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Abstract: Blockchain is recognized for its robust security features, and its integration with Internet of
Things (IoT) systems presents scalability and operational challenges. Deploying Artificial Intelligence
(AI) within blockchain environments raises concerns about balancing rigorous security requirements
with computational efficiency. The prime motivation resides in integrating AI with blockchain to
strengthen IoT security and withstand multiple variants of lethal threats. With the increasing number
of IoT devices, there has also been a spontaneous increase in security vulnerabilities. While con-
ventional security methods are inadequate for the diversification of IoT devices, adopting AI can
assist in identifying and mitigating such threats in real time, whereas integrating AI with blockchain
can offer more intelligent decentralized security measures. The paper contributes to a three-layered
architecture encompassing the device/sensory, edge, and cloud layers. This structure supports a
novel method for assessing legitimacy scores and serves as an initial security measure. The proposed
scheme also enhances the architecture by introducing an Ethereum-based data repositioning frame-
work as a potential trapdoor function, ensuring maximal secrecy. To complement this, a simplified
consensus module generates a conclusive evidence matrix, bolstering accountability. The model
also incorporates an innovative AI-based security optimization utilizing an unconventional neural
network model that operates faster and is enhanced with metaheuristic algorithms. Comparative
benchmarks demonstrate that our approach results in a 48.5% improvement in threat detection
accuracy and a 23.5% reduction in processing time relative to existing systems, marking significant
advancements in IoT security for smart cities.

Keywords: IoT security; data confidentiality; smart cities; neural network optimization; Ethereum
blockchain; artificial intelligence (AI); cybersecurity

1. Introduction

Blockchain plays an integral role in securing data within the Internet of Things (IoT)
ecosystem owing to its unique characteristics, such as immutability, decentralization, and
cryptographic security mechanisms [1]. With massively generated data in IoT, blockchain
can maintain the ledger for data exchanges or transactions in an immutable form [2]. This
means that, with a higher consensus among users, it is possible to amend the structure of the
data recorded within the blockchain; thus, a higher degree of data integrity is facilitated [3].
Blockchain offers a decentralized network system with multiple nodes, where data are
managed in a distributed manner [4]. Such a decentralized blockchain offers a potential
impediment to attackers by closing all single control points to carry out intrusion. Currently,
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several approaches are aimed at enhancing the security performance of blockchains [5–10];
however, to date, an entirely foolproof and robust model capable of effectively resisting
cyber-attacks in the context of IoT has not been observed.

It has been noted that Artificial Intelligence (AI) can significantly enhance the perfor-
mance of blockchain in IoT by providing advanced analytics, optimization, and automation
capabilities [11]. AI algorithms can analyze large volumes of IoT data collected from
sensors and devices in real time. By extracting valuable insights and patterns from these
data, AI can optimize blockchain operations, such as transaction validation and consensus
mechanisms, while helping to identify anomalies in the blockchain network and enhancing
security and integrity [12]. By analyzing the historical performance data stored in the
blockchain, AI models can predict when devices will likely require maintenance or replace-
ment, enabling proactive interventions to prevent costly downtime and disruptions [13].
AI algorithms can optimize resource utilization in blockchain networks by dynamically
adjusting parameters such as block size, transaction fees, and network bandwidth based
on real-time demand and network conditions. This optimization ensures efficient use of
computing resources and enhances the scalability and performance of blockchains in IoT en-
vironments [14]. AI-powered smart contract platforms can automate complex business logic
and decision-making processes within the IoT ecosystems. IoT devices can autonomously
execute transactions, negotiate terms, and enforce agreements using real-time data and
contextual information by integrating AI algorithms into smart contracts. This automation
streamlines processes, reduces latency, and improves efficiency [15].

