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Abstract: Wastewater containing phenolic organic compounds, such as phenol, produced during
industrial manufacturing processes, poses a significant threat to aquatic ecosystems and crops.
Photocatalytic technology is considered the most promising approach to water treatment due to
its efficiency and eco-friendly advantages. Compared to other photocatalysts, Bi-based oxides are
more efficient due to their unique layered structure, which allows for photocatalytic reactions to
occur between layers. This review introduces the synthesis methods of various bismuth-based multi-
element oxides and their efficiency in the photocatalytic decomposition of phenol. The effects of
elemental doping, defect introduction, and heterojunction construction on the catalytic performance
and structure of Bi-based oxides are discussed. The mechanisms for the photocatalytic degradation
of phenol over different materials are also summarized and discussed.
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1. Introduction

Recently, the acceleration of industrialization has led to wastewater from industrial
production processes exerting immense pressure on the environment [1]. Particularly,
phenolic organic pollutants, such as phenol, with high chemical stability and strong bi-
ological toxicity, pose significant challenges for effective removal from receiving water
bodies, thereby causing severe harm to both the ecosystem and human health [2,3]. There-
fore, the effective treatment of phenolic wastewater is considered a fundamental and
challenging task.

Currently, treatments for phenolic wastewater primarily include chemical, biological,
physical methods, membrane filtration, and photocatalytic technology [4–6]. Among them,
photocatalytic technology is regarded as an effective method for addressing wastewater
pollution. A variety of photocatalysts have been developed and extensively studied.
Compared with traditional pollutant treatment technologies, photocatalytic technology
offers some advantages, including using sunlight for its driving energy, a renewable
resource that ensures no energy shortage [7]. No chemicals are needed for this process,
and it generates potent oxidative free radicals that can completely mineralize pollutants
into carbon dioxide and water; furthermore, the photocatalysts are non-toxic and reusable,
thereby reducing the costs associated with pollutant treatment [8].

Recent years, bismuth (Bi)-based photocatalysts have attracted considerable attention,
primarily due to their well-dispersed Bi 6s orbitals. These orbitals result in a narrow
bandgap, enabling efficient absorption of visible light and excellent catalytic activity on the
visible spectrum [9–13]. Moreover, the structure of layered Bi-based catalysts, consisting of
alternating Bi-O layers and transition metal oxide layers, facilitates weak van der Waals
interactions. This structure allows for elemental doping through replacement or insertion,
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which alters the composition and charge balance of semiconductors, thereby regulating
its absorption ability and enhancing the properties of photogenerated carriers [14–16].
Additionally, the construction of heterostructures can efficiently separate photogenerated
carriers, minimize recombination losses, enhance the migration and reaction capabilities
of photogenerated carriers, thereby significantly improving the efficiency and stability of
Bi-based photocatalysis [17–21]. In this study, recent research on Bi-based photocatalysts
and their heterojunction composites in the degradation of phenol is reviewed. The goal is to
provide a detailed discussion on the various design approaches for Bi-based photocatalysts
and their mechanisms in phenol degradation, thus shedding light on the design of more
active photocatalysts for the degradation of phenol.

2. Basics of Photocatalytic Degradation of Pollutants

Within band theory, the energy levels of semiconductor materials are divided into
two distinct regions: the valence band (VB) and the conduction band (CB). The energy
difference between these bands is known as the bandgap or forbidden band width (Eg).
As a photocatalytic material is irradiated with ultraviolet or visible light, photons with
energy equal to or greater than the forbidden bandwidth are absorbed in its bulk phase.
Within femtoseconds, the semiconductor undergoes photoexcitation; electrons transition
from the VB to the CB, simultaneously causing holes due to electrons absence. Following
the relaxation process (approximately a picosecond), most electrons and holes recombine,
producing a fluorescence effect and releasing energy, while others migrate from the bulk to
the surface of the material. At this stage, photogenerated carriers, specifically electrons (e−)
and holes (h+), are formed [22]. In the aqueous phase, the electron and hole pairs on the
surface of the photocatalytic material, excited by light, react with O2 and H2O adsorbed
on the surface to produce potent oxidative free radicals, namely ·O2

− and ·OH. Owing to
the potent oxidizing properties of these active free radicals, they can oxidize waterborne
pollutants into CO2 and H2O. Detailed reaction processes and the corresponding schematics
are illustrated below (Figure 1).

Photocatalysts + hv → Electron (e−) + hole (h+) (1)

Electron (e−) + hole (h+) → Recombination (2)

Electron (e−) + O2 → O2
− (3)

hole (h+) + H2O → OH + H+ (4)

hole (h+) + ·O2
−→1O2 (5)

O2
− + ·OH + 1O2 + Pollutants → CO2 + H2O (6)
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3. Bi-Based Oxide Photocatalysts in Phenol Degradation

Bi is a p-block element that belongs to group VA of the sixth period on the periodic
table. Its outermost electron shell consists of 6s26p3 electrons, with two electrons in the 6s
orbital and three in the 6p orbital. The Bi-based multicomponent oxides’ photocatalytic
activities are directly influenced by their electronic and crystallographic properties. The VB
of Bi-based multicomponent oxides result from the hybridization of O 2p and Bi 6s orbitals.
The distortion of the Bi 6s orbitals’ lone pair can cause significant overlap with the O 2p
orbitals, facilitating carrier migration and reducing the bandgap width [23]. Consequently,
the bandgap width of these oxides is typically less than 3.0 eV. Given the relative stability
of Bi3+, much of the research focuses on compounds containing Bi3+, such as Bi2O3, BiVO4,
Bi2MO6 (M = Mo, W), BiFeO3, and BiOX (X = Cl, Br, I), as depicted in Figure 2.
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Owing to their exceptional redox capabilities, efficient solar energy utilization, effective
separating photogenerated carriers, and superior photocatalytic performance, the afore-
mentioned Bi-based multicomponent oxides were extensively studied in the degradation
of miscellaneous pollutants, including organic phenols [24], dyes [25], antibiotics [26], and
heavy metals [27]. This section introduces the application of Bi-based oxide photocatalysts
for the degradation of phenol in the wastewater.

3.1. Bi2O3

Bi2O3, with a bandgap width of 2.1–2.8 eV, exhibits good responsiveness to visible light.
Bi2O3 exists in four phases: monoclinic (α-Bi2O3), tetragonal (β-Bi2O3), body-centered
cubic (γ-Bi2O3), and face-centered cubic (δ-Bi2O3). Among these, α-Bi2O3 and δ-Bi2O3 are
stable, whereas the others are metastable [28]. β-Bi2O3 exhibits superior photocatalytic
activities compared to α-Bi2O3, owing to the lower bandgap energy and higher light
absorption capability in the visible light region [9]. However, because β-Bi2O3 has a
metastable structure, it can easily transform into α-Bi2O3 under certain conditions, making
the controlled synthesis and catalytic stability of β-Bi2O3 challenging.

