing one state at a time from the replay buffer, denoted as s;, computing 4; = y(s]-|9V) ,

and updating 0 once with gradient ascent, as shown in Equation (20).
0" <« 0" + B-V,Q(s,a|69) (20)

s=sy,a=p(st)

Vo (s0")]

The value network Q(s;, p(st ]9Q ) learns to update the parameters 69 by temporal
difference (TD) learning errors, and each time, a quaternion (s/,a/, 7/, s]H) from the replay
buffer computes the predicted values Q(s¢, a;|62) and Q(s¢11, (5141 ‘GQ ) of the target
value network, and then computes the TD target as shown in Equation (21).

ye = r(st,a1) +7Qs141,m(s111)[69) @)

The loss function is defined as shown in Equation (22):

L(69) = %(Q(St, at‘GQ) - yt)z (22)
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The computed gradient is used to update the parameters 69 of the value network as
shown in Equation (23):

Voo L(09) = (Qlst,a1[62) = y1) Voo Qls, a:|69) 23)
The parameter updates for the strategy network are calculated as shown in Equation (24):
02+ 69 — - (Q(St,at‘GQ) - yt)veQQ(Strat‘eQ) (24)

In order to improve the stability and convergence of training, the parameters of the
two networks are updated using soft update, for the target strategy network and target
value network, the parameters are updated as shown in Equations (25) and (26).

O 10"+ (1—1) -0 (25)

0% « 7-6° 4+ (1—1) 0¥ (26)

where T << 1 is the soft update rate, which reduces the impact of abrupt changes in
network parameters on the training process by slowly adjusting the parameters of the
target network to gradually converge to those of the actual network.

Prioritized experience replay (PER) [39] enhances the efficiency of reinforcement
learning by selectively sampling experiences that are more informative. Unlike uniform
sampling in traditional experience replay, PER assigns higher sampling probabilities to
experiences with larger temporal difference (TD) errors. This focus on high-priority ex-
periences accelerates learning and stabilizes the training process. In our study, PER is
integrated into the DDPG algorithm, which helps the model learn more effectively from
the most significant experiences. The priority of each experience is given by Equation (27):

pi= (6i+e)" (27)

Orthogonal regularization (OR) [40] is employed to improve the generalization and
stability of neural networks by maintaining the orthogonality of weight matrices. This
method helps prevent overfitting and enhances the robustness of the learned policies. By
incorporating an orthogonal regularization term into the loss function, we encourage the
weight matrices to remain orthogonal, thus improving the performance of deep learning
models. In our implementation, OR is added to the DDPG algorithm, ensuring that the
neural network weights are regularized throughout training. The orthogonal regularization
term is defined as Equation (28):

A
Lor = D) Z || WiTWi =1 ||12E (28)
1

where W; is the weight matrix of the i-th layer, [ is the identity matrix, A is the regularization
coefficient, and || - || denotes the Frobenius norm. This addition helps stabilize the learning
process and enhances the algorithm’s ability to handle uncertainties in low-carbon energy
dispatch scenarios.

When the DDPG agent completes the offline training, only the trained policy network
is used to make decisions, and the Agent can make online decisions through its own
observation, which is based on the state in the observation area, and online decisions at
the millisecond level are made through the already trained policy network. The overall
block diagram of the algorithm based on DDPG for the joint low-carbon optimization of
the user-side SES—distribution network is shown in Figure 2.
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Figure 2. Block diagram of DDPG algorithm.

5. Case Analysis
5.1. Simulation Experimental Settings

This study validates the effectiveness of the proposed joint user-side SES-distribution
grid low-carbon optimized online scheduling on a modified IEEE 33-bus distribution grid.
A total of five grid-connected SES charging stations, three user microgrid gas turbines, and
five PV power generation plants configured with inverters are located on the distribution
grid, as shown in Figure 3. The load data of each bus are shown in Figure 4.

/g%\

Utility Grid

Adjusted Power Size

Figure 4. Twenty-four-hour load variation at each bus.
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In this study, the RL algorithm is used to train and learn the low-carbon economy
strategy, and the training is based on Python 3.6, Pytorch 2.1.2, Pandapower 2.13.1, and
Gymnasium 0.29.1.

The 24 h carbon intensity is derived from the data released by a real-time carbon
emission platform in a province in China, and the electricity price is set as a one-day
time-of-day tariff in a region. In the DN scenario, the adjustment range for the energy
storage system and micro-gas turbine are set to [—-300, 300] kW and [0, 300] kW, respectively
(Tables 1 and 2).