However, there are also challenges in applying AI-based approaches to address se-
curity concerns in IoT using blockchains. (i) Both AI and blockchain require significant
computational resources, which can be challenging to scale to the maximum elements of
smart cities (e.g., the infrastructure of Information and Communication Technology (ICT),
smart mobility, smart governance, healthcare, etc.) in large-scale IoT deployments that
demand the processing power needed for AI algorithms and blockchain transactions may
strain existing infrastructure and lead to performance bottlenecks. (ii) Achieving interop-
erability between AI algorithms and blockchain platforms can be complex, particularly
when multiple heterogeneous IoT devices and systems are integrated. Ensuring seamless
communication and data exchange between AI-enabled devices and blockchain networks
requires standardized protocols and interfaces that are still evolving in the IoT ecosys-
tem. (iii) AI algorithms often require access to large datasets for training and inference,
raising concerns regarding data privacy and confidentiality, particularly in sensitive IoT
applications. Integrating AI with blockchain introduces additional challenges in managing
data privacy because blockchain’s transparent and immutable nature may expose sensitive
information to unauthorized parties if not properly encrypted or anonymized. (iv) While AI
and blockchain technologies offer enhanced security features individually, their integration
introduces new security risks and attack vectors in IoT deployment. Adversaries may
exploit vulnerabilities in AI models or blockchain protocols to manipulate data linked to
elements of smart cities in IoT, compromise device integrity, or launch sophisticated attacks
such as adversarial examples or blockchain-based attacks.

The primary contributions of the proposed study model are as follows:

• Development of a three-layer operational framework within the IoT comprising sensor,
edge, and cloud layers. This structure facilitates precise cyber-threat detection by iden-
tifying the transaction abnormalities. The intention is to provide a more accountable
and interconnected model of each involved actor during their respective interaction,
which needs to be added to the existing modeling approaches;

• Introducing a simplified yet highly robust mechanism for computing the legitimacy
score enhances accountability among nodes participating in blockchain transactions.
This step addresses issues of a higher degree of complexity involved in trust computa-
tion in blockchain operation, yet it cannot offer optimal data privacy;

• Innovation in decentralized Ethereum blockchain operations, integrating AI to op-
timize data confidentiality, is particularly tailored for smart city applications in the
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IoT. This approach is intended to mitigate issues about off-chain data storage with
increased operational costs;

• Introduction of a simplified consensus-based method and an analytical approach utilizing
a decentralized evidence matrix to ensure maximum data integrity, non-repudiation,
and confidentiality in large-scale IoT environments. This contributory step is meant to
mitigate the possibility of introducing any new attack vector where an attacker can create
a fork from a previous block to lower the strength of network security;

• Implementation of a novel metaheuristic optimization-based neural network predic-
tive operation to dynamically identify and classify cyber threats, thereby enhancing
system resilience and security. This step addresses the association of the computational
burden with most AI-based methods in network security.

2. Related Work

This section discusses the evolution of distinct blockchain-based studies in existing systems.
It was noted that using pseudonyms can facilitate a better degree of anonymity in

the blockchain, provided that robust unlinkability is maintained. This characteristic offers
the first layer of defense by preventing the intruder from accessing sensitive information
associated with the pseudonym user. This challenge was addressed in the work of Gutierrez-
Aguero et al. [16], where a blockchain model was designed to offer unlinked interactions
between the model and the user concerning their identity. This is accomplished by assigning
a dynamic pseudo-identity to the user without any link to its original identity. However,
this study introduces this model using a sophisticated key derivation framework, eventually
introducing a significant degradation in transaction throughput for large networks. Javed
et al. [17] carried out a similar modeling pattern to mitigate the issues of conventional
anonymization approaches, leading to data quality degradation. The authors used smart
contracts and blockchains, in which distributed user data can be used by service providers
with a higher degree of privacy preservation. A smart contract is deployed by a user
endowed with the privilege to custom configure it. However, this study is expected to
offer higher propagational delay and dependency on authorized nodes for validating
transactions.