Li et al. [29] prepared pure Bi2O3 via a simple sol–gel method, which, upon calcination,
could form oxygen vacancies serving as photocatalytic active sites. Within 240 min, the
degradation efficiency of phenol was merely 31%. Meng et al. [30] synthesized α-Bi2O3
through a co-precipitation method. The irregular microparticle-shaped α-Bi2O3, with a
surface area of just 10.1 m2·g−1, resulted in limited active sites for pollutant adsorption,
achieving a degradation efficiency of 48% for phenol within 60 min. Liang et al. [9] syn-
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thesized Bi2O3 crystals with varied morphologies via a chemical bath deposition method
by controlling the pH (Figure 3a,b). They employed a sputter coating method to modify
the Bi2O3 crystals, synthesizing α-Bi2O3 and β-Bi2O3. It was demonstrated that a higher
pH of the solution facilitated the evolution of the α-Bi2O3 phase. Wu et al. [31] prepared α-
Bi2O3, β-Bi2O3, and γ-Bi2O3 via hydrothermal treatment followed by calcination. Among
these, β-Bi2O3 had a degradation efficiency of up to 97% for phenol after 90 min of sun-
light exposure, significantly outperforming the other two phases of Bi2O3 in terms of
photodegradation efficiency.
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Copyright 2020 Royal Society of Chemistry. (c) XRD patterns of different ratio of pd-doping BiVO4,
(d) Degradation activity of phenol solutions under UV-Vis irradiation with BiVO4 photocatalysts.
Reprinted with permission from Ref. [32]. Copyright 2017 Elsevier. (e) Nitrogen adsorption and
desorption curve of mesoporous Bi2WO6. (f) Efficiency of photocatalytic degradation of phenol with
different Bi2WO6 Reprinted with permission from Ref. [33]. Copyright 2011 Elsevier.

3.2. BiVO4

BiVO4 primarily exists in three crystalline phases: monoclinic scheelite (M-S BiVO4),
tetragonal scheelite (T-S BiVO4), and tetragonal zircon (T-Z BiVO4) [34]. Among these,
M-S BiVO4 was extensively studied for the superior photocatalytic performance, due to
the relatively finite bandgap (Eg = 2.4 eV) and the electron modulation of the Bi 6s and
hybrid Bi 6s-O 2p orbitals to the V 3d orbital conduction band [10]. Compared with
M-S BiVO4, T-S BiVO4 exhibits lower photocatalytic activity for the wider bandgap of
2.9 eV, limiting its responsiveness in the visible light region. T-Z BiVO4 displays the lowest
photocatalytic activity; however, its relatively simple preparation conditions make it the
easiest to synthesize among the three phases [35]. Moreover, T-Z BiVO4, possessing a
high degree of crystal symmetry, facilitates the formation of coherent interfaces, rendering
it particularly valuable for exploration in polycrystalline materials. Therefore, effective
control over the crystal structure of BiVO4 can maximize its catalytic activity. Monoclinic
phase M-S BiVO4 was prepared by Xie et al. [36] via a solution stirring and calcination
method, achieving a photocatalytic effect on phenol of up to 52% within 180 min. Sun
et al. [37] found that, during the preparation of monoclinic phase M-S BiVO4 under different
pH conditions utilizing a solvothermal method, when the precursor solution was adjusted
to pH 11, it achieved a conversion of phenol of 54% within 300 min. As shown in Figure 3d,
Meng et al. [32] prepared pure BiVO4 through the hydrothermal method, achieving a
low degradation efficiency of phenol, merely 3.4% within 360 min. The removal rate of
phenol was greatly improved after palladium (Pd) was introduced in BiVO4. The maximum
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degradation rate of phenol can reach 100%. According to the XRD pattern (Figure 3c), the
crystal structure of BiVO4 was not destroyed after Pd was deposited by light.

3.3. Bi2WO6

Bi2WO6 is a simple Aurivillius-type layered compound, characterized by the alternate
stacking of [Bi2O2]2+ lamellar structures and WO4. [Bi2O2]2+ layers and WO4 layers
are connected by shared oxygen atom vertices, resulting in weak van der Waals forces.
Bi2WO6 exhibits multiple crystal structures, including orthorhombic, monoclinic, and
tetragonal phases, with structural differences primarily due to the rotation angle of the
WO4 layer and the degree of dislocation of the [Bi2O2]2+ layer [38]. Bi2WO6 is classified as
a wide-bandgap photocatalyst (2.5–2.8 eV). The positions of its conduction band minimum
(CBM) and valence band maximum (VBM) are 0.24 eV and 3.12 eV, respectively [39],
which are relatively high energy levels that effectively suppress photogenerated carrier
recombination. Simultaneously, owing to the layered structure of Bi2WO6, photocatalytic
reactions primarily occur between layers, where the [Bi2O2]2+ layer serves as the receptor
for photogenerated electrons and the WO4 layer as the carrier for photogenerated holes.
This enables the effective separation and migration of carriers, therefore significantly
enhancing photocatalytic efficiency.

Sattari et al. [40] successfully synthesized orthorhombic Bi2WO6 through the hy-
drothermal method, achieving a degradation efficiency of 34% for phenol within 120 min.
The morphology of Bi2WO6 is nanosheet-like, with limited photocatalytic active sites,
resulting in a lower degradation efficiency of phenol. Fu et al. [11] synthesized tetrago-
nal Bi2WO6 using the hydrothermal method, which self-assembled from nanoplates into
flower-like microspheres, yielding a surface region of 39.7 m2·g−1 and offering abundant
adsorption sites for pollutants. After visible light irradiation for 40 min, the conversion of
phenol increased to 56.5%. Sun et al. [33] prepared Bi2WO6 using SiO2 as the hard template.
As shown in Figure 3e, the sample maintains the mesoporous structure of SiO2. Under
visible light irradiation, 97% of phenol is degraded within 60 min, as depicted in Figure 3f,
demonstrating remarkable photocatalytic performance. In contrast, the conversion of
phenol by orthorhombic Bi2WO6 synthesized using the common hydrothermal method
stands at only 32%. Therefore, the active sites of photocatalytic degradation of phenol over
Bi2WO6 are predominantly located on the surface of the mesoporous structure.

