

Review

Recent Advances in the Photocatalytic Degradation of Phenol over Bi-Based Oxide Catalysts

Zhangpei Liu ¹ , Maosheng Qian ¹ , Xiaomeng Cheng 2,* and Zhiming Liu 1,*

- ¹ State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- 2 Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
- ***** Correspondence: cxiaomeng@mail.cgs.gov.cn (X.C.); liuzm@mail.buct.edu.cn (Z.L.); Tel.: +86-10-64412787 (Z.L.)

Abstract: Wastewater containing phenolic organic compounds, such as phenol, produced during industrial manufacturing processes, poses a significant threat to aquatic ecosystems and crops. Photocatalytic technology is considered the most promising approach to water treatment due to its efficiency and eco-friendly advantages. Compared to other photocatalysts, Bi-based oxides are more efficient due to their unique layered structure, which allows for photocatalytic reactions to occur between layers. This review introduces the synthesis methods of various bismuth-based multielement oxides and their efficiency in the photocatalytic decomposition of phenol. The effects of elemental doping, defect introduction, and heterojunction construction on the catalytic performance and structure of Bi-based oxides are discussed. The mechanisms for the photocatalytic degradation of phenol over different materials are also summarized and discussed.

Keywords: phenol; photocatalytic degradation; bismuth-based photocatalysts; heterojunction

Citation: Liu, Z.; Qian, M.; Cheng, X.; Liu, Z. Recent Advances in the Photocatalytic Degradation of Phenol over Bi-Based Oxide Catalysts. *Processes* **2024**, *12*, 1799. [https://](https://doi.org/10.3390/pr12091799) doi.org/10.3390/pr12091799

Academic Editors: Jan Derco, Andreja Žgajnar Gotvajn and Angelika Kassai

Received: 28 July 2024 Revised: 9 August 2024 Accepted: 15 August 2024 Published: 24 August 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

1. Introduction

Recently, the acceleration of industrialization has led to wastewater from industrial production processes exerting immense pressure on the environment [\[1\]](#page-17-0). Particularly, phenolic organic pollutants, such as phenol, with high chemical stability and strong biological toxicity, pose significant challenges for effective removal from receiving water bodies, thereby causing severe harm to both the ecosystem and human health [\[2](#page-17-1)[,3\]](#page-17-2). Therefore, the effective treatment of phenolic wastewater is considered a fundamental and challenging task.

Currently, treatments for phenolic wastewater primarily include chemical, biological, physical methods, membrane filtration, and photocatalytic technology [\[4–](#page-17-3)[6\]](#page-17-4). Among them, photocatalytic technology is regarded as an effective method for addressing wastewater pollution. A variety of photocatalysts have been developed and extensively studied. Compared with traditional pollutant treatment technologies, photocatalytic technology offers some advantages, including using sunlight for its driving energy, a renewable resource that ensures no energy shortage [\[7\]](#page-17-5). No chemicals are needed for this process, and it generates potent oxidative free radicals that can completely mineralize pollutants into carbon dioxide and water; furthermore, the photocatalysts are non-toxic and reusable, thereby reducing the costs associated with pollutant treatment [\[8\]](#page-18-0).

Recent years, bismuth (Bi)-based photocatalysts have attracted considerable attention, primarily due to their well-dispersed Bi 6s orbitals. These orbitals result in a narrow bandgap, enabling efficient absorption of visible light and excellent catalytic activity on the visible spectrum [\[9](#page-18-1)[–13\]](#page-18-2). Moreover, the structure of layered Bi-based catalysts, consisting of alternating Bi-O layers and transition metal oxide layers, facilitates weak van der Waals interactions. This structure allows for elemental doping through replacement or insertion,

which alters the composition and charge balance of semiconductors, thereby regulating its absorption ability and enhancing the properties of photogenerated carriers [\[14](#page-18-3)[–16\]](#page-18-4). Additionally, the construction of heterostructures can efficiently separate photogenerate<mark>d</mark> carriers, minimize recombination losses, enhance the migration and reaction capabilities of photogenerated carriers, thereby significantly improving the efficiency and stability of Bi-based photocatalysis [17-21]. In this study, recent research on Bi-based photocatalysts and their heterojunction composites in the degradation of phenol is reviewed. The goal is to provide a detailed discussion on the various design approaches for Bi-based photocatalysts

As a photons with ultraviolet or visible light, photons with ultraviolet or visible light, photons with the li and their mechanisms in phenol degradation, thus shedding light on the design of more
active photocatalysts for the degradation of phanol active photocatalysts for the degradation of phenol. \mathbf{r} , the semiconductor undergoes photoexcitation; electrons transition; electrons t

2. Basics of Photocatalytic Degradation of Pollutants

Within band theory, the energy levels of semiconductor materials are divided into two distinct regions: the valence band (VB) and the conduction band (CB). The energy
difference lattuary these hands is lucary as the bandary or farkid from tondaridth (E) difference between these bands is known as the bandgap or forbidden band width (E_g) . As a photocatalytic material is irradiated with ultraviolet or visible light, photons with $\frac{f_{\text{max}}}{f}$ energy equal to or greater than the forbidden bandwidth are absorbed in its bulk phase. Within femtoseconds, the semiconductor undergoes photoexcitation; electrons transition from the VB to the CB, simultaneously causing holes due to electrons absence. Following to produce α the relaxation process (approximately a picosecond), most electrons and holes recombine, the relaxation process (approximately a pressecond), most electrons and notes recombine,
producing a fluorescence effect and releasing energy, while others migrate from the bulk to the surface of the material. At this stage, photogenerated carriers, specifically electrons (e⁻) and holes $(h⁺)$, are formed [22]. In the aqueous phase, the electron and hole pairs on the surface of the photocatalytic material, excited by light, react with O_2 and H_2O adsorbed on the surface to produce potent oxidative free radicals, namely \cdot O₂^{$-$} and \cdot OH. Owing to the potent oxidizing properties of these active free radicals, they can oxidize waterborne pollutants into CO_2 and H_2O . Detailed reaction processes and the corresponding schematics are illustrated below (Figure [1\)](#page-1-0).

$$
Photocatalysts + hv \rightarrow Electron (e^{-}) + hole (h^{+})
$$
 (1)

$$
Electron (e^-) + hole (h^+) \rightarrow Recombination
$$
 (2)

$$
Electron (e^-) + O_2 \rightarrow O_2^-
$$
 (3)

hole
$$
(h^+)+H_2O \rightarrow OH + H^+
$$
 (4)

hole
$$
(h^+) + \cdot O_2^- \rightarrow {}^1O_2
$$
 (5)

$$
O_2^-
$$
 + $\cdot OH + {}^1O_2$ + Pollutants $\rightarrow CO_2$ + H₂O (6)

Figure 1. A schematic picture of the photocatalytic process and the degradation of pollutant. **Figure 1.** A schematic picture of the photocatalytic process and the degradation of pollutant.

3. Bi-Based Oxide Photocatalysts in Phenol Degradation 3. Bi-Based Oxide Photocatalysts in Phenol Degradation

Bi is a p-block element that belongs to group VA of the sixth period on the periodic Bi is a p-block element that belongs to group VA of the sixth period on the periodic table. Its outermost electron shell consists of 6s²6p³ electrons, with two electrons in the 6s orbital and three in the 6p orbital. The Bi-based multicomponent oxides' photocatalytic orbital and three in the 6p orbital. The Bi-based multicomponent oxides' photocatalytic activities are directly influenced by their electronic and crystallographic properties. The VB activities are directly influenced by their electronic and crystallographic properties. The of Bi-based multicomponent oxides result from the hybridization of O 2p and Bi 6s orbitals. The distortion of the Bi 6s orbitals' lone pair can cause significant overlap with the O 2p orbitals, facilitati[ng](#page-18-8) carrier migration and reducing the bandgap width [23]. Consequently, the bandgap width of these oxides is typically less than 3.0 eV. Given the relative stability of Bi³⁺, much of the research focuses on compounds containing Bi³⁺, such as Bi₂O₃, BiVO₄, $\rm Bi_2MO_6$ (M = Mo, W), BiFeO $_3$, and BiOX (X = Cl, Br[, I](#page-2-0)), as depicted in Figure 2.

Figure 2. Crystal structures of several Bi-based polyoxides. **Figure 2.** Crystal structures of several Bi-based polyoxides.

Owing to their exceptional redox capabilities, efficient solar energy utilization, effective separating photogenerated carriers, and superior photocatalytic performance, the aforementioned Bi-based multicomponent oxides were extensively studied in the degradation of miscellaneous pollutants, incl[udin](#page-18-9)g orga[nic](#page-18-10) phenols [24[\], dy](#page-18-11)es [25], antibiotics [26], and heavy metals [\[27\]](#page-18-12). This section introduces the application of Bi-based oxide photocatalysts for the degradation of phenol in the wastewater.

3.1. Bi2O³

Bi $_2$ O $_3$, with a bandgap width of 2.1–2.8 eV, exhibits good responsiveness to visible light. Bi₂O₃ exists in four phases: monoclinic (α-Bi₂O₃), tetragonal (β-Bi₂O₃), body-centered cubic (γ-Bi₂O₃), and face-centered cubic (δ-Bi₂O₃). Among these, α-Bi₂O₃ and δ-Bi₂O₃ are stable, whereas the others are metastable [\[28\]](#page-18-13). β-Bi₂O₃ exhibits superior photocatalytic activities compared to α -Bi₂O₃, owing to the lower bandgap energy and higher light absorption capability in the visible light region [\[9\]](#page-18-1). However, because β-Bi₂O₃ has a metastable structure, it can easily transform into α-Bi₂O₃ under certain conditions, making the controlled synthesis and catalytic stability of $β$ -Bi₂O₃ challenging.

Li et al. [\[29\]](#page-18-14) prepared pure Bi $_2$ O $_3$ via a simple sol–gel method, which, upon calcination, could form oxygen vacancies serving as photocatalytic active sites. Within 240 min, the degradation efficiency of phenol was merely 31%. Meng et al. [\[30\]](#page-18-15) synthesized α-Bi₂O₃ through a co-precipitation method. The irregular microparticle-shaped α-Bi₂O₃, with a surface area of just 10.1 $m^2 \cdot g^{-1}$, resulted in limited active sites for pollutant adsorption, achieving a degradation efficiency of 48% for phenol within 60 min. Liang et al. [\[9\]](#page-18-1) synthesized Bi $_2\mathrm{O}_3$ crystals with varied morphologies via a chemical bath deposition method by controlling the pH (Figure [3a](#page-3-0),b). They employed a sputter coating method to modify by controlling the pH (Figure 3a,b). They employed a sputter coating method to modify the Bi₂O₃ crystals, synthesizing α-Bi₂O₃ and β-Bi₂O₃. It was demonstrated that a higher pH₁ pH of the solution facilitated the evolution of the α-Bi₂O₃ phase. Wu et al. [\[31\]](#page-18-16) prepared α-
 Γ : Ω = Ω = Γ : Ω = Γ : Ω = Γ : Ω = Γ Bi₂O₃, β-Bi₂O₃, and γ-Bi₂O₃ via hydrothermal treatment followed by calcination. Among these, β-Bi₂O₃ had a degradation efficiency of up to 97% for phenol after 90 min of sunlight exposure, significantly outperforming the other two phases of $Bi₂O₃$ in terms of photodegradation efficiency. achieving a degradation efficiency of 48% for phenol within 60 min. Liang et al. [9] synthesized Bi2O3 crystals with varied morphologies via a chemical bath deposition method

Figure 3. SEM images of (a) $pH10-Bi_2O_3$, (b) $pH13-Bi_2O_3$. Reprinted with permi[ssi](#page-18-1)on from Ref. [9]. Copyright 2020 Royal Society of Chemistry. (**c**) XRD patterns of different ratio of pd-doping BiVO4, Copyright 2020 Royal Society of Chemistry. (**c**) XRD patterns of different ratio of pd-doping BiVO⁴ , (**d**) Degradation activity of phenol solutions under UV-Vis irradiation with BiVO₄ photocatalysts. Reprinted with permission from Ref. [32]. Copyright 2017 Elsevier. (**e**) Nitrogen adsorption and Reprinted with permission from Ref. [\[32\]](#page-18-17). Copyright 2017 Elsevier. (**e**) Nitrogen adsorption and
Ref. 1. Company of phenole and phenole desorption curve of mesoporous Bi₂WO₆. (f) Efficiency of photocatalytic degradation of phenol with different Bi₂WO₆ Reprinted with permission from Ref. [\[33\]](#page-19-0). Copyright 2011 Elsevier.