Not all blockchain-based studies were meant to emphasize privacy; one example
is the healthcare sector’s exchange of information. This challenge was mitigated by the
unique blockchain model presented by Lee and Song [18] by adopting ring signatures.
The model can identify sensitive information, followed by obscuring it, whereas a smart
contract is designed using a ring signature. The primary limitation of this study is that
it is specific to the use-case, and the same model cannot be applied to different domain
use cases. Furthermore, the model includes excessive variables while developing smart
contract management, which can eventually pile up the heap of saturated memory over
time. A similar study on adopting healthcare-based use cases was also presented by Omar
et al. [19], who stated that healthcare-based information must be accessed by a health
insurance company, which raises further data privacy concerns. An interoperable service
for accessibility to policy information and concurrent storage of healthcare data is permitted
in this blockchain design. However, the blockchain structure is retained externally to the
system, which induces time for fetching and yielding the outcome.

Existing studies on data confidentially are witnessing challenges in securing location-
dependent services that are often associated with poor service quality. This problem was
addressed by Qiu et al. [20], who designed a unique model that does not require any
form of anonymizing server to perform validation. The model adopts the k-anonymity
method to secure the user’s location information, and incentives are introduced to promote
user participation. The model requires substantial benchmarking of its outcome, and its
applicability needs to be improved for continuous query systems in a blockchain.

The vulnerability associated with the conventional design of smart contracts in
blockchain was addressed in the work of Albyaflah et al. [21], where data confidentiality
was enhanced by developing a unique access control system based on user roles. The
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system also developed a secure data store system represented in a smart contract capable
of controlling gas consumption. However, the performance of the calling mechanism for a
smart contract depends on the indexed array followed by updating processing, where there
is a higher possibility of redundant information. Hence, the model can introduce latency
while processing concurrent users requesting the same data or services.

Elisa et al. [22] introduced a different method of blockchain security in which the
complexity associated with securing vastly interconnected services is addressed. The study
model introduced an anomaly detection system for large-scale sophisticated applications,
incorporating an artificial immune system and blockchain operation. Although the model
facilitates highly decentralized operation, using the Merkle tree significantly reduces the
storage overhead.

In addition to the above-mentioned research problems, the existing literature has also
addressed scalability issues in blockchain implementation for large-scale applications. This
issue was addressed by Khor et al. [23], who used bitwise logical operators to develop a
scalable blockchain for securing batch ownership during data transmission. The study
also uses the InterPlanetary File System, which permits the full-fledged accessibility of
transactions to legitimate owners. In contrast, only the public can view transaction records
to offer interoperability. Although the model is claimed to resist multiple attacks on the
supply chain network, it has an extensive key management approach that introduces a
computational burden for heavy traffic conditions. The adoption of the InterPlanetary File
System was also witnessed in the work of Ugochukwu et al. [24] to securely store logistic
information in a decentralized manner, followed by using a secure hash algorithm to protect
data anonymity. This study model also resisted multiple lethal threats with satisfactory
throughput. However, the model demands the generation of operational certificates for
every legitimate access, progressively increasing the oversaturation of the resources of
other nodes.

A security model was presented by Ullah et al. [25], in which a secure performance
trade-off between regulatory and deregulated electricity markets was addressed. The
authors used decentralized Ethereum, specifically for a regulated market in which data
security is enhanced. However, more evidence is needed to prove the resistance of this
model to extensive threat exposure. Viswanadham and Jayavel [26] used a nature-inspired
algorithm to generate optimal security keys to secure and store data. However, the model is
quite iterative in its operation upon exposure to various research environments in IoT. The
blockchain model presented by Yousra et al. [27] addressed the challenges associated with
security loopholes using conventional authentication protocols, where third parties use and
access varied sensitive information. The essential parameters were identified using NFT,
whereas the traditional authentication protocol was amended for more efficient monitoring
of activities, and the study outcome was found to be cost-effective. However, the main
pitfall of this model is its a priori attack definition, without which threats are difficult to
identify and mitigate.