Table 1. Settings of the hyperparameter.

Hyperparameter Value Hyperparameter Value
AC $500/MWh neh 0.95
cC 0.55 t/MWh pis 0.8

Table 2. Settings of the proposed algorithm.

Hyperparameter Value Hyperparameter Value
Total training episode 2 x 10 Steps/episode 24
Learning rate (actor) 4x10°4 T 0.01
Learning rate (critic) 4x10% Gamma 0.96
Hidden layer dimension 256 Buffer size 10°
Orthogonal initialization v Pr}orltlzed v
experience replay
Network Structure
Linear layer — layer normalization — ReLU — linear layer —
Actor .
ReLU — linear layer — tanh
Critic Linear layer — layer normalization — ReLU —linear layer —

ReLU — linear layer

5.2. Analysis of Offline Training Effect

During offline training, Figure 5 illustrates the reward curve of the system’s integrated
reward using both the traditional DDPG and the improved DDPG (proposed) algorithm.
The results show that in the first 10,000 episodes, the agents are in the exploratory stage,
with significant fluctuations in rewards as they learn to navigate the action space. After
approximately 10,000 episodes, the rewards of the agents begin to stabilize, indicating that
they have learned effective policies for the given tasks.

The blue curve represents the proposed DDPG algorithm, enhanced with prioritized
experience replay (PER) and orthogonal regularization (OR), while the orange curve repre-
sents the traditional DDPG algorithm. The improved DDPG (proposed) algorithm demon-
strates the same rapid convergence and higher final rewards compared to the traditional
DDPG. The remaining fluctuations after stabilization are primarily due to the inherent
randomness of the exploration noise and the uncertainty imposed by the system during the
training process. These results underscore the success of the proposed improvements in
boosting the learning efficiency and robustness of the DDPG algorithm, which incorporates
PER and OR.
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Figure 5. Training curve of DDPG algorithm.
5.3. DDPG Online Decision Effect Analysis

The agent’s strategy network, trained for online decision making, is applied, and Figure 6
illustrates the carbon intensity of the main grid and the SES—distribution grid system at various
times of the day, along with the actual emission reductions per hour. The figure reveals
significant carbon reduction effects from 6:00 to 19:00, primarily due to the introduction of
photovoltaic systems and the SES releasing stored energy during periods of lower carbon
intensity. The orange line indicates the carbon intensity of the main grid, which remains
relatively stable throughout the day, fluctuating between 0.5 and 0.6 t/MWHh. The blue line
represents the carbon intensity of the SES—distribution system, showing more variability
compared to the main grid, with significant dips during certain periods (e.g., around 5:00-6:00
and 15:00-16:00). These dips coincide with periods when the SES likely discharges stored
energy, reducing reliance on the main grid and thus lowering carbon intensity.

Notably, our carbon intensity reduction is calculated based on the difference between
the main grid’s carbon intensity and the DN’s carbon intensity, multiplied by the total load
at that time. Therefore, it can be seen that when the distribution grid’s carbon intensity is
lower (e.g., 8:00-15:00), the overall emission reduction of the system is considerable. From
another perspective, the high proportion of clean energy in the distribution grid during
these periods results in very low overall carbon intensity, significantly reducing indirect
carbon emissions.

Moreover, the system’s agent control strategy not only leverages clean energy during
periods of low carbon emissions but also effectively avoids dependence on the main grid
during high carbon emission periods (e.g., after 19:00), thereby achieving further emission
reduction goals. This strategy not only enhances energy utilization efficiency but also
significantly reduces overall carbon emissions. Further analysis of the data in Figure 6
reveals that during nighttime periods (e.g., 21:00-24:00), although the carbon intensity of
the main grid is lower, the demand is relatively low, allowing the SES to continue providing
power, thereby reducing reliance on the main grid and preventing potential increases in
carbon emissions. This indicates that the optimized scheduling of the SES plays a crucial
role in achieving low-carbon operation around the clock.

Figure 7 mainly shows the operation of the SES system under a time-sharing tariff. It
can be seen that in the lower-tariff phase (0:00-7:00, 12:00-13:00), the agent controls the SES
system to charge, and in the higher-tariff phase (9:00-11:00, 14:00-23:00), the agent controls
the SES system to discharge, and due to the existence of the soft constraint of power, the
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state of charge (SOC) is maintained in the interval of 0.2-0.8; the SOC is maintained below

0.8 during charging and above 0.2 during discharging.