3.2. BiVO⁴

BiVO₄ primarily exists in three crystalline phases: monoclinic scheelite (M-S BiVO₄), tetragonal scheelite (T-S BiVO₄), and tetragonal zircon (T-Z BiVO₄) [\[34\]](#page-19-1). Among these, $M-S$ BiVO₄ was extensively studied for the superior photocatalytic performance, due to the relatively finite bandgap ($E_g = 2.4$ eV) and the electron modulation of the Bi 6s and hybrid Bi 6s-O 2p orbitals to the V 3d orbital conduction band [\[10\]](#page-18-18). Compared with $M-S$ BiVO₄, T-S BiVO₄ exhibits lower photocatalytic activity for the wider bandgap of 2.9 eV, limiting its responsiveness in the visible light region. T-Z BiVO₄ displays the lowest photocatalytic activity; however, its relatively simple preparation conditions make it the easiest to synthesize among the three phases [\[35\]](#page-19-2). Moreover, T-Z BiVO₄, possessing a high degree of crystal symmetry, facilitates the formation of coherent interfaces, rendering it particularly valuable for exploration in polycrystalline materials. Therefore, effective control over the crystal structure of BiVO₄ can maximize its catalytic activity. Monoclinic phase M-S BiVO₄ was prepared by Xie et al. [\[36\]](#page-19-3) via a solution stirring and calcination method, achieving a photocatalytic effect on phenol of up to 52% within 180 min. Sun et al. [\[37\]](#page-19-4) found that, during the preparation of monoclinic phase M-S BiVO₄ under different pH conditions utilizing a solvothermal method, when the precursor solution was adjusted to pH 11, it achieved a conversion of phenol of 54% within 300 min. As shown in F[igu](#page-3-0)re 3d, Meng et al. [\[32\]](#page-18-17) prepared pure BiVO₄ through the hydrothermal method, achieving a low degradation efficiency of phenol, merely 3.4% within 360 min. The removal rate of phenol was greatly improved after palladium (Pd) was introduced in BiVO4. The maximum

degradation rate of phenol can reach 100%. According to the XRD pattern (Figure [3c](#page-3-0)), the crystal structure of BiVO⁴ was not destroyed after Pd was deposited by light.

3.3. Bi2WO⁶

 $Bi₂WO₆$ is a simple Aurivillius-type layered compound, characterized by the alternate stacking of $[\rm{Bi}_2\rm{O}_2]^{\rm{2+}}$ lamellar structures and WO₄. $[\rm{Bi}_2\rm{O}_2]^{\rm{2+}}$ layers and WO₄ layers are connected by shared oxygen atom vertices, resulting in weak van der Waals forces. $Bi₂WO₆$ exhibits multiple crystal structures, including orthorhombic, monoclinic, and tetragonal phases, with structural differences primarily due to the rotation angle of the WO₄ layer and the degree of dislocation of the $[\rm{Bi_2O_2}]^{2+}$ layer [\[38\]](#page-19-5). $\rm{Bi_2WO_6}$ is classified as a wide-bandgap photocatalyst (2.5–2.8 eV). The positions of its conduction band minimum (CBM) and valence band maximum (VBM) are 0.24 eV and 3.12 eV, respectively [\[39\]](#page-19-6), which are relatively high energy levels that effectively suppress photogenerated carrier recombination. Simultaneously, owing to the layered structure of $Bi₂WO₆$, photocatalytic reactions primarily occur between layers, where the $[\text{Bi}_2\text{O}_2]^{2+}$ layer serves as the receptor for photogenerated electrons and the WO_4 layer as the carrier for photogenerated holes. This enables the effective separation and migration of carriers, therefore significantly enhancing photocatalytic efficiency.

Sattari et al. [\[40\]](#page-19-7) successfully synthesized orthorhombic $Bi₂WO₆$ through the hydrothermal method, achieving a degradation efficiency of 34% for phenol within 120 min. The morphology of $Bi₂WO₆$ is nanosheet-like, with limited photocatalytic active sites, resulting in a lower degradation efficiency of phenol. Fu et al. [\[11\]](#page-18-19) synthesized tetragonal Bi_2WO_6 using the hydrothermal method, which self-assembled from nanoplates into flower-like microspheres, yielding a surface region of 39.7 $\mathrm{m}^2 \cdot \mathrm{g}^{-1}$ and offering abundant adsorption sites for pollutants. After visible light irradiation for 40 min, the conversion of phenol increased to 56.5%. Sun et al. [\[33\]](#page-19-0) prepared $Bi₂WO₆$ using $SiO₂$ as the hard template. As shown in Figure [3e](#page-3-0), the sample maintains the mesoporous structure of $SiO₂$. Under visible light irradiation, 97% of phenol is degraded within 60 min, as depicted in Figure [3f](#page-3-0), demonstrating remarkable photocatalytic performance. In contrast, the conversion of phenol by orthorhombic $Bi₂WO₆$ synthesized using the common hydrothermal method stands at only 32%. Therefore, the active sites of photocatalytic degradation of phenol over Bi₂WO₆ are predominantly located on the surface of the mesoporous structure.

3.4. Bi2MoO⁶

Bismuth molybdate $(Bi₂MoO₆)$ possesses a perovskite-layered structure, analogous to that of bismuth tungstate (Bi_2WO_6). The normal state of Bi_2MoO_6 is γ - Bi_2MoO_6 , characterized by the optional heaping of $[\text{Bi}_2\text{O}_2]^{2+}$ layers and $[\text{MoO}_4]^{2-}$ octahedral layers. The resulting layered structure not only endows $Bi₂MoO₆$ with the unique advantages of a two-dimensional nanostructure but also facilitates the separation and transmission of carriers by the internal electric field (IEF) formed between the layers. The bandgap of $Bi_2MoO₆$, 2.5–2.8 eV, enables a firm response in the visible light area. In addition to the unique layered structure and appropriate bandgap, the non-toxicity, low cost, and excellent thermal and chemical inertness of $Bi₂MoO₆$ further promote its application in environmental remediation.

Fu et al. [\[12\]](#page-18-20) reported a solvothermal method for preparing pure $Bi₂MoO₆$, followed by calcination at 250 °C to modify the surface oxygen vacancies. The EPR signal of oxygen vacancies is clearly visible in Figure [4a](#page-5-0). At 180 min of visible light irradiation, the degradation virtue of phenol by pure $Bi_2MoO₆$ stood at only 4.8%. However, calcination results in lattice contraction in $Bi_2MoO₆$, resulting in the formation of oxygen vacancies on its surface. Under the same conditions, this increased the degradation efficiency of phenol to 35%. Liu et al. [\[41\]](#page-19-8) further optimized the preparation method used by Fu et al. by increasing the calcination temperature to 300 $^{\circ}$ C and extending the calcination time. This increase led to a degradation efficiency of phenol of 44% within 180 min, indicating that the calcination temperature may be a key factor in phenol degradation over $Bi₂MoO₆$. To verify this hypothesis, Sun et al. [42] assessed the photocatalytic degradation of phenol in materials intended at different calcination temperatures. The material calcined at 450 $^{\circ} \mathrm{C}$ showed excellent performance for phenol degradation (Figure [4b](#page-5-0)). Therefore, variations in the calcination temperature of $Bi₂MoO₆$ will produce different amounts of oxygen vacancies. Oxygen vacancies, serving as electron traps, effectively capture photogenerated electrons, facilitating the separation of photogenerated carriers. In the FTIR spectrum (Figure [4i](#page-5-0)), the 410–565 cm⁻¹ and 730–850 cm⁻¹ absorption bands correspond to the stretching vibrations of the Bi-O bond and the Mo-O bond, and the EDS energy spectrum (Figure 4j) shows a uniform distribution of Bi, Mo, O, and C in the selected region, which suggests the a uniform distribution of $B₁$, Mo, O, and C in the selected region, which suggests the successful synthesis of $Bi₂MoO₆$. The absence of O atoms also reflects the formation of oxygen vacancies due to calcination [\[24\]](#page-18-9). Moreover, materials containing oxygen vacancies can generate another type of active free radical, ${}^{1}O_{2}$, enhancing the oxidative degradation of phenol $[24]$.

Figure 4. (a) EPR signal map of Bi_2MoO_6 and surface oxygen vacancies Bi_2MoO_6 . Reprinted with permission from Ref. [\[12\]](#page-18-20). Copyright 2019 Elsevier. (**b**) Photocatalytic activity of Bi₂MoO₆ at different calcination temperatures. Reprinted with permission from Ref. [\[42\]](#page-19-9). Copyright 2019 Elsevier. Different morphology of BiFeO3 prepared by hydrothermal (HT-BiFeO3), co-precipitation (CP-(**c**–**e**) Different morphology of BiFeO³ prepared by hydrothermal (HT-BiFeO³), co-precipitation (CP-BiFeO₃) and sol-gel methods (SG-BiFeO₃). Reprinted with permission from Ref. [\[43\]](#page-19-10). Copyright 2022 Elsevier. Growth mechanism of BiFeO3 film schematic diagram: (**f**) The ion clusters are moved by electrophoretic forces. (**g**) The ion clusters are repositioned and deposited on the electrode surface. electrophoretic forces. (**g**) The ion clusters are repositioned and deposited on the electrode surface. (**h**) Growth of forest-like BiFeO³ nano branches on the carrier surface. Reprinted with permission from Ref. [\[44\]](#page-19-11). Copyright 2019 Elsevier. (**i**) FT-IR spectrum of Bi₂MoO₆. (**j**) The EDS spectrum of BMO-450. Reprinted with permission from Ref. [\[24\]](#page-18-9). Copyright 2022 Elsevier. Elsevier. Growth mechanism of BiFe O_3 film schematic diagram: (**f**) The ion clusters are moved by

BMO-450. Reprinted with permission from Ref. [24]. Copyright 2022 Elsevier. *3.5. BiFeO³*

3.5. BiFeO3 belongs to the rare class of single-phase [mu](#page-19-12)ltiferroic semiconductors [45]. Its bandgap ranges from 2.0 to 2.7 eV, categorizing it as a narrow-bandgap semiconductor [46]. The CBM and VBM consist of Bi 6p/O 2p and O 2p/Fe 3d orbitals, respectively. The extent of rigorialization among orbitals determines the bandgap and the right absorption spectrum
of BiFeO₃ [\[47\]](#page-19-14). The photocatalytic efficiency of BiFeO₃ is primarily affected by factors such as its structural and morphological characteristics. Typically, morphologies featuring a Perovskite bismuth ferrite (BiFeO₃), akin to other Bi-based multicomponent oxides, is formed through the alternating stacking of [FeO₆] octahedra and [Bi₂O₂]²⁺ layers. It hybridization among orbitals determines the bandgap and the light absorption spectrum

larger surface region and active sites, such as nanoparticles, nanoflowers, nanosheets, and nanoplates, increase the photocatalytic performance of BiFeO₃.

Mansingh et al. [\[48\]](#page-19-15) synthesized nanosheet-shaped BiFeO₃ via a hydrothermal method. The photocatalytic degradation efficiency of phenol is 41% within 60 min; this relatively low efficiency was attributed to the agglomeration of pure B iFe $O₃$, which obscured active sites. Jaffari et al. [\[43\]](#page-19-10) prepared $BiFeO₃$ particles with varied morphologies by three distinct synthesis routes (hydrothermal, co-precipitation, and sol-gel methods). HT-BiFeO₃, $CP-BiFeO₃$, and SG-BiFeO₃ were integrated, respectively (Figure [4c](#page-5-0)–e). All samples conformed to the rhombohedral structure of BiFeO₃, differing only in morphology. HT-BiFeO₃ exhibited a coral-like shape, $CP-BiFeO₃$ was sheet-like, and SG-BiFeO₃ displayed a rod-like structure. Over 120 min, the photocatalytic degradation efficiencies of phenol were 77.4%, 66.9%, and 98.95%, respectively. The highest performance of $SG-BiFeO₃$ was attributed to the modified separation efficiency of photo carriers due to the sol–gel method [\[45\]](#page-19-12). Based on these findings, Zargazi et al. [\[44\]](#page-19-11) utilized sol electrophoretic deposition to synthesize a forest-like BiFe O_3 thin film. The synthesis mechanism and microscopic morphology are depicted in Figure [4f](#page-5-0)–h. This method not only yielded high-purity, uniform BiFe $O₃$ but also overcame the aging drawbacks associated with the sol–gel method. When phenol molality of 15, 30, 50, and 80 ppm was established, the observed half-lives were 27, 30, 54, and 120 min, respectively. The exceptional photocatalytic activity of $BiFeO₃$ thin film is attributed to the nano-branches on its surface that facilitate the diversion of photogenerated electrons.