Recently, it was also noted that various AI-based security modeling had evolved in
IoT: Decision Tree (Stefanescu et al. [28], Fu et al. [29]), Support Vector Machine (Salb
et al. [30], Monteiro et al. [31]), Random Forest (Inder and Sharma [32]), Logistic Regression
(Ivaninskiy and Ivashkovskaya [33]), conventional deep learning approaches (Lawrence
and Zhang [34], Uppala et al. [35]), Artificial Neural Network (Kim et al. [36]), Recurrent
Neural Network (HaddadPajourh et al. [37]), Long Short-Term Memory (Alamro et al. [38]),
Auto Encoder (Arifeen et al. [39], Alaghbari et al. [40]), and nature-inspired algorithm
(Taher et al. [41], Singh and Ujjwal [42]).

Adopting AI models in security IoT often requires extensive data for training and other
associated operations. As these data contain highly sensitive information, offering optimal
data confidentiality is challenging. It was also noted that AI-based security approaches
are more complex than the reviewed blockchain-based solutions [16–27]. Such forms
of complexity lead to unintended consequences that are computationally challenging to



Processes 2024, 12, 1825 5 of 28

correctly identify and stop. Existing AI models in blockchain approaches address resource
constraints, scalability, and complexity issues.

A closer look at the above-mentioned security approaches shows that there are claimed
benefits associated with all approaches. It is believed that the integrity of AI-specific
models can be verified by blockchain. However, it is yet to be seen that if the blockchain’s
records are tampered with or compromised, they could eventually lead to outliers by AI
models. Moreover, existing Ethereum blockchain-related approaches are case-specific,
whereas existing AI-based solutions have complexity issues. The problems identified are
discussed next.

3. Problem Description

In reviewing related work on the Ethereum blockchain, it is evident that prevailing
methodologies primarily focus on introducing unlinkability between data and potential
attackers [16,17,20]. Such approaches typically rely on cryptographic addresses to identify
users and minimize the utilization of personal information. However, although these
schemes provide pseudonymity, they fail to ensure comprehensive data confidentiality.
Notably, existing implementations often employ techniques, such as ring signatures [18]
and artificial immune systems [22], to bolster encryption methods to safeguard data stored
within the blockchain. Despite claims of secure management of encryption keys [19],
these schemes face challenges in maintaining data privacy under dynamic cyber threats.
Additionally, some studies have explored off-chain storage solutions, such as centralized
databases or the InterPlanetary File System, to preserve blockchain data [23,24]. However,
these approaches compromise the optimal decentralization for improved data confidential-
ity, resulting in elevated operational and maintenance costs in large-scale IoT scenarios.

Conversely, specific investigations assert superior decentralization and enhanced data
security in diverse test cases [25–27]. However, a notable drawback lies in potentially
revealing sensitive information through linked metadata, including transaction addresses,
timestamps, and amounts [25–27]. Protecting the confidentiality and anonymity of such
metadata requires strategic planning to mitigate the risk of leakage.

Furthermore, although AI models have exhibited progress in augmenting the security
performance of the Ethereum blockchain, there remains a need to integrate robust yet
lightweight encryption approaches into Ethereum smart contracts and IoT devices [28–42].
Additionally, efforts to minimize data stored in the blockchain and strengthen communica-
tion security between IoT devices, AI models, and the Ethereum blockchain are warranted.
It should be noted that an AI model has a higher degree of vulnerability toward adversarial
attacks, where the model can be corrupted by malicious input itself. In reality, a valid and
benchmarked blockchain model for verifying the integrity of the AI model remains to be
reported in the literature. Addressing the computational complexities associated with AI
model variants is imperative to optimize the performance while mitigating the inherent
weaknesses in conventional schemes.

To address these challenges, our research endeavors to pioneer a novel computational
framework that harmonizes AI and blockchain technologies. Our objectives are to mitigate
the scalability challenges inherent in blockchain-based security frameworks, augment real-
time threat detection through advanced AI algorithms, and fortify data confidentiality via
encryption techniques and privacy-enhancing protocols. Additionally, we aim to address
the specific security needs of smart cities by emphasizing seamless communication and
instantaneous responsiveness within IoT ecosystems. The following section discusses the
solutions to address these research problems.