3.4. Bi2MoO6

Bismuth molybdate (Bi2MoO6) possesses a perovskite-layered structure, analogous
to that of bismuth tungstate (Bi2WO6). The normal state of Bi2MoO6 is γ-Bi2MoO6, char-
acterized by the optional heaping of [Bi2O2]2+ layers and [MoO4]2− octahedral layers.
The resulting layered structure not only endows Bi2MoO6 with the unique advantages
of a two-dimensional nanostructure but also facilitates the separation and transmission
of carriers by the internal electric field (IEF) formed between the layers. The bandgap
of Bi2MoO6, 2.5–2.8 eV, enables a firm response in the visible light area. In addition to
the unique layered structure and appropriate bandgap, the non-toxicity, low cost, and
excellent thermal and chemical inertness of Bi2MoO6 further promote its application in
environmental remediation.

Fu et al. [12] reported a solvothermal method for preparing pure Bi2MoO6, followed
by calcination at 250 ◦C to modify the surface oxygen vacancies. The EPR signal of
oxygen vacancies is clearly visible in Figure 4a. At 180 min of visible light irradiation, the
degradation virtue of phenol by pure Bi2MoO6 stood at only 4.8%. However, calcination
results in lattice contraction in Bi2MoO6, resulting in the formation of oxygen vacancies
on its surface. Under the same conditions, this increased the degradation efficiency of
phenol to 35%. Liu et al. [41] further optimized the preparation method used by Fu et al. by
increasing the calcination temperature to 300 ◦C and extending the calcination time. This
increase led to a degradation efficiency of phenol of 44% within 180 min, indicating that
the calcination temperature may be a key factor in phenol degradation over Bi2MoO6. To
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verify this hypothesis, Sun et al. [42] assessed the photocatalytic degradation of phenol in
materials intended at different calcination temperatures. The material calcined at 450 ◦C
showed excellent performance for phenol degradation (Figure 4b). Therefore, variations in
the calcination temperature of Bi2MoO6 will produce different amounts of oxygen vacancies.
Oxygen vacancies, serving as electron traps, effectively capture photogenerated electrons,
facilitating the separation of photogenerated carriers. In the FTIR spectrum (Figure 4i), the
410–565 cm−1 and 730–850 cm−1 absorption bands correspond to the stretching vibrations
of the Bi-O bond and the Mo-O bond, and the EDS energy spectrum (Figure 4j) shows
a uniform distribution of Bi, Mo, O, and C in the selected region, which suggests the
successful synthesis of Bi2MoO6. The absence of O atoms also reflects the formation of
oxygen vacancies due to calcination [24]. Moreover, materials containing oxygen vacancies
can generate another type of active free radical, 1O2, enhancing the oxidative degradation
of phenol [24].
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(c–e) Different morphology of BiFeO3 prepared by hydrothermal (HT-BiFeO3), co-precipitation (CP-
BiFeO3) and sol-gel methods (SG-BiFeO3). Reprinted with permission from Ref. [43]. Copyright 2022
Elsevier. Growth mechanism of BiFeO3 film schematic diagram: (f) The ion clusters are moved by
electrophoretic forces. (g) The ion clusters are repositioned and deposited on the electrode surface.
(h) Growth of forest-like BiFeO3 nano branches on the carrier surface. Reprinted with permission
from Ref. [44]. Copyright 2019 Elsevier. (i) FT-IR spectrum of Bi2MoO6. (j) The EDS spectrum of
BMO-450. Reprinted with permission from Ref. [24]. Copyright 2022 Elsevier.

3.5. BiFeO3

Perovskite bismuth ferrite (BiFeO3), akin to other Bi-based multicomponent oxides,
is formed through the alternating stacking of [FeO6] octahedra and [Bi2O2]2+ layers. It
belongs to the rare class of single-phase multiferroic semiconductors [45]. Its bandgap
ranges from 2.0 to 2.7 eV, categorizing it as a narrow-bandgap semiconductor [46]. The
CBM and VBM consist of Bi 6p/O 2p and O 2p/Fe 3d orbitals, respectively. The extent of
hybridization among orbitals determines the bandgap and the light absorption spectrum
of BiFeO3 [47]. The photocatalytic efficiency of BiFeO3 is primarily affected by factors such
as its structural and morphological characteristics. Typically, morphologies featuring a
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larger surface region and active sites, such as nanoparticles, nanoflowers, nanosheets, and
nanoplates, increase the photocatalytic performance of BiFeO3.

Mansingh et al. [48] synthesized nanosheet-shaped BiFeO3 via a hydrothermal method.
The photocatalytic degradation efficiency of phenol is 41% within 60 min; this relatively
low efficiency was attributed to the agglomeration of pure BiFeO3, which obscured active
sites. Jaffari et al. [43] prepared BiFeO3 particles with varied morphologies by three dis-
tinct synthesis routes (hydrothermal, co-precipitation, and sol–gel methods). HT-BiFeO3,
CP-BiFeO3, and SG-BiFeO3 were integrated, respectively (Figure 4c–e). All samples con-
formed to the rhombohedral structure of BiFeO3, differing only in morphology. HT-BiFeO3
exhibited a coral-like shape, CP-BiFeO3 was sheet-like, and SG-BiFeO3 displayed a rod-like
structure. Over 120 min, the photocatalytic degradation efficiencies of phenol were 77.4%,
66.9%, and 98.95%, respectively. The highest performance of SG-BiFeO3 was attributed to
the modified separation efficiency of photo carriers due to the sol–gel method [45]. Based
on these findings, Zargazi et al. [44] utilized sol electrophoretic deposition to synthesize a
forest-like BiFeO3 thin film. The synthesis mechanism and microscopic morphology are
depicted in Figure 4f–h. This method not only yielded high-purity, uniform BiFeO3 but
also overcame the aging drawbacks associated with the sol–gel method. When phenol
molality of 15, 30, 50, and 80 ppm was established, the observed half-lives were 27, 30, 54,
and 120 min, respectively. The exceptional photocatalytic activity of BiFeO3 thin film is
attributed to the nano-branches on its surface that facilitate the diversion of photogenerated
electrons.

3.6. BiOX

Bismuth halogen oxides (BiOX) are classified within the V-VI-VII group and possess
a PbFCl-type structure. They are characterized by high chemical stability, non-toxicity,
environmental friendliness, and robust corrosion resistance. As illustrated in Figure 2,
their crystal structure results from the alternating arrangement of [Bi2O2]2+ layers and
double [X]− layers, influenced by van der Waals forces, with Bi and O in the [Bi2O2]2+

layers linked by covalent bonds [13]. This layered structure, composed of cations and
anions, affords ample space for the polarization of respective atoms and orbitals, extends
the lifetime of photogenerated carriers, and facilitates the constitution of an IEF [49]. As
depicted in Figure 5a, with an increasing atomic number of the halogen atom, the bandgap
of BiOCl (Eg = 3.2 eV), BiOBr (Eg = 2.6 eV), and BiOI (Eg = 1.8 eV) progressively narrows.
The valence band of BiOX primarily consists of O 2p orbitals and X np orbitals (n = 3, 4,
5 corresponding to X = Cl, Br, I), while CB comprises Bi 6p orbitals. The hybridization of
Bi 6s and O 2p orbitals can diminish the bandgap energy and enhance the transplantation
of photogenerated carriers, thus hindering the recombination of photogenerated carriers
as well as fostering a more conducive environment for photocatalytic oxidation reduction
processes [50,51].