3.6. BiOX

Bismuth halogen oxides (BiOX) are classified within the V-VI-VII group and possess a PbFCl-type structure. They are characterized by high chemical stability, non-toxicity, environmental friendliness, and robust corrosion resistance. As illustrated in Figure [2,](#page-2-0) their crystal structure results from the alternating arrangement of $[\text{Bi}_2\text{O}_2]^{2+}$ layers and double $[X]^-$ layers, influenced by van der Waals forces, with Bi and O in the $[Bi_2O_2]^{2+}$ layers linked by covalent bonds [\[13\]](#page-18-2). This layered structure, composed of cations and anions, affords ample space for the polarization of respective atoms and orbitals, extends the lifetime of photogenerated carriers, and facilitates the constitution of an IEF [\[49\]](#page-19-16). As depicted in Figure [5a](#page-7-0), with an increasing atomic number of the halogen atom, the bandgap of BiOCl ($E_g = 3.2$ eV), BiOBr ($E_g = 2.6$ eV), and BiOI ($E_g = 1.8$ eV) progressively narrows. The valence band of BiOX primarily consists of O 2p orbitals and X np orbitals ($n = 3, 4$, 5 corresponding to $X = Cl$, Br, I), while CB comprises Bi 6p orbitals. The hybridization of Bi 6s and O 2p orbitals can diminish the bandgap energy and enhance the transplantation of photogenerated carriers, thus hindering the recombination of photogenerated carriers as well as fostering a more conducive environment for photocatalytic oxidation reduction processes [\[50,](#page-19-17)[51\]](#page-19-18).

Han et al. [\[52\]](#page-19-19) synthesized BiOCl nanosheets exposing (001) and (110) facets through the solvent thermal method. These nanosheets featured a smooth quadrilateral structure with side lengths ranging from 2 to $4.5 \mu m$ (Figure [5b](#page-7-0)). During the visible-light-induced degradation of phenol over 120 min, approximately 44% degradation was achieved. This effect was attributed to the internal electric field established along the (001) direction, wherein the (001) facet exhibited a high density of terminal oxygen atoms prone to forming oxygen vacancies. Consequently, the photocurrent response of the BiOCl (001) crystal facet was more pronounced (Figure [5c](#page-7-0)), indicative of enhanced photocatalytic activity [\[53\]](#page-19-20).

Figure 5. (**a**) Schematic diagram of the CB, VB and band structure of BiOX. Reprinted with permis-**Figure 5.** (**a**) Schematic diagram of the CB, VB and band structure of BiOX. Reprinted with permission sion from Ref. [50]. Copyright 2021 Elsevier. (**b**) SEM image of BiOCl nanosheets with (001) and from Ref. [\[50\]](#page-19-17). Copyright 2021 Elsevier. (**b**) SEM image of BiOCl nanosheets with (001) and (110) exposed surfaces. Reprinted with permission from Ref. [\[52\]](#page-19-19). Copyright 2021 Elsevier. (**c**) Photocurrent response of BiOCl with different exposed crystal surfaces. Reprinted with permission from from Ref. [53]. Copyright 2012 American Chemical Society. (**d**)The schematic of the band structure Ref. [\[53\]](#page-19-20). Copyright 2012 American Chemical Society. (**d**) The schematic of the band structure of for BiOI (*internal groups of GiO*). (a) the senemate of the strains of details of BiOI (**e**) Hydroxyl groups adsorbed on the surface of BiOl. Reprinted with permission from Ref. [\[54\]](#page-19-21). Copyright 2020 Elsevier.

Wen et al. [\[55\]](#page-19-22) synthesized BiOBr with varying surface active sites employing different the solvents. By transitioning the solvent from water to ethylene glycol, BiOBr featuring Bi vacancies was obtained. The photocatalytic efficacy of materials was evaluated through vacancies was obtained. The photocatalytic efficacy of materials was evaluated through required was obtained. The photocatalytic emetry of materials was evaluated alrodgit
the visible-light-induced phenol photocatalytic degradation. After two hours, the phenol reflect was attributed to the internal electric field established along the containing bi vacancies, removal by pure BiOBr was merely 16.5%, whereas over BiOBr containing Bi vacancies, it reached approximately 43.7%. This improvement was attributed to the introduction of In reactica approximately to the photocollection was attributed to the Binoclated of the photocurrent β . Biocle (001) crystal biocle is the carrier of the carr Fraceting active that expansive the ngin activity equilibrium and readed the carrier recombination rate, thereby boosting the photocatalytic activity. Wang et al. [\[54\]](#page-19-21) documented the utilization of various organic solvents involved in hydroxyl groups to modulate mented the utilization of various organic solvents involved in hydroxyl groups to modulate we allow the all contains the surface structure sites explained by the surface structure to BiOI photocatalysts. The primary solvents employed included ent surface stracture to stor protecturing solvent primary solvents employed meadow.
water, n-propanol (NPA), propylene glycol (PG), glycerol (GLY), and meso-erythritol (ME). The visible light photocatalytic performance of BiOI, modulated by various solvents, ex t_{rel} and the visible-light-induced phenole phase catalogue of t_{rel} and t_{rel} and the most pronounced, achieving an 87% degradation efficiency within three hours. This was illustrated in Figure [5d](#page-7-0),e. Hydroxyl groups governed the surface atomic configuration of BiOI nanosheets, inducing a rise in the position of the VBM. Consequently, within the photocatalytic process, a more elevated VBM can facilitate a more potent photogenerated ned the utilization of various organic solvents in the various organic solved in the contract of the original BiOI. $\frac{1}{1}$ photocatalysts. The primary solvents employed included inc

4. Strategies to Boost the Photocatalytic Performance

This inefficiency for the aforementioned Bi-based catalysts is attributed to the low energy level of the conduction band (CB) and fast reorganization of carriers in single-phase photocatalysts, which hampers efficiency for electron-hole separation and significantly impedes the catalysis under visible light. To enhance the response efficiency under visible light, researchers have explored strategies including structural design and microstructure regulation. This section will discuss the strategies to enhance the photocatalytic efficiency of Bi-based photocatalysts, thereby augmenting photocatalytic activity and achieving a **4. Strategies to Boost the Photocatalytic Performance** more effective removal of phenol.

4.1. Morphology Control

The efficiency of the catalyst is influenced not only by the chemical composition but also by the particle dimensions and morphology. Generally, photocatalysts with a greater surface area-to-volume ratio demonstrate enhanced photocatalytic efficiency. The reasons are primarily two-fold: first, a larger precise surface region provides additional active sites for reaction; second, on the basis of the formula $\tau = r_0^2 / \pi_2 D$ [\[56\]](#page-19-23), reducing the grain radius can raise the interval efficiency of photogenerated carriers. Therefore, controlling the morphology represents a substantial opportunity to enhance the photocatalytic activity.

efficiency of Bi-based photocatalysts, thereby augmenting photocatalytic activity and

Ruan et al. [\[57\]](#page-19-24) utilized a soft template, β-cyclodextrin, to synthesize oxygen-deficient bismuth tungstate (Bi₂WO_{6-x}) photocatalyst featuring a peony-like morphology by the hydrothermal approach. As depicted in Figure [6a](#page-8-0), the SEM image of Bi_2WO_6 reveals a smooth nanosheet morphology with a diameter of 100 to 200 nm and a defined concentration. However, with increasing amounts of β-cyclodextrin, the synthesized Bi₂WO_{6-x} sample transitioned from nanosheets (Figure [6b](#page-8-0)) to peony-like spheres (Figure [6c](#page-8-0)) and educing the dimensional mean cancelled transition (Figure [6d](#page-8-0)). During a 60 min photocatalytic degradation uttimately to pyknotic spheres (Figure 6d). During a 60 min photocatalytic degradation of phenol, these samples exhibited efficiencies of 16%, 20%, 97%, and 62%, respectively. The layered 3D morphology of Bi_2WO_{6-x} affords multiple active sites, while the plentiful oxygen vacancies facilitate active species generation. gen vacancies facilitate active species generation. layered \sum morphology of B_2 morphology $\sum_{i=1}^n a_i$ and $\sum_{i=1}^n a_i$ and $\sum_{i=1}^n a_i$ and $\sum_{i=1}^n a_i$

Figure 6. (a-d) SEM images of Bi₂WO₆ with different morphologies. Reprinted with permission from Ref. [\[57\]](#page-19-24). Copyright 2021 Elsevier. (e,f) SEM image of pure BiOBr and Bi/BiOBr. (g) HRTEM images of Bi/BiOBr. Reprinted with permission from Ref. [\[58\]](#page-19-25). Copyright 2018 Springer Nature. SEM images of (**h**) BiOI, (**i**) Bi₄O₅I₂ and (**j**) Bi₅O₇I. (**k**) the schematic diagram of the band structure of all samples. Reprinted with permission from Ref. [\[59\]](#page-20-0). Copyright 2016 Royal Society of Chemistry.

Li et al. [\[58\]](#page-19-25) developed an improved solvent thermal method to synthesize BiOBr with various morphologies. By introducing a specified amount of SbCl₃ into the synthesis system, the reduction of Bi^{3+} to metallic Bi nanoparticles was accelerated, evidently revealing the lattice stripes of metallic Bi and BiOBr in Figure [6g](#page-8-0). This process enabled the transformation of layered BiOBr, composed of nanosheets (Figure [6e](#page-8-0)), into a flower-like microsphere structure (Figure [6f](#page-8-0)). After 240 min of visible light irradiation, BiOBr and Bi/BiOBr achieved phenol degradation efficiency of 26.4% and 72.9%, respectively. Liu et al. [\[59\]](#page-20-0) described a

simple mixed solvent method to regulate BiOI with varying iodine contents by aligning the pH of the forerunner solution. Figure [6h](#page-8-0)–j illustrate that bismuth iodide, with varying oxygen–iodine ratios due to pH changes, yielded different crystal phases of BiOI (tetragonal phase), $Bi_4O_5I_2$ (monoclinic phase), and Bi_5O_7I (orthorhombic phase). They displayed a nanosheet micro-flower shape, an uneven nanosheet shape, and a nanosheet/nanoflower hybrid shape, respectively. In a simulated experiment of the photocatalytic degradation of phenol under visible light, BiOI achieved a photocatalytic efficiency of only 27.6% after 60 min of irradiation, whereas $Bi_4O_5I_2$ and Bi_5O_7I demonstrated significantly higher photocatalytic activities, with a degradation efficiency of 84.2% and 90.1%, respectively. This improvement is attributable to an enhancement in particular surface area and many mesopores during the phase transition process. An increased specific surface area and a greater number of mesopores enhance the adsorption competence and catalytic potency for the material. Furthermore, as demonstrated in Figure [6k](#page-8-0), compared to BiOI, $Bi_4O_5I_2$ and Bi₅O₇I feature higher CB positions and lower VB positions. The more negative the CBM and more positive the VB, the greater the oxidation reduction potential for photogenerated carriers [\[60\]](#page-20-1). This could be another important factor resulting in the improvement of photocatalytic potency.

4.2. Defect Engineering

Crystal defects are capable of modifying the local electronic and chemical bond characteristics, including the bond length and energy, electronic degrees of freedom, potential defect depth, and the charge and energy density via atomic coordination [\[61\]](#page-20-2). Doping is a recognized strategy to enhance the optoelectronic capabilities of materials through the introduction of other ions or defects (Figure [7a](#page-9-0),b). Doping primarily comprises two categories: metal doping and non-metal doping [\[24,](#page-18-9)[62–](#page-20-3)[64\]](#page-20-4). Under conditions where defects are precisely controlled*,* substantial modifications to electron dynamics are possible, and even the bandgap and work function of photocatalysts may be tuned [\[65\]](#page-20-5).

Figure 7. (a) UV-Vis diffuse reflectance spectra of CN and Ut-OCN, inset shows the band structure. Reprinted with permission from Ref. [14]. Copyright 2021 Elsevier. (**b**) PL spectra of I-doped Reprinted with permission from Ref. [\[14\]](#page-18-3). Copyright 2021 Elsevier. (**b**) PL spectra of I-doped Bi4Ti3O12.

Reprinted with permission from Ref. [\[66\]](#page-20-6). Copyright 2022 Elsevier. (**c**) Photocatalytic degrada-tion mechanism of MO by La-Bi₂O₃. Reprinted with permission from Ref. [\[29\]](#page-18-14). Copyright 2019 Springer Nature. (**d**) Mechanism of phenol degradation by photocatalyst Pd-Bi2WO⁶ . Reprinted with permission from Ref. [\[67\]](#page-20-7). Copyright 2018 Elsevier.