4. Methodology

The primary purpose of the proposed study is to develop a novel and unique form of
an intelligent computational framework for optimizing the data confidentiality associated
with smart cities in the IoT. A smart city comprises various elements, such as ICT, IoT
sensors, data analytics, smart mobility, energy management, sustainable infrastructure,
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healthcare, and transportation. Unlike the approaches in the previous section, the proposed
system develops a generalized framework that emphasizes the data and mechanisms for
secure services using a blockchain-based IoT cloud. This will assist in offering maximum
applicability to various smart city elements through cost-effective solutions. Hence, the
proposed study does not emphasize any particular element of smart cities in IoT; instead,
it builds an innovative framework that maximizes the supportability of most smart city
applications’ aspects. The proposed study model uses the Ethereum blockchain integrated
with AI in a unique order to accomplish this study objective for large-scale IoT applications
deployed over a cloud ecosystem. The architecture of the proposed framework is as follows.

The architecture in Figure 1 shows that various sensors deployed in discrete regions of
smart cities perform sensing, and this sensed information is subjected to security assessment
in dual stages. In the first stage of security assessment, the extracted sensory information is
forwarded to the edge nodes. In contrast, the second stage facilitates analyzing and storing
information acquired from the edge nodes.

• Edge Layer Operation: This is the first stage of operation in which raw sensory infor-
mation from smart cities is extracted via multiple gateways and subjected to data
confidentiality analysis. The stream of raw sensory information is analyzed to identify
the usual traffic patterns with the possibility of a cyber breach. In addition, this moni-
toring of sensory data also assists in analyzing traffic data to evaluate the management
of smart traffic and its responsiveness to malicious activities. This raw sensory data
extraction process is carried out within the edge layer to acquire the legitimacy score,
where the Ethereum blockchain further initiates validation. The term legitimacy score
can be defined as a qualitative measure representing an IoT device’s credibility, in-
tegrity, and reliability within a network. It should be noted that this operation stage
also involves verifying the legitimacy of all sensing devices. The proposed scheme
uses a unique consensus method for preserving privacy by confirming the regular or
malicious state of data obtained from various sensors. The edge layer also authenti-
cates the blockchain to safeguard data from multiple cyber threats. The novelty of the
proposed architecture lies in its two levels of security approaches associated with data
privacy. In the first layer, a newly constructed consensus is used to safeguard the data,
whereas the transformation operation is carried out to obtain encoded data from the
extracted features. This operation is intended to resist any form of illegal extraction
of inference toward attack detection by any malicious adversary. In contrast to con-
ventional blockchain models discussed in the literature, the outcome of blockchain
validation is further subjected to transformation using AI, which results in the de-
tection of abnormalities. The analyzed security information is stored in blockchain
storage units and forwarded to the next cloud layer via multiple gateway nodes;

• Cloud Layer Operation: Upon arriving at cloud layers via gateway nodes, the data
associated with the analyzed security information from the previous layer are initially
stored in interconnected and decentralized cluster units of the cloud, where they
are further cross-checked for their match with the predefined historical transactional
data. This results in malicious/normal activity. It should be noted that two storage
mechanisms are involved in the proposed scheme. The first form of storage mechanism
is in the edge layer operation, which stores all monitored traffic information and
legitimacy scores evaluated on the monitored traffic. The second form of storage
mechanism occurs when the outcome of the edge layer detects abnormalities, and this
information is stored in various connected storage units involved in the cloud layer
operation. The result of this operation is the detection of suspicious activities;

• AI Model: The proposed schemes amend the conventional design of neural networks
to address the issues about computational burden reported in the identified research
problems in Section 3. The revised version of this neural network model in the pro-
posed AI solution aims to achieve optimized performance in a dynamic environment
with faster responsiveness while classifying regular and malicious nodes and traffic.
The implemented AI model performs its classification task using the extracted features
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within the edge layer operation. Finally, the information on analytical operations
related to suspicious activity in both the edge and cloud layers is harnessed to con-
firm the presence of malicious activities. Finally, the operation results in identifying
intruders and all patterns of intrusive activities linked to compromising the legitimacy
score in the system. The framework offers data confidentiality and results in a highly
intellectual system capable of determining any abnormalities within the transactional
operation carried out by the blockchain network and cloud environment. Therefore, a
two-way security assessment framework was used to validate IoT transactions.