Han et al. [52] synthesized BiOCl nanosheets exposing (001) and (110) facets through
the solvent thermal method. These nanosheets featured a smooth quadrilateral structure
with side lengths ranging from 2 to 4.5 µm (Figure 5b). During the visible-light-induced
degradation of phenol over 120 min, approximately 44% degradation was achieved. This
effect was attributed to the internal electric field established along the (001) direction,
wherein the (001) facet exhibited a high density of terminal oxygen atoms prone to forming
oxygen vacancies. Consequently, the photocurrent response of the BiOCl (001) crystal facet
was more pronounced (Figure 5c), indicative of enhanced photocatalytic activity [53].
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Wen et al. [55] synthesized BiOBr with varying surface active sites employing different
solvents. By transitioning the solvent from water to ethylene glycol, BiOBr featuring Bi
vacancies was obtained. The photocatalytic efficacy of materials was evaluated through
the visible-light-induced phenol photocatalytic degradation. After two hours, the phenol
removal by pure BiOBr was merely 16.5%, whereas over BiOBr containing Bi vacancies,
it reached approximately 43.7%. This improvement was attributed to the introduction of
Bi vacancy defects that expanded the light absorption spectrum and reduced the carrier
recombination rate, thereby boosting the photocatalytic activity. Wang et al. [54] docu-
mented the utilization of various organic solvents involved in hydroxyl groups to modulate
the surface structure to BiOI photocatalysts. The primary solvents employed included
water, n-propanol (NPA), propylene glycol (PG), glycerol (GLY), and meso-erythritol (ME).
The visible light photocatalytic performance of BiOI, modulated by various solvents, ex-
ceeded that of BiOI (H2O). Furthermore, the activity of BiOI modulated by glycerol was
the most pronounced, achieving an 87% degradation efficiency within three hours. This
was illustrated in Figure 5d,e. Hydroxyl groups governed the surface atomic configuration
of BiOI nanosheets, inducing a rise in the position of the VBM. Consequently, within the
photocatalytic process, a more elevated VBM can facilitate a more potent photogenerated
hole oxidation capability compared to the original BiOI.

4. Strategies to Boost the Photocatalytic Performance

This inefficiency for the aforementioned Bi-based catalysts is attributed to the low
energy level of the conduction band (CB) and fast reorganization of carriers in single-phase
photocatalysts, which hampers efficiency for electron-hole separation and significantly
impedes the catalysis under visible light. To enhance the response efficiency under visible
light, researchers have explored strategies including structural design and microstructure
regulation. This section will discuss the strategies to enhance the photocatalytic efficiency
of Bi-based photocatalysts, thereby augmenting photocatalytic activity and achieving a
more effective removal of phenol.
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4.1. Morphology Control

The efficiency of the catalyst is influenced not only by the chemical composition but
also by the particle dimensions and morphology. Generally, photocatalysts with a greater
surface area-to-volume ratio demonstrate enhanced photocatalytic efficiency. The reasons
are primarily two-fold: first, a larger precise surface region provides additional active
sites for reaction; second, on the basis of the formula τ = r0

2/π2D [56], reducing the grain
radius can raise the interval efficiency of photogenerated carriers. Therefore, controlling
the morphology represents a substantial opportunity to enhance the photocatalytic activity.

Ruan et al. [57] utilized a soft template, β-cyclodextrin, to synthesize oxygen-deficient
bismuth tungstate (Bi2WO6−x) photocatalyst featuring a peony-like morphology by the
hydrothermal approach. As depicted in Figure 6a, the SEM image of Bi2WO6 reveals a
smooth nanosheet morphology with a diameter of 100 to 200 nm and a defined concen-
tration. However, with increasing amounts of β-cyclodextrin, the synthesized Bi2WO6−x
sample transitioned from nanosheets (Figure 6b) to peony-like spheres (Figure 6c) and
ultimately to pyknotic spheres (Figure 6d). During a 60 min photocatalytic degradation
of phenol, these samples exhibited efficiencies of 16%, 20%, 97%, and 62%, respectively.
The layered 3D morphology of Bi2WO6−x affords multiple active sites, while the plentiful
oxygen vacancies facilitate active species generation.
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Figure 6. (a–d) SEM images of Bi2WO6 with different morphologies. Reprinted with permission from
Ref. [57]. Copyright 2021 Elsevier. (e,f) SEM image of pure BiOBr and Bi/BiOBr. (g) HRTEM images
of Bi/BiOBr. Reprinted with permission from Ref. [58]. Copyright 2018 Springer Nature. SEM images
of (h) BiOI, (i) Bi4O5I2 and (j) Bi5O7I. (k) the schematic diagram of the band structure of all samples.
Reprinted with permission from Ref. [59]. Copyright 2016 Royal Society of Chemistry.

Li et al. [58] developed an improved solvent thermal method to synthesize BiOBr with
various morphologies. By introducing a specified amount of SbCl3 into the synthesis system,
the reduction of Bi3+ to metallic Bi nanoparticles was accelerated, evidently revealing the
lattice stripes of metallic Bi and BiOBr in Figure 6g. This process enabled the transformation
of layered BiOBr, composed of nanosheets (Figure 6e), into a flower-like microsphere
structure (Figure 6f). After 240 min of visible light irradiation, BiOBr and Bi/BiOBr achieved
phenol degradation efficiency of 26.4% and 72.9%, respectively. Liu et al. [59] described a
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simple mixed solvent method to regulate BiOI with varying iodine contents by aligning
the pH of the forerunner solution. Figure 6h–j illustrate that bismuth iodide, with varying
oxygen–iodine ratios due to pH changes, yielded different crystal phases of BiOI (tetragonal
phase), Bi4O5I2 (monoclinic phase), and Bi5O7I (orthorhombic phase). They displayed a
nanosheet micro-flower shape, an uneven nanosheet shape, and a nanosheet/nanoflower
hybrid shape, respectively. In a simulated experiment of the photocatalytic degradation
of phenol under visible light, BiOI achieved a photocatalytic efficiency of only 27.6%
after 60 min of irradiation, whereas Bi4O5I2 and Bi5O7I demonstrated significantly higher
photocatalytic activities, with a degradation efficiency of 84.2% and 90.1%, respectively.
This improvement is attributable to an enhancement in particular surface area and many
mesopores during the phase transition process. An increased specific surface area and a
greater number of mesopores enhance the adsorption competence and catalytic potency for
the material. Furthermore, as demonstrated in Figure 6k, compared to BiOI, Bi4O5I2 and
Bi5O7I feature higher CB positions and lower VB positions. The more negative the CBM
and more positive the VB, the greater the oxidation reduction potential for photogenerated
carriers [60]. This could be another important factor resulting in the improvement of
photocatalytic potency.