—e— Actual Carbon Factor(t/MWh)
Grid Carbon Factor(t/MWh)

0.6 /\

Reduced Emissions Hourly

/\ ) 2.00

175

0.5

04

Carbon Factor(t/MWh)

Reduced Emissions(t)

0.2

0.1

10 15 20
Time(h)

Figure 6. Carbon intensity and actual emission reductions of the main grid DN by time period.
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Figure 7. Correspondence between the carbon intensity of the main grid DN and the regional PV
generation in each time period.

In fact, it is worth noting that Figure 7 shows the presence of energy storage #4 with
an SOC above 0.8 at 7:00, as well as an SOC below 0.2 at 11:00 and 23:00. It occurs due
to a combination of carbon intensity and electricity price. At these moments, the system
exceeds the soft constraint because the profit from exceeding the constraint is greater than
the amount of penalty set by the soft constraint. Therefore, the system chooses at some
moments to exceed the operational lifetime constraint of the energy storage in order to
obtain a correspondingly high profit.

The main focus of Figure 8 is to illustrate the substantial reduction in carbon intensity
achieved by the system through the implementation of SES. By comparing it with Figure 9,
a more comprehensive understanding can be gained regarding the pivotal role played
by the SES system in mitigating carbon emissions during specific time periods where PV
energy does not contribute (0:00-5:00 and 19:00-24:00). Of these time periods, of particular
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interest are 2:00-3:00 and 19:00-23:00, where the system demonstrates the clear carbon
reduction effect of energy storage. The realization of this carbon reduction effect can be
traced back to the intelligent scheduling strategy of the SES system. When PV energy is
unavailable, the energy storage system effectively stores electricity by charging during
periods of low grid demand (e.g., early morning hours). During periods of peak grid
demand, especially in the evening, the SES system intelligently releases the stored power,

thereby reducing the overall carbon intensity of the system (Table 3).
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Figure 8. Correspondence between the carbon intensity of the main DN and the change in the state

of charge of the SES for each time period.
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Table 3. Algorithm results.
Result
Algorithm
Target Convergence Result Training Time Decision Time
DDPG (proposed) 2561.656 22 h 26 min 0.678 s
DDPG 2009.749 8 h 37 min 0.683 s
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6. Conclusions

This study is dedicated to exploring optimization strategies to reduce DN costs and
carbon emissions. We address the system uncertainty caused by the high percentage of
renewable energy access and the variability of the dynamic carbon factor in the main grid.
By incorporating real-time dynamic carbon factors, our approach enables more accurate
assessments of carbon emissions associated with electricity consumption, facilitating timely
adjustments in energy dispatch and consumption patterns. To this end, we propose a joint
SES operator-distribution grid low-carbon optimization model that considers ladder-type
carbon trading and utilizes the DDPG algorithm enhanced with PER and OR to achieve the
dual goals of economic efficiency and environmental sustainability.

We first propose an optimization framework that considers SES and all-day carbon trading
costs to minimize operating costs and carbon emissions. Second, by formulating the scheduling
problem as a MDP, the observed states, scheduling actions and reward functions of the system
are explicitly defined. Finally, the DDPG algorithm is used for low-carbon economy scheduling.
The simulation results of this study validate the proposed method’s effectiveness in reducing
both the operating cost of the power system and carbon emissions.

This study provides an innovative perspective to synergistically optimize SES with
the distribution grid, and also offers a practical methodology for achieving low-carbon
economic dispatch of the power system. Through a series of simulation experiments, the
study confirms the significant effectiveness of the proposed methodology in reducing
power system operating costs and reducing carbon emissions, providing an innovative
perspective and a practical methodology for the low-carbon optimization of SES with
distribution grids.

Future research directions include investigating the scalability of the proposed low-carbon
optimization model in larger, more complex DNs and its deployment in real-world scenarios to
provide valuable insights into its practical applications and limitations. Additionally, exploring
multi-agent systems for the coordination and optimization of multiple shared energy storage
operators and distributed energy resources could enhance the overall efficiency and robustness
of the grid. Furthermore, studying the impact of consumer behavior and demand response
on the effectiveness of low-carbon optimization models could lead to more accurate and user-
centric strategies, including analyzing how different incentives and pricing strategies affect
consumer participation in demand response programs.
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