Processes 2024, 12, 1825 6 of 29 
 

 

4. Methodology 
The primary purpose of the proposed study is to develop a novel and unique form 

of an intelligent computational framework for optimizing the data confidentiality 
associated with smart cities in the IoT. A smart city comprises various elements, such as 
ICT, IoT sensors, data analytics, smart mobility, energy management, sustainable 
infrastructure, healthcare, and transportation. Unlike the approaches in the previous 
section, the proposed system develops a generalized framework that emphasizes the data 
and mechanisms for secure services using a blockchain-based IoT cloud. This will assist 
in offering maximum applicability to various smart city elements through cost-effective 
solutions. Hence, the proposed study does not emphasize any particular element of smart 
cities in IoT; instead, it builds an innovative framework that maximizes the supportability 
of most smart city applications’ aspects. The proposed study model uses the Ethereum 
blockchain integrated with AI in a unique order to accomplish this study objective for 
large-scale IoT applications deployed over a cloud ecosystem. The architecture of the 
proposed framework is as follows. 

The architecture in Figure 1 shows that various sensors deployed in discrete regions 
of smart cities perform sensing, and this sensed information is subjected to security 
assessment in dual stages. In the first stage of security assessment, the extracted sensory 
information is forwarded to the edge nodes. In contrast, the second stage facilitates 
analyzing and storing information acquired from the edge nodes. 

 
Figure 1. Architecture of proposed framework. 

• Edge Layer Operation: This is the first stage of operation in which raw sensory 
information from smart cities is extracted via multiple gateways and subjected to 
data confidentiality analysis. The stream of raw sensory information is analyzed to 
identify the usual traffic patterns with the possibility of a cyber breach. In addition, 
this monitoring of sensory data also assists in analyzing traffic data to evaluate the 
management of smart traffic and its responsiveness to malicious activities. This raw 
sensory data extraction process is carried out within the edge layer to acquire the 
legitimacy score, where the Ethereum blockchain further initiates validation. The 
term legitimacy score can be defined as a qualitative measure representing an IoT 
device’s credibility, integrity, and reliability within a network. It should be noted that 

Figure 1. Architecture of proposed framework.

The complete operation of the proposed framework is classified into various essential
tasks related to evaluating and managing the legitimacy score, offering data confidentiality
using the Ethereum blockchain, and optimizing the security features using the AI model.
The primary mechanism for assessing the legitimacy score is to authenticate the reliability
of the IoT devices. The secondary mechanism for validating the sensory data and resisting
cyber threats uses the simplified Ethereum blockchain technique. In contrast, AI modeling
has been used to classify cyber threats. The proposed framework utilizes a consensus-
based approach to determine the degree of tampering performed on the IoT devices. This
technique also ensures a higher degree of data confidentiality in the IoT. The framework also
presents an analytical method for minimizing the influence of cyber threats by obtaining
an encoded object from extracted features. Further elaboration of the essential operations is
as follows.

4.1. Evaluation of Legitimacy Score

This algorithm is responsible for computing the outcome of the legitimacy score,
where the term legitimacy score can be defined as a probability value assigned by the
parent IoT device (transmitting) to the selected IoT device to assist in forwarding data
to the destination node. For every successful transaction, the parent IoT device assigns
the highest probability value of one; otherwise, zero is assigned to the selected IoT node.
However, this policy of assigning legitimacy scores must be flexible with dynamic IoT
traffic to form a foundation for secure communication and collaboration in a networked
environment. The operational steps of Algorithm 1 are as follows.
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Algorithm 1. For Evaluating Legitimacy Score.