4.2. Defect Engineering

Crystal defects are capable of modifying the local electronic and chemical bond char-
acteristics, including the bond length and energy, electronic degrees of freedom, potential
defect depth, and the charge and energy density via atomic coordination [61]. Doping
is a recognized strategy to enhance the optoelectronic capabilities of materials through
the introduction of other ions or defects (Figure 7a,b). Doping primarily comprises two
categories: metal doping and non-metal doping [24,62–64]. Under conditions where defects
are precisely controlled, substantial modifications to electron dynamics are possible, and
even the bandgap and work function of photocatalysts may be tuned [65].
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Reprinted with permission from Ref. [66]. Copyright 2022 Elsevier. (c) Photocatalytic degrada-
tion mechanism of MO by La-Bi2O3. Reprinted with permission from Ref. [29]. Copyright 2019
Springer Nature. (d) Mechanism of phenol degradation by photocatalyst Pd-Bi2WO6. Reprinted with
permission from Ref. [67]. Copyright 2018 Elsevier.

4.2.1. Metal Doping

Li et al. [29] synthesized La-doped Bi2O3 via a sol–gel approach and induced oxygen
vacancies by calcination in an inert atmosphere. Following La doping, the surface of
Bi2O3 nanosheets becomes roughened, attributed to La3+ ions replacing Bi3+ in the Bi2O3
lattice, forming a Bi-La oxide solid solution. Under visible light irradiation, 2% La-doped
Bi2O3 achieves a 73% degradation of phenol within 4 h, significantly exceeding the 31%
degradation efficiency of pure Bi2O3. The enhanced photocatalytic performance of Bi2O3
following La doping is attributable to oxygen vacancies, which form an impurity band
between the CB and VB, capture photogenerated electrons, and retain more oxidative
holes in the VB, thereby facilitating the photocatalytic process. Additionally, as depicted in
Figure 7c, La3+ ions exhibit remarkable electron scavenging abilities [15], serving as electron
capture agents, reacting with O2 to turn out active free radicals ·O2

−, and participating in
the oxidation process of phenol.

Meng et al. [67] utilized a photo-reduction technique to dope Pd/PdCl2 on the surface
of Bi2WO6, leveraging the surface plasmon resonance (SPR) effect of the precious metal
Pd to enhance electron transfer and thereby promote visible light photocatalysis [68].
Thus, 4% Pd-doped Bi2WO6 exhibited the highest catalytic performance, achieving 95.2%
degradation of phenol within 5 h, significantly exceeding the 60% degradation efficiency of
undoped Bi2WO6. As illustrated in Figure 7d, for the SPR impression, Pd nanoparticles
activated by visible light generate electrons that subsequently transfer to the CB of Bi2WO6.
Moreover, Pd0 and Pd2+ species on the surface of Bi2WO6 effectively enhance the interval
of photogenerated carriers by restraining the reorganization of electron-hole pairs.

Liu et al. [41] synthesized Eu3+ doped Bi2MoO6 nanosheets via a one-pot hydrother-
mal calcination process. Following doping, due to the smaller radius of Eu3+ ions compared
to Bi3+ ions, lattice contraction occurs, reducing the crystal size of Bi2MoO6 and increasing
the number of photocatalytic active sites. After 180 min of light irradiation, Bi2MoO6 doped
with 2% Eu exhibited a phenol degradation efficiency of 97%, significantly surpassing
the 40% degradation efficiency of undoped Bi2MoO6. This enhancement is attributed to
Eu3+ doping, which increases visible light absorption and serves as an electron capture
site, facilitating the separation of photogenerated carriers and thereby boosting photocat-
alytic performance.

4.2.2. Non-Metal Doping

In addition to metal element doping, non-metal element doping also enhances photo-
catalytic performance. Jiang et al. [16] employed NH4F as a fluoride source and olivine-like
BiVO4 as a precursor to synthesize F-doped BiVO4 with a stomatal configuration using a
secondary hydrothermal method. With increasing doping levels of F ions, the bandgap
of BiVO4-F gradually narrows, enhancing its response to visible light. During a 2 h pho-
tocatalytic degradation test of phenol, BiVO4 doped with 0.29F exhibited the highest
photocatalytic efficiency, achieving a degradation efficiency of 97%, surpassing the 87%
efficiency observed on undoped BiVO4.

In summary, based on the first-principles DOS properties, element doping primarily
induces intermediate states within the bandgap or alters the electronic orbital structure,
thereby enhancing the photocatalytic activity [69]. Furthermore, the type, quantity, and
valence state of doping elements significantly influence the band structure and electronic
properties for samples, thereby enhancing both the separation and transfer efficiencies of
photogenerated carriers, eventually improving the efficiency of the photocatalyst [61,70].
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5. Types of Semiconductor Heterojunctions

The construction of heterojunctions has been demonstrated to efficiently separate
photogenerated carriers, establishing it as the most efficacious approach for building high-
efficiency photocatalysts [71,72]. Heterojunctions are classified into two major categories.
The first category, based on the primary carrier type within the semiconductor, includes
p-n junctions, p-p junctions, and n-n junctions. The second category, determined by the
band position of the semiconductor, comprises straddling gap type (Type I), staggered gap
type (Type II), and broken gap type (Type III).