4.2.1. Metal Doping

Li et al. [\[29\]](#page-18-14) synthesized La-doped $Bi₂O₃$ via a sol–gel approach and induced oxygen vacancies by calcination in an inert atmosphere. Following La doping, the surface of $Bi₂O₃$ nanosheets becomes roughened, attributed to La³⁺ ions replacing $Bi³⁺$ in the $Bi₂O₃$ lattice, forming a Bi-La oxide solid solution. Under visible light irradiation, 2% La-doped $Bi₂O₃$ achieves a 73% degradation of phenol within 4 h, significantly exceeding the 31% degradation efficiency of pure Bi_2O_3 . The enhanced photocatalytic performance of Bi_2O_3 following La doping is attributable to oxygen vacancies, which form an impurity band between the CB and VB, capture photogenerated electrons, and retain more oxidative holes in the VB, thereby facilitating the photocatalytic process. Additionally, as depicted in Figure [7c](#page-9-0), La³⁺ ions exhibit remarkable electron scavenging abilities [\[15\]](#page-18-21), serving as electron capture agents, reacting with O_2 to turn out active free radicals $\cdot O_2^-$, and participating in the oxidation process of phenol.

Meng et al. $[67]$ utilized a photo-reduction technique to dope $Pd/PdCl₂$ on the surface of Bi2WO6, leveraging the surface plasmon resonance (SPR) effect of the precious metal Pd to enhance electron transfer and thereby promote visible light photocatalysis [\[68\]](#page-20-8). Thus, 4% Pd-doped Bi_2WO_6 exhibited the highest catalytic performance, achieving 95.2% degradation of phenol within 5 h, significantly exceeding the 60% degradation efficiency of undoped Bi_2WO_6 . As illustrated in Figure [7d](#page-9-0), for the SPR impression, Pd nanoparticles activated by visible light generate electrons that subsequently transfer to the CB of $Bi₂WO₆$. Moreover, Pd⁰ and Pd²⁺ species on the surface of $Bi₂WO₆$ effectively enhance the interval of photogenerated carriers by restraining the reorganization of electron-hole pairs.

Liu et al. [\[41\]](#page-19-8) synthesized Eu^{3+} doped Bi_2MoO_6 nanosheets via a one-pot hydrothermal calcination process. Following doping, due to the smaller radius of Eu^{3+} ions compared to Bi^{3+} ions, lattice contraction occurs, reducing the crystal size of Bi_2MoO_6 and increasing the number of photocatalytic active sites. After 180 min of light irradiation, $Bi₂MoO₆$ doped with 2% Eu exhibited a phenol degradation efficiency of 97%, significantly surpassing the 40% degradation efficiency of undoped Bi_2MoO_6 . This enhancement is attributed to $Eu³⁺$ doping, which increases visible light absorption and serves as an electron capture site, facilitating the separation of photogenerated carriers and thereby boosting photocatalytic performance.

4.2.2. Non-Metal Doping

In addition to metal element doping, non-metal element doping also enhances photo-catalytic performance. Jiang et al. [\[16\]](#page-18-4) employed NH_4F as a fluoride source and olivine-like $BiVO₄$ as a precursor to synthesize F-doped $BiVO₄$ with a stomatal configuration using a secondary hydrothermal method. With increasing doping levels of F ions, the bandgap of BiVO4-F gradually narrows, enhancing its response to visible light. During a 2 h photocatalytic degradation test of phenol, BiVO⁴ doped with 0.29F exhibited the highest photocatalytic efficiency, achieving a degradation efficiency of 97%, surpassing the 87% efficiency observed on undoped BiVO4.

In summary, based on the first-principles DOS properties, element doping primarily induces intermediate states within the bandgap or alters the electronic orbital structure, thereby enhancing the photocatalytic activity [\[69\]](#page-20-9). Furthermore, the type, quantity, and valence state of doping elements significantly influence the band structure and electronic properties for samples, thereby enhancing both the separation and transfer efficiencies of photogenerated carriers, eventually improving the efficiency of the photocatalyst [\[61,](#page-20-2)[70\]](#page-20-10).

5. Types of Semiconductor Heterojunctions

The construction of heterojunctions has been demonstrated to efficiently separate photogenerated carriers, establishing it as the most efficacious approach for building highefficiency photocatalysts [\[71,](#page-20-11)[72\]](#page-20-12). Heterojunctions are classified into two major categories. The first category, based on the primary carrier type within the semiconductor, includes p-n junctions, p-p junctions, and n-n junctions. The second category, determined by the band position of the semiconductor, comprises straddling gap type (Type I), staggered gap type (Type II), and broken gap type (Type III).

5.1. p-n Junctions, p-p Junctions, and n-n Junctions

For n-type semiconductors, the primary active species are electrons, whereas in p-type semiconductors, they are holes. As depicted in Figure [8a](#page-11-0), two semiconductor types form a representative p-n junction. Upon contact entre p-type and n-type semiconductors, the interface charge transfer mechanism results in a high free electron concentration in the narea near the junction. Consequently, negatively charged unbound electrons spread abroad the n-type to the p-type semiconductor, where the electron concentration is lower [\[73\]](#page-20-13). This diffusion results in the p-n junction carrying a negative charge on the p-region aspect and a positive charge on the n-region side. Diffusion continues until the Fermi energy levels for two materials counterweigh. The regions adjacent to the interface containing positive (n-type material) and negative (p-type material) charges form the depletion layer, where characteristic charge carriers are depleted [\[74\]](#page-20-14). A potential difference across the depletion layer forms an IEF extending from the positive to the negative charge regions. As light irradiates the p-n junction, the IEF accelerates the migration of photogenerated electrons from the CB of the p-type to the n-type semiconductor, and of holes from the VB of the n-type to the p-type semiconductor $[75,76]$ $[75,76]$ $[75,76]$. This effective separation of photogenerated carriers increases the photocatalytic performance. togenerated carriers increases the photocatalytic performance.

Figure 8. (a) Schematic diagram of a typical p-n heterojunction. (b) Schematic photo-degradation of phenol by p-BiOBr/n-α-Bi2O3 heterojunction. Reprinted with permission from Ref. [30]. Copyright phenol by p-BiOBr/n-α-Bi2O³ heterojunction. Reprinted with permission from Ref. [\[30\]](#page-18-15). Copyright 2023 Elsevier. (c) Z-type electron and hole transfer modes in Bi₂O₃-BiVO₄ heterojunction. Reprinted with permission from Ref. [17]. Copyright [201](#page-18-5)6 Elsevier. (d) Mechanism of phenol photo-degradation by n-n type CN/BiSI heterojunction. Reprinted with permission from Ref. [\[19\]](#page-18-22). Copyright 2022 Elsevier.

Meng et al. [\[30\]](#page-18-15) synthesized BiOBr/ α -Bi₂O₃ p-n heterojunctions by combining the parallel flow precipitation process with the in situ transformation strategy. The optimal composite ratio of $BiOBr / \alpha-Bi_2O_3$ (BiOBr-70 wt%) showed the highest performance for photocatalytic phenol degradation, achieving a 92.3% removal after visible light irradiation for 60 min, which is 4.44-times and 3.83-times faster than the single-component α -Bi₂O₃ and BiOBr, respectively. As depicted in Figure [8b](#page-11-0), the Fermi energy levels of the p-type BiOBr and the n-type α -Bi₂O₃ align closely with their respective VB and CB [\[30\]](#page-18-15). According to previous analysis, free electrons spontaneously flow from α -Bi₂O₃ to BiOBr, forming an internal electric field. Upon light excitation, electrons diffuse from the CB of BiOBr to the CB of α -Bi₂O₃, and simultaneously, generated holes migrate from the VB of α -Bi₂O₃ to the VB of BiOBr. This separation effectively enhances the photocatalytic degradation of phenol. Mao et al. [\[17\]](#page-18-5) utilized a solvothermal method to compound a p-n type porous Bi_2O_3 -BiVO₄ composite micro-rod semiconductor heterojunction. As for visible light radiation, removing phenol can reach 96.3% after 1 h. Remarkably, the phenol degradation efficiency of pure BiVO₄ and Bi₂O₃ is 192- and 160-times higher, respectively. Since \cdot O₂⁻ is a major active species in phenol degradation and the potential of $\rm BiVO_4$'s CB is below the standard reduction potential of $\cdot O_2^-$ (-0.33 eV), it cannot produce $\cdot O_2^-$. Consequently, the Bi₂O₃-BiVO₄ heterojunction does not conform to the conventional p-n junction double-charge transfer mode. Therefore, they proposed a direct Z-type electron and hole diversion mode [\[71](#page-20-11)[,77\]](#page-20-17) shown in Figure [8c](#page-11-0), which is different from the findings of Meng et al. [\[30\]](#page-18-15). Upon the light incentive of $BiVO₄$, electrons migrate from the VB to the CB, and simultaneously, some electrons shake up with holes generated in the VB of $Bi₂O₃$. Subsequently, electrons in the CB of Bi_2O_3 react chemically adsorbed O_2 to induce $\cdot O_2$ ⁻ and in concert with the holes in BiVO₄, thus facilitating the oxidation of phenol.

Except for the commonly discussed p-n junctions, there are two types of homojunctions: n-n and p-p heterojunctions. Ji et al. [\[78\]](#page-20-18) synthesized a flaky n-n type BiOCl/ perylene diimide (PDI) heterojunction via a water bath heating method. The absorption margin for BiOCl is at 360 nm; after secondary self-assembly with PDI, the light absorption spectrum of BiOCl/PDI extends to 732 nm, demonstrating enhanced visible light absorption. During a 4 h photocatalytic degradation trial of phenol, BiOCl/PDI achieved a 62% degradation efficiency, 1.4- and 14.6-times higher than that of PDI and BiOCl, respectively. Clusters of PDI encase BiOCl, and since the CB of BiOCl is inferior to that of PDI [\[18,](#page-18-23)[79\]](#page-20-19), photogenerated electrons transfer from PDI's CB to BiOCl's CB. This facilitates the distance of electrons and holes, thereby enhancing photocatalytic performance. Cao et al. [\[19\]](#page-18-22) synthesized a binary n-n type CN/BiSI heterojunction via a hydrothermal strategy. At visible light irradiation, 98.8% of phenol degrades within 80 min, significantly exceeding the degradation efficiency of 41.2% for CN and 43.3% for BiSI, respectively. As depicted in Figure [8d](#page-11-0), the Fermi level of CN is higher than that of BiSI. When in contact, electrons transfer from CN to BiSI, leading to the formation of an IEF at their boundary surface. Following photoexcitation, the internal electric field facilitates electron diversion from the conduction band of BiSI to that of CN, and hole diversion from the VB of CN to that of BiSI. This enhances the interval of electron holes, thereby improving the photocatalytic degradation of phenol under visible light.

Wang et al. [\[62\]](#page-20-3) utilized a one-step solvent thermal strategy to synthesize a p-p Ztype BiOBr/Bi₁₂O₁₇Br₂ heterojunction, comprising bismuth oxybromide and oxygen-rich bismuth oxybromide. Under irradiation with a 365 nm light source, the degradation efficiency of sulfamethoxazole reached 99%, approximately 13-times and 1.5-times higher than that of BiOBr and $Bi_{12}O_{17}Br_2$, respectively. Differently, the VB potentials of BiOBr and $Bi_{12}O_{17}Br_2$ are 2.01 eV and 1.84 eV, respectively. The standard oxidation potential of hydroxyl radicals (OH−/·OH), a key active species, is 1.99 eV. Consequently, the holes in the valence band of $Bi_{12}O_{17}Br_2$ cannot react with OH⁻ to produce \cdot OH, indicating that the p-p junction does not conform to the double-charge transfer mode. Given that the VB potential of BiOBr exceeds the standard oxidation potential of ·OH, electrons from the CB of BiOBr reform with holes in the VB of $Bi_{12}O_{17}Br_2$. Holes in BiOBr's VB react with OH⁻

to form \cdot OH, while electrons in Bi₁₂O₁₇Br₂'s CB react with O₂ to form \cdot O₂⁻. Both \cdot OH and \cdot O₂^{$-$} serve as major active species in promoting the degradation of sulfamethoxazole.