5.1. p-n Junctions, p-p Junctions, and n-n Junctions

For n-type semiconductors, the primary active species are electrons, whereas in p-type
semiconductors, they are holes. As depicted in Figure 8a, two semiconductor types form
a representative p-n junction. Upon contact entre p-type and n-type semiconductors, the
interface charge transfer mechanism results in a high free electron concentration in the n-
area near the junction. Consequently, negatively charged unbound electrons spread abroad
the n-type to the p-type semiconductor, where the electron concentration is lower [73]. This
diffusion results in the p-n junction carrying a negative charge on the p-region aspect and
a positive charge on the n-region side. Diffusion continues until the Fermi energy levels
for two materials counterweigh. The regions adjacent to the interface containing positive
(n-type material) and negative (p-type material) charges form the depletion layer, where
characteristic charge carriers are depleted [74]. A potential difference across the depletion
layer forms an IEF extending from the positive to the negative charge regions. As light
irradiates the p-n junction, the IEF accelerates the migration of photogenerated electrons
from the CB of the p-type to the n-type semiconductor, and of holes from the VB of the
n-type to the p-type semiconductor [75,76]. This effective separation of photogenerated
carriers increases the photocatalytic performance.
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Meng et al. [30] synthesized BiOBr/α-Bi2O3 p-n heterojunctions by combining the
parallel flow precipitation process with the in situ transformation strategy. The optimal
composite ratio of BiOBr/α-Bi2O3 (BiOBr-70 wt%) showed the highest performance for
photocatalytic phenol degradation, achieving a 92.3% removal after visible light irradiation
for 60 min, which is 4.44-times and 3.83-times faster than the single-component α-Bi2O3
and BiOBr, respectively. As depicted in Figure 8b, the Fermi energy levels of the p-type
BiOBr and the n-type α-Bi2O3 align closely with their respective VB and CB [30]. According
to previous analysis, free electrons spontaneously flow from α-Bi2O3 to BiOBr, forming an
internal electric field. Upon light excitation, electrons diffuse from the CB of BiOBr to the
CB of α-Bi2O3, and simultaneously, generated holes migrate from the VB of α-Bi2O3 to the
VB of BiOBr. This separation effectively enhances the photocatalytic degradation of phenol.
Mao et al. [17] utilized a solvothermal method to compound a p-n type porous Bi2O3-BiVO4
composite micro-rod semiconductor heterojunction. As for visible light radiation, removing
phenol can reach 96.3% after 1 h. Remarkably, the phenol degradation efficiency of pure
BiVO4 and Bi2O3 is 192- and 160-times higher, respectively. Since ·O2

− is a major active
species in phenol degradation and the potential of BiVO4’s CB is below the standard reduc-
tion potential of ·O2

− (−0.33 eV), it cannot produce ·O2
−. Consequently, the Bi2O3-BiVO4

heterojunction does not conform to the conventional p-n junction double-charge transfer
mode. Therefore, they proposed a direct Z-type electron and hole diversion mode [71,77]
shown in Figure 8c, which is different from the findings of Meng et al. [30]. Upon the light
incentive of BiVO4, electrons migrate from the VB to the CB, and simultaneously, some
electrons shake up with holes generated in the VB of Bi2O3. Subsequently, electrons in the
CB of Bi2O3 react chemically adsorbed O2 to induce ·O2

− and in concert with the holes in
BiVO4, thus facilitating the oxidation of phenol.

Except for the commonly discussed p-n junctions, there are two types of homo-
junctions: n-n and p-p heterojunctions. Ji et al. [78] synthesized a flaky n-n type BiOCl/
perylene diimide (PDI) heterojunction via a water bath heating method. The absorption
margin for BiOCl is at 360 nm; after secondary self-assembly with PDI, the light absorption
spectrum of BiOCl/PDI extends to 732 nm, demonstrating enhanced visible light absorp-
tion. During a 4 h photocatalytic degradation trial of phenol, BiOCl/PDI achieved a 62%
degradation efficiency, 1.4- and 14.6-times higher than that of PDI and BiOCl, respectively.
Clusters of PDI encase BiOCl, and since the CB of BiOCl is inferior to that of PDI [18,79],
photogenerated electrons transfer from PDI’s CB to BiOCl’s CB. This facilitates the distance
of electrons and holes, thereby enhancing photocatalytic performance. Cao et al. [19]
synthesized a binary n-n type CN/BiSI heterojunction via a hydrothermal strategy. At
visible light irradiation, 98.8% of phenol degrades within 80 min, significantly exceeding
the degradation efficiency of 41.2% for CN and 43.3% for BiSI, respectively. As depicted
in Figure 8d, the Fermi level of CN is higher than that of BiSI. When in contact, electrons
transfer from CN to BiSI, leading to the formation of an IEF at their boundary surface.
Following photoexcitation, the internal electric field facilitates electron diversion from the
conduction band of BiSI to that of CN, and hole diversion from the VB of CN to that of
BiSI. This enhances the interval of electron holes, thereby improving the photocatalytic
degradation of phenol under visible light.

Wang et al. [62] utilized a one-step solvent thermal strategy to synthesize a p-p Z-
type BiOBr/Bi12O17Br2 heterojunction, comprising bismuth oxybromide and oxygen-rich
bismuth oxybromide. Under irradiation with a 365 nm light source, the degradation
efficiency of sulfamethoxazole reached 99%, approximately 13-times and 1.5-times higher
than that of BiOBr and Bi12O17Br2, respectively. Differently, the VB potentials of BiOBr
and Bi12O17Br2 are 2.01 eV and 1.84 eV, respectively. The standard oxidation potential of
hydroxyl radicals (OH−/·OH), a key active species, is 1.99 eV. Consequently, the holes in
the valence band of Bi12O17Br2 cannot react with OH− to produce ·OH, indicating that
the p-p junction does not conform to the double-charge transfer mode. Given that the VB
potential of BiOBr exceeds the standard oxidation potential of ·OH, electrons from the CB
of BiOBr reform with holes in the VB of Bi12O17Br2. Holes in BiOBr’s VB react with OH−
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to form ·OH, while electrons in Bi12O17Br2’s CB react with O2 to form ·O2
−. Both ·OH and

·O2
− serve as major active species in promoting the degradation of sulfamethoxazole.

5.2. Type I-III

Schematic diagrams of the three types of second-class heterojunction systems are
depicted in Figure 9a–c. In Figure 9a, for the straddling gap-type (Type I) heterojunction,
the CB and VB of semiconductor II (SC II) are situated between those of semiconductor
I (SC I). In this configuration, photogenerated electrons and holes transfer from the CB
and VB of SC I to those of SC II, respectively, where reduction and oxidation reactions
predominantly occur. The amassing of electrons and holes in SC I’s CB and VB limits charge
separation between the semiconductor materials. Simultaneously, the lower redox potential
of SC II diminishes the heterojunction’s redox capability. These limitations result in low
activity for this type of heterojunction semiconductor. Xing et al. [63] prepared Bi5Ti3FeO15
film by the sol–gel method, and then a Bi5Ti3FeO15/BiOCl heterojunction was obtained
by washing with HCl. The narrow bandgap of Bi5Ti3FeO15 (2.05eV) and wide bandgap
of BiOCl (3.4eV) formed the type I heterojunction. It can shift the flow orientation of the
photocharge through ferroelectric polarization, breaking the boundary energy barrier limit
of type I heterojunction and forming a type II heterojunction. For the AgI/BiOI/BiPO4
catalyst [64], during the 38 min light reaction process, it can photocatalytically degrade
92.7% of the endocrine disruptor 17α-ethinylestradiol (EE2). This enhancement is due to
the constitution of a ternary n-p-n heterojunction comprising n-BiPO4, p-BiOI, and n-AgI,
which renders the charge transfer more flexible and promotes the photocatalytic reaction.
Overall, for straddling gap heterojunctions, given the limited compatibility and narrow
operational range of the two semiconductors, efforts to enhance photocatalytic activity
increasingly focus on the construction of p-n junctions.
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A schematic diagram of the broken gap-type (Type III) heterojunction is depicted
in Figure 9b. In this configuration, the band energy levels of the constituent materials
are significantly distant, impeding the diversion of photogenerated carriers between the
two semiconductors [81]. Specifically, photogenerated electrons in the CB of SC I cannot
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migrate to the CB of SC II, nor can holes in the VB of SC II transfer to the VB of SC I.
Consequently, this energy alignment does not support the injection of electrons from SC
II’s CB into SC I’s VB. As a result, each semiconductor functions independently in the
photocatalytic process, and physical contact does not enhance the photocatalytic activity.
Furthermore, contact between the materials may reduce the surface area or exposure of
active photocatalytic sites, decreasing the photocatalytic efficiency [82]. As depicted in
Figure 9c, the heterojunction of the staggered gap type manifests superior performance,
attributable to its structural design that fosters rapid charge separation and circumvents
electron-hole recombination [83]. This, in turn, augments the velocity of redox reactions
occurring on the surface of the heterojunction photocatalyst. Within this system, the CB and
VB of SC I possess elevated redox potentials at the side of those of SC II. This phenomenon
expedites the transference of photoexcited electrons from the CB of SC I to that of SC II, and
holes from the VB of SC II to that of SC I. Consequently, this results in the accumulation of
reductive electrons in SC II’s CB and oxidative holes in SC I’s VB, thereby accomplishing
the successful interval of photogenerated carriers [84]. Subsequently, reduction reactions
predominantly transpire on the external of SC II, while oxidation reactions occur on the
external of SC I.

Wang et al. [20] synthesized a type II CeO2/Bi4O7 heterojunction photocatalyst using
the hydrothermal method. This photocatalyst exhibited optimal phenol degradation activity
when the CeO2 composite amount was 10%, achieving 92% phenol degrading under visible
light irradiation within 120 min. The efficiency of degradation is approximately 7.67- and
2.3-times faster than that of CeO2 and Bi4O7, respectively. The proposed mechanism for
phenol degradation, as shown in Figure 9d, involves the conversion of electrons from the
VB of CeO2 and Bi4O7 to their respective CBs upon photoexcitation, leading to holes in
the VB. Considering that the CB of Bi4O7 is more negative, electrons in Bi4O7’s CB tend
to migrate to the CB of CeO2. Simultaneously, Ce4+ in CeO2 can capture electrons and be
reduced to Ce3+ [85], combining with O2 to produce ·O2

− [86], thereby co-oxidizing and
degrading phenol with h+.

Liao et al. [80] reported the preparation of a defective BiOI/Bi5O7I heterojunction
photocatalyst using the conventional hydrothermal method aided by a water hyacinth
powder (WHP) biomaterial template. With an 8% WHP addition, the sample exhibited
optimal photocatalytic activity, degrading 70% of phenol under visible light irradiation
within five hours, while for no WHP addition, the degradation was only 30%. As illustrated
in Figs. 10e and 10f, the use of a water hyacinth powder biomaterial template can cause
the self-assembly of BiOI nanoplates into a 3D flower-like structure during the growth
of BiOI [87], which is beneficial for the adsorption of the pollutant. Its photocatalytic
mechanism resembles that of a type II heterojunction. Notably, due to the presence of defect
oxygen vacancies, not only can photogenerated electrons be captured but new energy levels
can also be manufactured in the bandgap of BiOI and Bi5O7I, thereby better activating
molecular oxygen and facilitating the reaction with photogenerated electrons to form ·O2

−,
which participates in phenol degradation.

5.3. Z-Scheme

The Z-scheme system represents a novel and efficient type of heterojunction, char-
acterized by a band structure like that of a type II heterojunction, albeit with a distinct
migration path for photogenerated carriers (Figure 10). Owing to the electron migration
path that resembles the letter ‘Z’, this heterojunction structure is termed a Z-scheme system.
Depending upon the presence or shortage of a medium, the Z-scheme system can be further
classified into three types: the redox pair medium type, the direct Z-scheme (without a
medium), and the solid medium type [88,89]. Bard [90] proposed the redox pair medium
Z-scheme in 1979, comprising two different semiconductor photocatalysts and paired
electron donor (D) and acceptor (A) ions in an electrolyte solution, as shown in Figure 10a.
Holes from the VB of SC II oxidize the D species to A species, while electrons in the CB of
SC I reduce the A species to D species. SC I and SC II are not in direct contact with each
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other, and photogenerated carriers are transmitted through a reversible redox medium,
which acts as an electron transport chain. However, the operational stability and activity of
the redox medium gradually decline with long-term use, thereby decreasing the catalytic
performance. In comparison, the direct Z-scheme type without the medium demonstrates
superior stability. As shown in Figure 10b, upon excitation, these types of heterojunctions
generate electrons and holes in their respective CB and VB. However, the photogenerated
electrons in the CB of SC II can migrate to the VB of SC I and recombine with the photo-
generated holes therein. This electron transport pathway not only facilitates the separation
of electron-hole pairs within each semiconductor but also ensures that the electrons in
the CB of SC I and the holes in the VB of SC II maintain their highest and original redox
potentials, thereby overcoming the shortcomings of type II heterojunctions. Naturally,
when the two semiconductors are in immediate contact, it becomes essential for researchers
to demonstrate that the material they have prepared is not a type II heterojunction but a
direct Z-scheme system.
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(d) and the interfacial electric field intensity (e) of BiOCl, Bi4O5I2, BOC-I-V heterojunction, BOC-I-L
heterojunction. Reprinted with permission from Ref. [21]. Copyright 2023 Elsevier. (f) Schematic
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Ref. [91]. Copyright 2020 Elsevier. American Chemical Society. (g) The photodegradation mechanism
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solid-state medium. Reprinted with permission from Ref. [93]. Copyright 2021 Elsevier.
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Zhong et al. [21] synthesized two types of two-dimensional BiOCl/Bi4O5I2 heterojunc-
tion photocatalysts via the hydrothermal method. These include lateral heterojunctions
(LHs) formed by chemical bonds and vertical heterojunctions (VHs) formed by van der
Waals forces, representing Z-scheme heterojunctions and type II heterojunctions, respec-
tively. At visible light irradiation for 180 min, the two BiOCl/Bi4O5I2 heterojunctions
achieved phenol degradation efficiency of 98% and 95%, respectively. Although the degra-
dation efficiencies are similar, the phenol degradation efficiency of BiOCl/Bi4O5I2-LHs
is approximately 2.1-times that of BiOCl/Bi4O5I2-VHs. As shown in Figure 10d,e, com-
pared to the BiOCl/Bi4O5I2-VHs heterojunction, the BiOCl/Bi4O5I2-LHs heterojunction,
based on direct chemical bonds, exhibits a higher surface charge density. Therefore, it
possesses a stronger internal electric field, and under the Z-scheme model, it facilitates
faster photogenerated carrier transfer, a more direct carrier channel, and exhibits the highest
photocatalytic activity. Duan et al. [94] synthesized CuO/CNT/Bi2WO6 composite mate-
rials via the solvothermal method, and the catalyst exhibited the capability of degrading
approximately 60% of phenol within 2.5 h. The enhancement of its photocatalytic effect
is ascribed to the formation of a Z-scheme heterojunction, which promotes the interval of
photogenerated electron-hole pairs. Zhou et al. [91] employed electrostatic attraction to
uniformly anchor graphene quantum dots on a reverse protein skeleton of Bi2WO6/WO3,
and a dual Z-scheme photocatalyst was obtained. The phenol degradation efficiency over
0.5Bi2WO6/GQDs/WO3IO reached 99.8% within 120 min, which is 2.8-times higher than
that of single WO3IO. As shown in Figure 10f, the VB of GQDs is close to the CB of Bi2WO6
and WO3. After photoexcitation, the electrons (e−) in the CB of Bi2WO6 and WO3 recom-
bine with the holes (h+) in the VB of GQDs. This promotes the reaction of electrons and
holes in other parts with O2 and H2O to produce active species ·O2