5.2. Type I-III

Schematic diagrams of the three types of second-class heterojunction systems are depicted in Figure [9a](#page-13-0)–c. In Figure [9a](#page-13-0), for the straddling gap-type (Type I) heterojunction, the CB and VB of semiconductor II (SC II) are situated between those of semiconductor I (SC I). In this configuration, photogenerated electrons and holes transfer from the CB and VB of SC I to those of SC II, respectively, where reduction and oxidation reactions predominantly occur. The amassing of electrons and holes in SC I's CB and VB limits charge separation between the semiconductor materials. Simultaneously, the lower redox potential of SC II diminishes the heterojunction's redox capability. These limitations result in low activity for this type of heterojunction semiconductor. Xing et al. [\[63\]](#page-20-20) prepared $Bi_5Ti_3FeO_{15}$ film by the sol–gel method, and then a $Bi_5Ti_3FeO_{15}/BiOCl$ heterojunction was obtained by washing with HCl. The narrow bandgap of $Bi_5Ti_3FeO_{15}$ (2.05eV) and wide bandgap of BiOCl (3.4eV) formed the type I heterojunction. It can shift the flow orientation of the photocharge through ferroelectric polarization, breaking the boundary energy barrier limit of type I heterojunction and forming a type II heterojunction. For the AgI/BiOI/BiPO₄ catalyst [\[64\]](#page-20-4), during the 38 min light reaction process, it can photocatalytically degrade 92.7% of the endocrine disruptor 17α -ethinylestradiol (EE2). This enhancement is due to the constitution of a ternary n-p-n heterojunction comprising n-BiPO4, p-BiOI, and n-AgI, which renders the charge transfer more flexible and promotes the photocatalytic reaction. Overall, for straddling gap heterojunctions, given the limited compatibility and narrow operational range of the two semiconductors, efforts to enhance photocatalytic activity increasingly focus on the construction of p-n junctions. ingly focus on the construction of p-n junctions.

Figure 9. Class II heterojunctions by energy band position: (a) I type, (b) III type and (c) II type. (d) Schematic diagram of photocatalytic mechanism for CeO₂/Bi₄O₇ heterojunction. Reprinted with permission from Ref. [20][. C](#page-18-24)opyright 2022 Elsevier. SEM morphology of BiOI/Bi₅O₇I with 0% (e) and 8% (**f**) WHP template addition. Reprinted with permission from R[ef.](#page-20-21) [80]. Copyright 2021 Elsevier. 8% (**f**) WHP template addition. Reprinted with permission from Ref. [80]. Copyright 2021 Elsevier.

A schematic diagram of the broken gap-type (Type III) heterojunction is depicted Figure 9b. In this configuration, the band energy levels of the constituent materials are in Figure [9b](#page-13-0). In this configuration, the band energy levels of the constituent materials significantly distant, impeding the diversion of photogenerated carriers between the two two semiconductors [\[81\]](#page-20-22). Specifically, photogenerated electrons in the CB of SC I cannot \mathbf{R} is photogenerated electrons in the CB of SC I cannot minimal are significantly distant, impeding the diversion of photogenerated carriers between the

migrate to the CB of SC II, nor can holes in the VB of SC II transfer to the VB of SC I. Consequently, this energy alignment does not support the injection of electrons from SC II's CB into SC I's VB. As a result, each semiconductor functions independently in the photocatalytic process, and physical contact does not enhance the photocatalytic activity. Furthermore, contact between the materials may reduce the surface area or exposure of active photocatalytic sites, decreasing the photocatalytic efficiency [\[82\]](#page-20-23). As depicted in Figure [9c](#page-13-0), the heterojunction of the staggered gap type manifests superior performance, attributable to its structural design that fosters rapid charge separation and circumvents electron-hole recombination [\[83\]](#page-20-24). This, in turn, augments the velocity of redox reactions occurring on the surface of the heterojunction photocatalyst. Within this system, the CB and VB of SC I possess elevated redox potentials at the side of those of SC II. This phenomenon expedites the transference of photoexcited electrons from the CB of SC I to that of SC II, and holes from the VB of SC II to that of SC I. Consequently, this results in the accumulation of reductive electrons in SC II's CB and oxidative holes in SC I's VB, thereby accomplishing the successful interval of photogenerated carriers [\[84\]](#page-21-0). Subsequently, reduction reactions predominantly transpire on the external of SC II, while oxidation reactions occur on the external of SC I.

Wang et al. [\[20\]](#page-18-24) synthesized a type II CeO₂/Bi₄O₇ heterojunction photocatalyst using the hydrothermal method. This photocatalyst exhibited optimal phenol degradation activity when the $CeO₂$ composite amount was 10%, achieving 92% phenol degrading under visible light irradiation within 120 min. The efficiency of degradation is approximately 7.67- and 2.3-times faster than that of $CeO₂$ and $Bi₄O₇$, respectively. The proposed mechanism for phenol degradation, as shown in Figure [9d](#page-13-0), involves the conversion of electrons from the VB of CeO₂ and Bi₄O₇ to their respective CBs upon photoexcitation, leading to holes in the VB. Considering that the CB of Bi_4O_7 is more negative, electrons in Bi_4O_7 's CB tend to migrate to the CB of CeO₂. Simultaneously, $Ce⁴⁺$ in CeO₂ can capture electrons and be reduced to Ce³⁺ [\[85\]](#page-21-1), combining with O₂ to produce \cdot O₂⁻ [\[86\]](#page-21-2), thereby co-oxidizing and degrading phenol with h⁺.

Liao et al. [\[80\]](#page-20-21) reported the preparation of a defective $BiOI/Bi₅O₇I$ heterojunction photocatalyst using the conventional hydrothermal method aided by a water hyacinth powder (WHP) biomaterial template. With an 8% WHP addition, the sample exhibited optimal photocatalytic activity, degrading 70% of phenol under visible light irradiation within five hours, while for no WHP addition, the degradation was only 30%. As illustrated in Figs. 10e and 10f, the use of a water hyacinth powder biomaterial template can cause the self-assembly of BiOI nanoplates into a 3D flower-like structure during the growth of BiOI [\[87\]](#page-21-3), which is beneficial for the adsorption of the pollutant. Its photocatalytic mechanism resembles that of a type II heterojunction. Notably, due to the presence of defect oxygen vacancies, not only can photogenerated electrons be captured but new energy levels can also be manufactured in the bandgap of BiOI and $Bi₅O₇I$, thereby better activating molecular oxygen and facilitating the reaction with photogenerated electrons to form $\cdot O_2^-$, which participates in phenol degradation.

5.3. Z-Scheme

The Z-scheme system represents a novel and efficient type of heterojunction, characterized by a band structure like that of a type II heterojunction, albeit with a distinct migration path for photogenerated carriers (Figure [10\)](#page-15-0). Owing to the electron migration path that resembles the letter 'Z', this heterojunction structure is termed a Z-scheme system. Depending upon the presence or shortage of a medium, the Z-scheme system can be further classified into three types: the redox pair medium type, the direct Z-scheme (without a medium), and the solid medium type [\[88,](#page-21-4)[89\]](#page-21-5). Bard [\[90\]](#page-21-6) proposed the redox pair medium Z-scheme in 1979, comprising two different semiconductor photocatalysts and paired electron donor (D) and acceptor (A) ions in an electrolyte solution, as shown in Figure $10a$. Holes from the VB of SC II oxidize the D species to A species, while electrons in the CB of SC I reduce the A species to D species. SC I and SC II are not in direct contact with each

other, and photogenerated carriers are transmitted through a reversible redox medium, which acts as an electron transport chain. However, the operational stability and activity of the redox medium gradually decline with long-term use, thereby decreasing the catalytic performance. In comparison, the direct Z-scheme type without the medium demonstrates superior stability. As shown in Figure [10b](#page-15-0), upon excitation, these types of heterojunctions generate electrons and holes in their respective CB and VB. However, the photogenerated electrons in the CB of SC II can migrate to the VB of SC I and recombine with the photogenerated holes therein. This electron transport pathway not only facilitates the separation of electron-hole pairs within each semiconductor but also ensures that the electrons in the CB of SC I and the holes in the VB of SC II maintain their highest and original redox potentials, thereby overcoming the shortcomings of type II heterojunctions. Naturally, when the two semiconductors are in immediate contact, it becomes essential for researchers to demonstrate that the material they have prepared is not a type II heterojunction but a direct Z-scheme system.

Figure 10. Schematic diagram of electron-hole separation in a Z scheme heterojunction: (**a**) redox **Figure 10.** Schematic diagram of electron-hole separation in a Z scheme heterojunction: (**a**) redox pair mediator. (b) Direct Z scheme. (c) Solid-state dielectric type. The surface charge density (d) and the interfacial electric field intensity (e) of BiOCl, $Bi_4O_5I_2$, BOC-I-V heterojunction, BOC-I-L heterojunction. Reprinted with permission from Ref. [21]. [Cop](#page-18-6)yright 2023 Elsevier. (f) Schematic diagram of dual $Bi_2WO_6/GQDs/WO_3$ Z-scheme photocatalyst. Reprinted with permission from Ref. [91]. Copyright [202](#page-21-7)0 Elsevier. American Chemical Society. (g) The photodegradation mechanism of phenol over all solid-state Z scheme BiOI/Pt/g-C₃N₄ photocatalysts. Reprinted with permission from Ref. [92]. Copyri[ght](#page-21-8) 2020 Royal Society of Chemistry. (h) Diagram of possible mechanism of phenol degradation by Z-type CBO/BVO heterojunction photocatalysts with Si@Au acting as solid-state medium. Reprinted with permission from Ref. [\[93\]](#page-21-9). Copyright 2021 Elsevier.

Zhong et al. [\[21\]](#page-18-6) synthesized two types of two-dimensional BiOCl/Bi₄O₅I₂ heterojunction photocatalysts via the hydrothermal method. These include lateral heterojunctions (LHs) formed by chemical bonds and vertical heterojunctions (VHs) formed by van der Waals forces, representing Z-scheme heterojunctions and type II heterojunctions, respectively. At visible light irradiation for 180 min, the two BiOCl/Bi₄O₅I₂ heterojunctions achieved phenol degradation efficiency of 98% and 95%, respectively. Although the degradation efficiencies are similar, the phenol degradation efficiency of $BiOCl/Bi₄O₅I₂$ -LHs is approximately 2.1-times that of $BiOCl/B₄O₅I₂$ -VHs. As shown in Figure [10d](#page-15-0),e, compared to the BiOCl/Bi₄O₅I₂-VHs heterojunction, the BiOCl/Bi₄O₅I₂-LHs heterojunction, based on direct chemical bonds, exhibits a higher surface charge density. Therefore, it possesses a stronger internal electric field, and under the Z-scheme model, it facilitates faster photogenerated carrier transfer, a more direct carrier channel, and exhibits the highest photocatalytic activity. Duan et al. [\[94\]](#page-21-10) synthesized $CuO/CNT/Bi₂WO₆$ composite materials via the solvothermal method, and the catalyst exhibited the capability of degrading approximately 60% of phenol within 2.5 h. The enhancement of its photocatalytic effect is ascribed to the formation of a Z-scheme heterojunction, which promotes the interval of photogenerated electron-hole pairs. Zhou et al. [\[91\]](#page-21-7) employed electrostatic attraction to uniformly anchor graphene quantum dots on a reverse protein skeleton of Bi_2WO_6/WO_3 , and a dual Z-scheme photocatalyst was obtained. The phenol degradation efficiency over $0.5Bi₂WO₆/GQDs/WO₃IO$ reached 99.8% within 120 min, which is 2.8-times higher than that of single WO₃IO. As shown in Figure [10f](#page-15-0), the VB of GQDs is close to the CB of $Bi₂WO₆$ and WO₃. After photoexcitation, the electrons (e⁻) in the CB of Bi₂WO₆ and WO₃ recombine with the holes (h^+) in the VB of GQDs. This promotes the reaction of electrons and holes in other parts with O_2 and H_2O to produce active species $\cdot O_2^-$ and $\cdot OH$, thereby facilitating the oxidative removal of phenol.

Although the direct Z-type system effectively enhances the photocatalytic activity through the reorganization of photogenerated electrons from the CB of SC II and vacancies from the VB of SC I at the interface, photocarrier transport capability at this interface deteriorates due to diminished contact compactness or recombination of charge carriers within the components. Consequently, it is imperative to develop a novel system that conveys photogenerated carriers between interfaces more stably and expeditiously. As shown in Figure [10c](#page-15-0), this all-solid-state Z-type system contains two distinct semiconductors and a solid electron medium in contact with the interfaces of these semiconductors. This medium typically comprises precious metals such as gold (Au), silver (Ag), and platinum (Pt). Jiang et al. [\[92\]](#page-21-8) fabricated an all-solid-state Z-type BiOI/Pt/g-C₃N₄ heterojunction photocatalyst using a two-step method. The degradation efficiency of phenol can reach 71.2% under visible light within 120 min, significantly enhancing the phenol degradation efficiency compared to those of single g-C₃N₄, BiOI/g-C₃N₄, and Pt/g-C₃N₄ at 13.6%, 30.2%, and 40.1%, respectively. An elementary diagram of its photocatalytic degradation of phenol is shown in Figure [10g](#page-15-0). Compared to the Z-type binary heterojunction, utilizing precious metal Pt as the electron channel enhances carrier transfer efficiency, maximizes charge separation at a zero Schottky barrier, and optimizes oxidation capacity.

Raizada et al. [\[95\]](#page-21-11) reported a ternary BiOBr/PSCN/Ag/AgCl nano photocatalyst featuring a double Z-scheme, which facilitates the distance of photogenerated electrons and holes through the SPR [\[96\]](#page-21-12) influence mediated by precious metal Ag. After visible light irradiation for 60 min, it can degrade 98% of phenol, demonstrating lofty photocatalytic performance comparison with bare BiOBr, phosphorus sulphur co-doped graphitic carbon nitride (PSCN), and AgCl. Toe et al. [\[93\]](#page-21-9) designed a core–shell structured Si@Au-modified $CuBi₂O₄/BiVO₄$ heterojunction photocatalyst. As shown in Figure [10h](#page-15-0), the Au layer in the Si@Au core–shell structure achieves surface passivation and suppresses the photoluminescence of Si NP. Simultaneously, as a plasmonic material, it adjusts the SPR effect to enhance the photocatalytic reaction on $\text{CuBi}_2\text{O}_4/\text{BiVO}_4$. The photocatalytic performance of Si@Au/CuBi₂O₄/BiVO₄ for phenol degradation, tested under visible light, achieved a degradation efficiency of 96% within 3 h, compared to 57% for $\text{CuBi}_2\text{O}_4/\text{Bi} \text{VO}_4$ alone. This

efficiency is due to the Fermi level of Au, positioned between the VB of CuBi_2O_4 and the CB of BiVO4, acting as a bridge for electron-hole recombination, thus enhancing the utilization within the bands. This further increases the photocatalytic activity of the $\text{CuBi}_2\text{O}_4/\text{Bi}^2\text{O}_4$ heterojunction semiconductor. In summary, this Z-type carrier transport mode, mediated by precious metals, leverages the SPR effect to enhance the virtue of photogenerated carrier separation, thereby boosting the photocatalytic activity.

6. Summary and Outlook

This review comprehensively discusses the photocatalytic degradation of phenol over Bi-based polyoxide catalysts. Based on a brief overview of the basic structure and properties of Bi-based oxides, different kinds of Bi-based oxide catalysts and their catalytic performance are summarized. Subsequently, the effects of morphology, elemental doping, defect introduction, and the band structure on the catalytic performance of Bi-based multielement oxides are discussed. Aiming to efficiently separate photogenerated electron-hole pairs, various heterojunctions are constructed to develop new Bi-based photocatalysts, thereby achieving efficient phenol removal. Undoubtedly, the layered structure of the Bi-based multi-element oxide photocatalyst offers more active sites for the photocatalytic degradation of phenol, and constructing a Bi-based semiconductor heterojunction maximizes its conduction and valence band redox capabilities, thus significantly enhancing its photocatalytic activity.

Although some valuable results have been obtained, Bi-based oxide photocatalysts still encounter various challenges. For instance, in single-component Bi-based semiconductors, precisely controlling the morphology, exposing high-activity crystal facets, and designing mesoporous structures present significant research value. Regarding new composite materials, identifying materials that match the band structure of Bi-based multi-element oxides and can effectively form heterojunctions offers broad prospects. It is noteworthy that constructing such heterojunction composite structures not only holds potential in photocatalytic pollutant degradation but also in energy applications like hydrogen production and $CO₂$ reduction.