− and ·OH, thereby
facilitating the oxidative removal of phenol.

Although the direct Z-type system effectively enhances the photocatalytic activity
through the reorganization of photogenerated electrons from the CB of SC II and vacancies
from the VB of SC I at the interface, photocarrier transport capability at this interface
deteriorates due to diminished contact compactness or recombination of charge carriers
within the components. Consequently, it is imperative to develop a novel system that
conveys photogenerated carriers between interfaces more stably and expeditiously. As
shown in Figure 10c, this all-solid-state Z-type system contains two distinct semiconductors
and a solid electron medium in contact with the interfaces of these semiconductors. This
medium typically comprises precious metals such as gold (Au), silver (Ag), and platinum
(Pt). Jiang et al. [92] fabricated an all-solid-state Z-type BiOI/Pt/g-C3N4 heterojunction
photocatalyst using a two-step method. The degradation efficiency of phenol can reach
71.2% under visible light within 120 min, significantly enhancing the phenol degradation
efficiency compared to those of single g-C3N4, BiOI/g-C3N4, and Pt/g-C3N4 at 13.6%,
30.2%, and 40.1%, respectively. An elementary diagram of its photocatalytic degradation of
phenol is shown in Figure 10g. Compared to the Z-type binary heterojunction, utilizing
precious metal Pt as the electron channel enhances carrier transfer efficiency, maximizes
charge separation at a zero Schottky barrier, and optimizes oxidation capacity.

Raizada et al. [95] reported a ternary BiOBr/PSCN/Ag/AgCl nano photocatalyst
featuring a double Z-scheme, which facilitates the distance of photogenerated electrons
and holes through the SPR [96] influence mediated by precious metal Ag. After visible light
irradiation for 60 min, it can degrade 98% of phenol, demonstrating lofty photocatalytic
performance comparison with bare BiOBr, phosphorus sulphur co-doped graphitic carbon
nitride (PSCN), and AgCl. Toe et al. [93] designed a core–shell structured Si@Au-modified
CuBi2O4/BiVO4 heterojunction photocatalyst. As shown in Figure 10h, the Au layer in
the Si@Au core–shell structure achieves surface passivation and suppresses the photolu-
minescence of Si NP. Simultaneously, as a plasmonic material, it adjusts the SPR effect to
enhance the photocatalytic reaction on CuBi2O4/BiVO4. The photocatalytic performance
of Si@Au/CuBi2O4/BiVO4 for phenol degradation, tested under visible light, achieved a
degradation efficiency of 96% within 3 h, compared to 57% for CuBi2O4/BiVO4 alone. This
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efficiency is due to the Fermi level of Au, positioned between the VB of CuBi2O4 and the CB
of BiVO4, acting as a bridge for electron-hole recombination, thus enhancing the utilization
within the bands. This further increases the photocatalytic activity of the CuBi2O4/BiVO4
heterojunction semiconductor. In summary, this Z-type carrier transport mode, mediated
by precious metals, leverages the SPR effect to enhance the virtue of photogenerated carrier
separation, thereby boosting the photocatalytic activity.

6. Summary and Outlook

This review comprehensively discusses the photocatalytic degradation of phenol over
Bi-based polyoxide catalysts. Based on a brief overview of the basic structure and prop-
erties of Bi-based oxides, different kinds of Bi-based oxide catalysts and their catalytic
performance are summarized. Subsequently, the effects of morphology, elemental doping,
defect introduction, and the band structure on the catalytic performance of Bi-based multi-
element oxides are discussed. Aiming to efficiently separate photogenerated electron-hole
pairs, various heterojunctions are constructed to develop new Bi-based photocatalysts,
thereby achieving efficient phenol removal. Undoubtedly, the layered structure of the
Bi-based multi-element oxide photocatalyst offers more active sites for the photocatalytic
degradation of phenol, and constructing a Bi-based semiconductor heterojunction maxi-
mizes its conduction and valence band redox capabilities, thus significantly enhancing its
photocatalytic activity.

Although some valuable results have been obtained, Bi-based oxide photocatalysts still
encounter various challenges. For instance, in single-component Bi-based semiconductors,
precisely controlling the morphology, exposing high-activity crystal facets, and design-
ing mesoporous structures present significant research value. Regarding new composite
materials, identifying materials that match the band structure of Bi-based multi-element
oxides and can effectively form heterojunctions offers broad prospects. It is noteworthy
that constructing such heterojunction composite structures not only holds potential in pho-
tocatalytic pollutant degradation but also in energy applications like hydrogen production
and CO2 reduction.
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