Author Contributions: Writing original draft paper, Z.L. (Zhangpei Liu); writing—review and editing, M.Q., X.C. and Z.L. (Zhiming Liu); funding acquisition, Z.L. (Zhiming Liu). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Fundamental Research Funds for the Central Universities (Grant Number: JD2110).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Ranjan, M.; Singh, P.K.; Srivastav, A.L. A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water. *Environ. Sci. Pollut. Res. Int.* **2020**, *27*, 17492–17504. [\[CrossRef\]](https://doi.org/10.1007/s11356-019-05359-9)
- 2. Wang, J.; Wang, X.; Zhao, G.; Song, G.; Chen, D.; Chen, H.; Xie, J.; Hayat, T.; Alsaedi, A.; Wang, X. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. *Chem. Eng. J.* **2018**, *334*, 569–578. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2017.10.068)
- 3. Guo, C.; Tan, Y.; Yang, S.; Qian, Y. Development of phenols recovery process with novel solvent methyl propyl ketone for extracting dihydric phenols from coal gasification wastewater. *J. Clean. Prod.* **2018**, *198*, 1632–1640. [\[CrossRef\]](https://doi.org/10.1016/j.jclepro.2018.07.161)
- 4. Villegas, L.G.C.; Mashhadi, N.; Chen, M.; Mukherjee, D.; Taylor, K.E.; Biswas, N. A Short Review of Techniques for Phenol Removal from Wastewater. *Curr. Pollut. Rep.* **2016**, *2*, 157–167. [\[CrossRef\]](https://doi.org/10.1007/s40726-016-0035-3)
- 5. Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. *Sci. Total Environ.* **2022**, *838*, 156417. [\[CrossRef\]](https://doi.org/10.1016/j.scitotenv.2022.156417)
- 6. Mukherjee, R.; De, S. Novel carbon-nanoparticle polysulfone hollow fiber mixed matrix ultrafiltration membrane: Adsorptive removal of benzene, phenol and toluene from aqueous solution. *Sep. Purif. Technol.* **2016**, *157*, 229–240. [\[CrossRef\]](https://doi.org/10.1016/j.seppur.2015.11.015)
- 7. Li, X.; Chang, J.; Zhang, S.; Xiao, L.; Wu, X.; He, Z. Microcystis@TiO₂ Nanoparticles for Photocatalytic Reduction Reactions: Nitrogen Fixation and Hydrogen Evolution. *Catalysts* **2021**, *11*, 1443. [\[CrossRef\]](https://doi.org/10.3390/catal11121443)
- 8. Batra, V.; Kaur, I.; Pathania, D.; Sonu; Chaudhary, V. Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. *Appl. Surf. Sci. Adv.* **2022**, *11*, 100314. [\[CrossRef\]](https://doi.org/10.1016/j.apsadv.2022.100314)
- 9. Liang, Y.C.; Chou, Y.H. Improved photoelectrode performance of chemical solution-derived Bi_2O_3 crystals via manipulation of crystal characterization. *RSC Adv.* **2020**, *10*, 45042–45058. [\[CrossRef\]](https://doi.org/10.1039/D0RA08746G)
- 10. Rashmi; Majid, M.; Sivakumar, S. Tetragonal-zircon BiVO4: A better polymorph for the formation of coherent type-II heterostructures for water splitting applications. *Phys. Chem. Chem. Phys.* **2023**, *25*, 27595–27605. [\[CrossRef\]](https://doi.org/10.1039/D3CP02711B) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/37807926)
- 11. Fu, G.; Xu, G.; Chen, S.; Lei, L.; Zhang, M. Ag₃PO₄/Bi₂WO₆ hierarchical heterostructures with enhanced visible light photocatalytic activity for the degradation of phenol. *Catal. Commun.* **2013**, *40*, 120–124. [\[CrossRef\]](https://doi.org/10.1016/j.catcom.2013.06.013)
- 12. Fu, F.; Shen, H.; Sun, X.; Xue, W.; Shoneye, A.; Ma, J.; Luo, L.; Wang, D.; Wang, J.; Tang, J. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(III)/Bi2MoO⁶ for efficient photocatalysis. *Appl. Catal. B* **2019**, *247*, 150–162. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2019.01.056)
- 13. Gao, P.; Yang, Y.; Yin, Z.; Kang, F.; Fan, W.; Sheng, J.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. *J. Hazard. Mater.* **2021**, *412*, 125186. [\[CrossRef\]](https://doi.org/10.1016/j.jhazmat.2021.125186)
- 14. Ma, J.; Jin, D.; Li, Y.; Xiao, D.; Jiao, G.; Liu, Q.; Guo, Y.; Xiao, L.; Chen, X.; Li, X.; et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. *Appl. Catal. B* **2021**, *283*, 119520. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2020.119520)
- 15. Ghasemi, S.; Rahimnejad, S.; Setayesh, S.R.; Rohani, S.; Gholami, M.R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO² prepared in an ionic liquid. *J. Hazard. Mater.* **2009**, *172*, 1573–1578. [\[CrossRef\]](https://doi.org/10.1016/j.jhazmat.2009.08.029)
- 16. Jiang, H.; Dai, H.; Deng, J.; Liu, Y.; Zhang, L.; Ji, K. Porous F-doped BiVO⁴ : Synthesis and enhanced photocatalytic performance for the degradation of phenol under visible-light illumination. *Solid State Sci.* **2013**, *17*, 21–27. [\[CrossRef\]](https://doi.org/10.1016/j.solidstatesciences.2012.12.009)
- 17. Mao, M.; Chen, F.; Zheng, C.; Ning, J.; Zhong, Y.; Hu, Y. Facile synthesis of porous Bi₂O₃-BiVO₄ p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol. *J. Alloys Compd.* **2016**, *688*, 1080–1087. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2016.07.128)
- 18. Wang, X.; Wang, Q.; Li, F.; Yang, W.; Zhao, Y.; Hao, Y.; Liu, S. Novel BiOCl–C3N⁴ heterojunction photocatalysts: In situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. *Chem. Eng. J.* **2013**, *234*, 361–371. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2013.08.112)
- 19. Cao, Y.; El-Shafay, A.S.; Mohammed, A.H.; Almojil, S.F.; Almohana, A.I.; Alali, A.F. Controlling the charge carriers recombination kinetics on the g-C3N₄-BiSI n-n heterojunction with efficient photocatalytic activity in N₂ fixation and degradation of MB and phenol. *Adv. Powder Technol.* **2022**, *33*, 103513. [\[CrossRef\]](https://doi.org/10.1016/j.apt.2022.103513)
- 20. Wang, Y.; Fan, X.; Dong, W.; Zhang, Q.; Liu, J.; Li, R.; Wang, Y.; Zhang, X.; Fan, C. CeO₂ nanoparticles decorated Bi₄O₇ nanosheets for enhanced photodegradation performance of phenol. *Mater. Lett.* **2022**, *322*, 132465. [\[CrossRef\]](https://doi.org/10.1016/j.matlet.2022.132465)
- 21. Zhong, Y.; Wu, C.; Chen, D.; Zhang, J.; Feng, Y.; Xu, K.; Hao, W.; Ding, H.; Lv, G.; Du, Y.; et al. Design of lateral and vertical Bi4O⁵ I2/BiOCl heterojunctions with different charge migration pathway for efficient photoredox activity. *Appl. Catal. B* **2023**, *329*, 122554. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2023.122554)
- 22. Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Spatiotemporal imaging of charge transfer in photocatalyst particles. *Nature* **2022**, *610*, 296–301. [\[CrossRef\]](https://doi.org/10.1038/s41586-022-05183-1) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/36224420)
- 23. Fang, W.; Mi, Y.; Yang, Y.; Jiang, Y.; Liu, Y.; Shangguan, W. Conduction band tuning by strengthening s-p hybridization of novel layered oxyhalide Bi4SbO8Cl for efficient visible-light photocatalytic water splitting. *Mater. Today Chem.* **2022**, *26*, 101175. [\[CrossRef\]](https://doi.org/10.1016/j.mtchem.2022.101175)
- 24. Liu, Z.; Tai, Y.; Liu, J.; Liu, F.; Han, B.; Fu, W.; Yang, X.; Xie, H.; Liu, Q. A novel mechanism for visible-light degradation of phenol by oxygen vacancy Bi2MoO⁶ homojunction. *Appl. Surf. Sci.* **2022**, *605*, 154671. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2022.154671)
- 25. Sarkar, R.; Das, D.; Kumar Das, B.; Mitra, A.; Das, N.S.; Sarkar, S.; Chattopadhyay, K.K. Hollow micro-spherical bismuth oxy-chloride for superior visible light induced dye-sensitized photocatalytic activity and its theoretical insight. *Mater. Res. Bull.* **2020**, *125*, 110778. [\[CrossRef\]](https://doi.org/10.1016/j.materresbull.2020.110778)
- 26. Tai, Y.; Han, B.; Liu, Z.; Yang, X.; Fu, W.; Gao, R.; Niu, B.; Liu, X.; Zhang, Y.; Liu, Q. Novel core–shell heterojunction photocatalytic wire mesh for efficient ciprofloxacin degradation under visible light. *Sep. Purif. Technol.* **2023**, *306*, 122770. [\[CrossRef\]](https://doi.org/10.1016/j.seppur.2022.122770)
- 27. Li, C.; Chen, G.; Sun, J.; Rao, J.; Han, Z.; Hu, Y.; Xing, W.; Zhang, C. Doping effect of phosphate in Bi2WO₆ and universal improved photocatalytic activity for removing various pollutants in water. *Appl. Catal. B* **2016**, *188*, 39–47. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2016.01.054)
- 28. Li, Y.; Wang, H.; Huang, L.; Wang, C.; Wang, Q.; Zhang, F.; Fan, X.; Xie, M.; Li, H. Promoting LED light driven photocatalytic inactivation of bacteria by novel β-Bi2O3@BiOBr core/shell photocatalyst. *J. Alloys Compd.* **2020**, *816*, 152665. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2019.152665)
- 29. Li, T.; Quan, S.; Shi, X.; Yang, L.; Liu, C. Fabrication of La-Doped Bi₂O₃ Nanoparticles with Oxygen Vacancies for Improving Photocatalytic Activity. *Catal. Lett.* **2019**, *150*, 640–651. [\[CrossRef\]](https://doi.org/10.1007/s10562-019-02970-w)
- 30. Meng, Q.; Luo, M.; Jiang, J.; Wan, X. Construction of BiOBr/ α -Bi₂O₃ p-n heterojunction as a highly efficacious visible-lightinduced photocatalyst for phenol removal. *Vacuum* **2023**, *214*, 112178. [\[CrossRef\]](https://doi.org/10.1016/j.vacuum.2023.112178)
- 31. Wu, J.; Ding, B.; Qian, X.; Mao, L.; Zheng, H.; Yang, Y.; Zhang, L.; Zheng, S.; Zhang, J. Sunlight driven isotropic beta-Bi₂O₃ with high charge-carrier mobility for the efficient degradation of bisphenol A and phenol. *Dalton Trans.* **2022**, *51*, 8401–8410. [\[CrossRef\]](https://doi.org/10.1039/D2DT01341J) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/35588000)
- 32. Meng, X.; Li, Z.; Zhang, Z. Pd-nanoparticle-decorated peanut-shaped BiVO⁴ with improved visible light-driven photocatalytic activity comparable to that of TiO₂ under UV light. *J. Catal.* **2017**, 356, 53-64. [\[CrossRef\]](https://doi.org/10.1016/j.jcat.2017.09.005)
- 33. Sun, S.; Wang, W.; Xu, J.; Wang, L.; Zhang, Z. Highly efficient photocatalytic oxidation of phenol over ordered mesoporous Bi2WO⁶ . *Appl. Catal. B* **2011**, *106*, 559–564. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2011.06.016)
- 34. Uezono, N.; Liu, J.; Pawar, S.A.; Islam, M.M.; Ikeda, S.; Sakurai, T. Crystalline phase control of BiVO⁴ thin films using RF sputtering. *Jpn. J. Appl. Phys.* **2023**, *62*, SK1001. [\[CrossRef\]](https://doi.org/10.35848/1347-4065/acbb85)
- 35. Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Serendipitous Assembly of Mixed Phase BiVO $_4$ on B-Doped g-C $_3$ N $_4$: An Appropriate p–n Heterojunction for Photocatalytic O₂ evolution and Cr(VI) reduction. *Inorg. Chem.* **2019**, 58, 12480–12491. [\[CrossRef\]](https://doi.org/10.1021/acs.inorgchem.9b02309)
- 36. Xie, B.; Zhang, H.; Cai, P.; Qiu, R.; Xiong, Y. Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO⁴ under visible light irradiation. *Chemosphere* **2006**, *63*, 956–963. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2005.08.064) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/16297430)
- 37. Sun, M.; Guo, P.; Wang, M.; Ren, F. The effect of pH on the photocatalytic performance of BiVO₄ for phenol mine sewage degradation under visible light. *Optik* **2019**, *179*, 672–679. [\[CrossRef\]](https://doi.org/10.1016/j.ijleo.2018.10.211)
- 38. Liu, X.; Gu, S.; Zhao, Y.; Zhou, G.; Li, W. BiVO⁴ , Bi2WO⁶ and Bi2MoO⁶ photocatalysis: A brief review. *J. Mater. Sci. Technol.* **2020**, *56*, 45–68. [\[CrossRef\]](https://doi.org/10.1016/j.jmst.2020.04.023)
- 39. Xiong, X.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Chen, C.; Xi, J.; Kong, Z.; Song, L.; Zeng, J. Novel MoSSe/Bi2WO⁶ S-scheme heterojunction photocatalysts for significantly improved photoelectrochemical and photocatalytic performance. *J. Alloys Compd.* **2023**, *933*, 167784. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2022.167784)
- 40. Sattari, M.; Farhadian, M.; Reza Solaimany Nazar, A.; Moghadam, M. Enhancement of Phenol degradation, using of novel Z-scheme Bi2WO6/C3N4/TiO² composite: Catalyst and operational parameters optimization. *J. Photochem. Photobiol. A* **2022**, *431*, 114065. [\[CrossRef\]](https://doi.org/10.1016/j.jphotochem.2022.114065)
- 41. Liu, X.; Zhou, W.; Li, F.; Yu, C. Eu³⁺ doped Bi₂MoO₆ nanosheets fabricated via hydrothermal-calcination route and their superior performance for aqueous volatile phenols removal. *J. Taiwan Inst. Chem. Eng.* **2021**, *125*, 276–284. [\[CrossRef\]](https://doi.org/10.1016/j.jtice.2021.06.038)
- 42. Sun, M.; Guo, P.; Wang, M.; Ren, F. The effect of calcination temperature on the photocatalytic performance of Bi $_2$ MoO $_6$ for the degradation of phenol under visible light. *Optik* **2019**, *199*, 163319. [\[CrossRef\]](https://doi.org/10.1016/j.ijleo.2019.163319)
- 43. Chang Chien, S.-W.; Ng, D.-Q.; Kumar, D.; Lam, S.-M.; Jaffari, Z.H. Investigating the effects of various synthesis routes on morphological, optical, photoelectrochemical and photocatalytic properties of single-phase perovskite BiFeO³ . *J. Phys. Chem. Solids* **2022**, *160*, 110342. [\[CrossRef\]](https://doi.org/10.1016/j.jpcs.2021.110342)
- 44. $\:$ Zargazi, M.; Entezari, M.H. A novel synthesis of forest like BiFeO $_3$ thin film: Photo-electrochemical studies and its application as a photocatalyst for phenol degradation. *Appl. Surf. Sci.* **2019**, *483*, 793–802. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2019.03.347)
- 45. Lam, S.-M.; Jaffari, Z.H.; Sin, J.-C.; Zeng, H.; Lin, H.; Li, H.; Mohamed, A.R. Insight into the influence of noble metal decorated on BiFeO³ for 2,4-dichlorophenol and real herbicide wastewater treatment under visible light. *Colloids Surf. A* **2021**, *614*, 126138. [\[CrossRef\]](https://doi.org/10.1016/j.colsurfa.2021.126138)
- 46. Yin, J.; Liao, G.; Zhou, J.; Huang, C.; Ling, Y.; Lu, P.; Li, L. High performance of magnetic BiFeO₃ nanoparticle-mediated photocatalytic ozonation for wastewater decontamination. *Sep. Purif. Technol.* **2016**, *168*, 134–140. [\[CrossRef\]](https://doi.org/10.1016/j.seppur.2016.05.049)
- 47. Sun, X.; Xu, T.; Xian, T.; Yi, Z.; Liu, G.; Dai, J.; Yang, H. Insight on the enhanced piezo-photocatalytic mechanism of In₂O₃/BiFeO₃ heterojunctions for degradation of tetracycline hydrochloride. *Appl. Surf. Sci.* **2023**, *640*, 158408. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2023.158408)
- 48. Mansingh, S.; Sultana, S.; Acharya, R.; Ghosh, M.K.; Parida, K.M. Efficient Photon Conversion via Double Charge Dynamics CeO² -BiFeO³ p-n Heterojunction Photocatalyst Promising toward N² Fixation and Phenol-Cr(VI) Detoxification. *Inorg. Chem.* **2020**, *59*, 3856–3873. [\[CrossRef\]](https://doi.org/10.1021/acs.inorgchem.9b03526)
- 49. Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. *Nano Energy* **2017**, *41*, 172–192. [\[CrossRef\]](https://doi.org/10.1016/j.nanoen.2017.09.008)
- 50. Guo, J.; Li, X.; Liang, J.; Yuan, X.; Jiang, L.; Yu, H.; Sun, H.; Zhu, Z.; Ye, S.; Tang, N.; et al. Fabrication and regulation of vacancy-mediated bismuth oxyhalide towards photocatalytic application: Development status and tendency. *Coord. Chem. Rev.* **2021**, *443*, 214033. [\[CrossRef\]](https://doi.org/10.1016/j.ccr.2021.214033)
- 51. Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. *Nanoscale* **2014**, *6*, 2009–2026. [\[CrossRef\]](https://doi.org/10.1039/c3nr05529a) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/24430623)
- 52. Han, Y.; Li, Q.; Bao, S.; Lu, Y.; Guan, Z.; Zhang, J.; Tian, B. Z-scheme heterostructure BiOCl-Ag-AgBr with enhanced sunlightdriven photocatalytic activity in simultaneous removal of Cr6+ and phenol contaminants. *Catal. Today* **2021**, *376*, 151–161. [\[CrossRef\]](https://doi.org/10.1016/j.cattod.2020.06.054)
- 53. Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. *J. Am. Chem. Soc.* **2012**, *134*, 4473–4476. [\[CrossRef\]](https://doi.org/10.1021/ja210484t)
- 54. Wang, X.; Zhang, Y.; Zhou, C.; Huo, D.; Zhang, R.; Wang, L. Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. *Appl. Catal. B* **2020**, *268*, 118390. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2019.118390)
- 55. Wen, R.; Yang, L.; Wu, S.; Zhou, D.; Jiang, B. Tuning surface sites to boost photocatalytic degradation of phenol and ciprofloxacin. *Chin. Chem. Lett.* **2023**, *34*, 107204. [\[CrossRef\]](https://doi.org/10.1016/j.cclet.2022.02.010)
- 56. Sun, S.; Wang, W.; Zhang, L. Bi₂WO₆ Quantum Dots Decorated Reduced Graphene Oxide: Improved Charge Separation and Enhanced Photoconversion Efficiency. *J. Phys. Chem. C* **2013**, *117*, 9113–9120. [\[CrossRef\]](https://doi.org/10.1021/jp4004592)
- 57. Ruan, X.; Wen, X.; Liang, D.; Hu, Y. Hierarchically peony-analogous bismuth tungstate with oxygen vacancies for enhanced photocatalytic degradation of phenolic compounds. *J. Clean. Prod.* **2021**, *324*, 129287. [\[CrossRef\]](https://doi.org/10.1016/j.jclepro.2021.129287)
- 58. Li, Y.; Zhu, J.; Yang, R.; Shao, M. Facile synthesis of Bi decorated 2D and 3D BiOBr micro-nanostructures with enhanced photocatalytic activity. *Micro Nano Lett.* **2018**, *13*, 1040–1045. [\[CrossRef\]](https://doi.org/10.1049/mnl.2017.0787)
- 59. Liu, C.; Wang, X. Room temperature synthesis of Bi $_4$ O $_5$ I $_2$ and Bi $_5$ O $_7$ I ultrathin nanosheets with a high visible light photocatalytic performance. *Dalton Trans.* **2016**, *45*, 7720–7727. [\[CrossRef\]](https://doi.org/10.1039/C6DT00530F)
- 60. Yang, J.; Xu, L.; Liu, C.; Xie, T. Preparation and photocatalytic activity of porous Bi5O⁷ I nanosheets. *Appl. Surf. Sci.* **2014**, *319*, 265–271. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2014.07.055)
- 61. Du, X.; Huang, J.; Zhang, J.; Yan, Y.; Wu, C.; Hu, Y.; Yan, C.; Lei, T.; Chen, W.; Fan, C.; et al. Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. *Angew. Chem. Int. Ed. Engl.* **2019**, *58*, 4484–4502. [\[CrossRef\]](https://doi.org/10.1002/anie.201810104) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/30277009)
- 62. Wang, F.; Ma, N.; Zheng, L.; Zhang, L.; Bian, Z.; Wang, H. Interface engineering of p-p Z-scheme BiOBr/Bi $_{12}$ O₁₇Br₂ for sulfamethoxazole photocatalytic degradation. *Chemosphere* **2022**, *307*, 135666. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2022.135666) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/35820482)
- 63. Xing, F.; Wang, L.; Zhou, Y.; Jin, S.; Jin, H.; Li, J. Breaking through the interfacial energy barrier limitations of type-I heterojunctions via ferroelectric polarization engineering: A case study of Bi₅Ti₃FeO₁₅/BiOCl. *Inorg. Chem. Front.* **2023**, 10, 3112-3120. [\[CrossRef\]](https://doi.org/10.1039/D3QI00273J)
- 64. Long, Y.; Li, L.; Zhou, L.; Zhang, S.; Wang, L.; Zheng, Z.; Wu, S.; Hei, Y.; Jiang, F. Fabrication of the AgI/BiOI/BiPO₄ multiheterojunction with high photocatalytic activity. *Mater. Res. Bull.* **2020**, *126*, 110787. [\[CrossRef\]](https://doi.org/10.1016/j.materresbull.2020.110787)
- 65. Wang, Z.; Chen, M.; Huang, D.; Zeng, G.; Xu, P.; Zhou, C.; Lai, C.; Wang, H.; Cheng, M.; Wang, W. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. *Chem. Eng. J.* **2019**, *374*, 1025–1045. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2019.06.018)
- 66. Cheng, T.; Ma, Q.; Gao, H.; Meng, S.; Lu, Z.; Wang, S.; Yi, Z.; Wu, X.; Liu, G.; Wang, X.; et al. Enhanced photocatalytic activity, mechanism and potential application of Idoped-Bi₄Ti₃O₁₂ photocatalysts. *Mater. Today Chem.* **2022**, 23, 100750. [\[CrossRef\]](https://doi.org/10.1016/j.mtchem.2021.100750)
- 67. Meng, X.; Qin, H.; Zhang, Z. New insight into the enhanced visible light-driven photocatalytic activity of Pd/PdCl₂-doped Bi2WO⁶ photocatalysts. *J. Colloid Interface Sci.* **2018**, *513*, 877–890. [\[CrossRef\]](https://doi.org/10.1016/j.jcis.2017.12.009)
- 68. Meng, X.; Zhang, Z. Bi $_2$ MoO $_6$ co-modified by reduced graphene oxide and palladium (Pd²⁺and Pd⁰) with enhanced photocatalytic decomposition of phenol. *Appl. Catal. B* **2017**, *209*, 383–393. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2017.01.033)
- 69. Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N⁴ photocatalysts: A review. *Carbon* **2021**, *172*, 682–711. [\[CrossRef\]](https://doi.org/10.1016/j.carbon.2020.10.073)
- 70. Meng, X.; Li, Z.; Chen, J.; Xie, H.; Zhang, Z. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles. *Appl. Surf. Sci.* **2018**, *433*, 76–87. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2017.09.103)
- 71. Wang, J.C.; Zhang, L.; Fang, W.X.; Ren, J.; Li, Y.Y.; Yao, H.C.; Wang, J.S.; Li, Z.J. Enhanced Photoreduction CO₂ Activity over Direct Z-Scheme alpha-Fe2O3/Cu2O Heterostructures under Visible Light Irradiation. *ACS Appl. Mater. Interfaces* **2015**, *7*, 8631–8639. [\[CrossRef\]](https://doi.org/10.1021/acsami.5b00822)
- 72. Liu, Z.; Cai, L.; Tai, Y.; Deng, J.; Wu, Q.; Zhao, Y.; Xie, H.; Liu, Q. Synergistic Effects of Sulfur Vacancies and Internal Electric Fields in FeS/MoS² Heterojunctions: A New Approach to Photocatalytic Chromium Removal. *Chemosphere* **2024**, *364*, 143021. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2024.143021) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/39111676)
- 73. Jing, Q.; Liu, Z.; Cheng, X.; Li, C.; Ren, P.; Guo, K.; Yue, H.; Xie, B.; Li, T.; Wang, Z.; et al. Boosting piezo-photocatalytic activity of BiVO4/BiFeO³ heterojunctions through built-in polarization field tailoring carrier transfer performances. *Chem. Eng. J.* **2023**, *464*, 142617. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2023.142617)
- 74. Chen, L.; Ren, J.T.; Yuan, Z.Y. Enabling Internal Electric Fields to Enhance Energy and Environmental Catalysis. *Adv. Energy Mater.* **2023**, *13*, 2203720. [\[CrossRef\]](https://doi.org/10.1002/aenm.202203720)
- 75. Chen, L.; He, J.; Liu, Y.; Chen, P.; Au, C.-T.; Yin, S.-F. Recent advances in bismuth-containing photocatalysts with heterojunctions. *Chin. J. Catal.* **2016**, *37*, 780–791. [\[CrossRef\]](https://doi.org/10.1016/S1872-2067(15)61061-0)
- 76. Yu, C.; Zhou, W.; Yu, J.C.; Liu, H.; Wei, L. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. *Chin. J. Catal.* **2014**, *35*, 1609–1618. [\[CrossRef\]](https://doi.org/10.1016/S1872-2067(14)60170-4)
- 77. Lin, J.; He, J.; Hu, J.; Dong, J.; Liu, A.; Yang, Y.; Tang, L.; Li, L.; Zhou, Y.; Zou, Z. In situ construction of a 2D/2D heterostructured ZnIn2S4/Bi2MoO⁶ Z-scheme system for boosting the photoreduction activity of Cr(vi). *Catal. Sci. Technol.* **2021**, *11*, 3885–3893. [\[CrossRef\]](https://doi.org/10.1039/D1CY00298H)
- 78. Ji, Q.; Xu, Z.; Xiang, W.; Wu, Y.; Cheng, X.; Xu, C.; Qi, C.; He, H.; Hu, J.; Yang, S.; et al. Enhancing the performance of pollution degradation through secondary self-assembled composite supramolecular heterojunction photocatalyst BiOCl/PDI under visible light irradiation. *Chemosphere* **2020**, *253*, 126751. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2020.126751)
- 79. Zhang, K.; Wang, J.; Jiang, W.; Yao, W.; Yang, H.; Zhu, Y. Self-assembled perylene diimide based supramolecular heterojunction with Bi2WO⁶ for efficient visible-light-driven photocatalysis. *Appl. Catal. B* **2018**, *232*, 175–181. [\[CrossRef\]](https://doi.org/10.1016/j.apcatb.2018.03.059)
- 80. Liao, H.; Li, Z.; Luo, L.; Zhong, J.; Li, J. Water hyacinth powder -assisted preparation of defects-rich and flower-like BiOI/Bi5O⁷ I heterojunctions with excellent visible light photocatalytic activity. *Surf. Interfaces* **2021**, *27*, 101470. [\[CrossRef\]](https://doi.org/10.1016/j.surfin.2021.101470)
- 81. Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. *Adv. Funct. Mater.* **2013**, *24*, 2421–2440. [\[CrossRef\]](https://doi.org/10.1002/adfm.201303214)
- 82. Özçelik, V.O.; Azadani, J.G.; Yang, C.; Koester, S.J.; Low, T. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. *Phys. Rev. B* **2016**, *94*, 35125. [\[CrossRef\]](https://doi.org/10.1103/PhysRevB.94.035125)
- 83. Jiao, H.; Wang, X.; Chen, Y.; Guo, S.; Wu, S.; Song, C.; Huang, S.; Huang, X.; Tai, X.; Lin, T.; et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. *Sci. Adv.* **2022**, *8*, eabn1811. [\[CrossRef\]](https://doi.org/10.1126/sciadv.abn1811)
- 84. Li, J.; Chen, J.; Fang, H.; Guo, X.; Rui, Z. Plasmonic Metal Bridge Leading Type III Heterojunctions to Robust Type B Photothermocatalysts. *Ind. Eng. Chem. Res.* **2021**, *60*, 8420–8429. [\[CrossRef\]](https://doi.org/10.1021/acs.iecr.1c01198)
- 85. Xiao, Y.; Tan, S.; Wang, D.; Wu, J.; Jia, T.; Liu, Q.; Qi, Y.; Qi, X.; He, P.; Zhou, M. CeO₂/BiOIO₃ heterojunction with oxygen vacancies and Ce4+/Ce3+ redox centers synergistically enhanced photocatalytic removal heavy metal. *Appl. Surf. Sci.* **2020**, *530*, 147116. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2020.147116)
- 86. Kusmierek, E. A CeO₂ Semiconductor as a Photocatalytic and Photoelectrocatalytic Material for the Remediation of Pollutants in Industrial Wastewater: A Review. *Catalysts* **2020**, *10*, 1435. [\[CrossRef\]](https://doi.org/10.3390/catal10121435)
- 87. Li, H.; Chen, Y.; Zhou, W.; Jiang, H.; Liu, H.; Chen, X.; Tian, G. WO₃/BiVO₄/BiOCl porous nanosheet composites from a biomass template for photocatalytic organic pollutant degradation. *J. Alloys Compd.* **2019**, *802*, 76–85. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2019.06.187)
- 88. Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. *Adv. Mater.* **2017**, *29*, 1601694. [\[CrossRef\]](https://doi.org/10.1002/adma.201601694)
- 89. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. *Mater. Today* **2018**, *21*, 1042–1063. [\[CrossRef\]](https://doi.org/10.1016/j.mattod.2018.04.008)
- 90. Bard, A.J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. *J. Photochem.* **1979**, *10*, 59–75. [\[CrossRef\]](https://doi.org/10.1016/0047-2670(79)80037-4)
- 91. Zhou, Q.; Song, Y.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Direct Dual Z-Scheme Bi $_2$ WO $_6$ /GQDs/WO $_3$ Inverse Opals for Enhanced Photocatalytic Activities under Visible Light. *ACS Sustain. Chem. Eng.* **2020**, *8*, 7921–7927. [\[CrossRef\]](https://doi.org/10.1021/acssuschemeng.0c01548)
- 92. Jiang, J.; Song, Y.; Wang, X.; Li, T.; Li, M.; Lin, Y.; Xie, T.; Dong, S. Enhancing aqueous pollutant photodegradation via a Fermi level matched Z-scheme BiOI/Pt/g-C₃N₄ photocatalyst: Unobstructed photogenerated charge behavior and degradation pathway exploration. *Catal. Sci. Technol.* **2020**, *10*, 3324–3333. [\[CrossRef\]](https://doi.org/10.1039/D0CY00429D)
- 93. Toe, E.D.; Kurniawan, W.; Andrews, E.M.; Nakasaki, K.; Hinode, H.; Aziz, M. All-solid-state Z-scheme plasmonic Si@Au nanoparticles on CuBi2O4/BiVO⁴ for efficient photocatalytic activity. *Adv. Powder Technol.* **2021**, *32*, 4330–4342. [\[CrossRef\]](https://doi.org/10.1016/j.apt.2021.09.040)
- 94. Duan, J.; Liu, M.; Song, X.; Wang, W.; Zhang, Z.; Li, C. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi2WO⁶ sandwich flaky structures. *Nanotechnology* **2020**, *31*, 425202. [\[CrossRef\]](https://doi.org/10.1088/1361-6528/ab9bd3)
- 95. Raizada, P.; Thakur, P.; Sudhaik, A.; Singh, P.; Thakur, V.K.; Hosseini-Bandegharaei, A. Fabrication of dual Z-scheme photocatalyst via coupling of BiOBr/Ag/AgCl heterojunction with P and S co-doped g-C3N⁴ for efficient phenol degradation. *Arab. J. Chem.* **2020**, *13*, 4538–4552. [\[CrossRef\]](https://doi.org/10.1016/j.arabjc.2019.10.001)
- 96. Zhou, T.; Xu, Y.; Xu, H.; Wang, H.; Da, Z.; Huang, S.; Ji, H.; Li, H. In situ oxidation synthesis of visible-light-driven plasmonic photocatalyst Ag/AgCl/g-C3N⁴ and its activity. *Ceram. Int.* **2014**, *40*, 9293–9301. [\[CrossRef\]](https://doi.org/10.1016/j.ceramint.2014.01.152)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.