Input: αs, d, ηtr
Output: lo
Start
1. init αs
2. θ = f1(di)
3. r1 → read(αs)
4. r2 → (ls, θ)
5. If αs = θ

6. αs = αs + 1
7. Else
8. αs = 0
9. End
10. ls = f2(ls, ηtr)
11. arrange (ls)γ

12. If ls > A1&&ls < A2
13. lo = f lag(valid)
14. Else
15. lo = f lag(malicious)
16. End
End

The algorithm mentioned above contributes to safeguarding IoT networks from cyber
threats that could either be an adaptive form of threat or induce potential physical damage
to IoT devices. Such an adversary usually introduces itself into a secure network system via
IoT devices with a weaker authentication framework. The proposed algorithm is intended
for active and resisting passive attacks, where the adversary captures confidential informa-
tion via various malicious activities. Irrespective of the varied strategies adopted by the
adversary, the expected consequences of all these attack strategies lead to the compromisa-
tion of the actual data structure. Hence, the proposed algorithm aims to strengthen data
confidentiality and integrity. The operational steps of the proposed algorithm are as follows:
The algorithm takes the input of αs (transaction score), d (data), and ηtr (cardinality of the
transaction), which, after processing, yields an outcome of lo (legitimacy outcome). The
algorithm initializes the αs (transaction score) preliminarily (Line 1), followed by evaluating
the threshold value of θ where an explicit function f1(x) considers an input argument of
data di (Line 2). Function f1(x) extracts the range of the minimum and maximum values
of data di such that di ∈ D, where D represents the overall dataset. The following line of
operation is associated with applying a read() method that reads all the αs (transaction
scores) within the raw sensory data from IoT devices that are extracted from the D dataset
and stored in the r1 matrix (Line 3). The framework further estimates ls (legitimacy score)
and θ threshold values based on αs (transaction score) (Line 4).

Conditional logic is framed, where the equivalency of αs (transaction score) and θ
threshold value is assessed (Line 5). Under favorable conditions, the value of αs (transaction
score) is incremented (Line 6); otherwise, the value of αs (transaction score) is assigned to 0
(Line 8). After assessing the conditional logic associated with the transactional score, the
system further estimated the global legitimacy score. This is accomplished by constructing
another function, f2(x), considering the input argument of ls (legitimacy score) and ηtr
(cardinality of the transaction) (Line 10). The legitimacy score is computed by deploying
function f2(x) to perform the following computations:

f2(x) =
∆ls
ηtr

(1)

In Equation (1), the computation of function f2(x) is performed by considering ∆ls
representing the ls/c and ηtr (cardinality of the transaction), where variable c represents
the network coefficient. It should be noted that the difference between variables ls and
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∆ls is that the former is used for initialization based on probability assigned values in
transaction scores, while the latter is used by considering the former along with including
the network coefficient to make it practically applicable for blockchain networks. The
study then organizes the transactions into a proper arrangement considering ls (legitimacy
score) and γ (extracted features) (Line 11). The algorithm then formulates the second
conditional logic to determine the final range of the value of ls (legitimacy score), with A1
and A2 as the minimum and maximum current values, respectively (Line 12). Attribute
A1 represents (τ − 2)/c, A2 represents τ/c, and a score of 2 represents the involvement of
only two observational datasets. Upon finding the favorable condition stated in Line 12, the
algorithm generates the flagging message of the validated legitimacy outcome lo (Line 13);
otherwise, it generates the malicious legitimacy outcome lo (Line 15). Therefore, it can be
seen that Equation (1) is used for the calculation of the legitimacy score considering the
dependable attributes of ls and ηtr, whereas probability is only used to assign in Line 6 and
Line 8 toward transaction score αs on the basis of the condition specified in Line 5. Hence,
probability is used as a starting point of initialization for the transaction score, which is
one of the dependable parameters in calculating the legitimacy score. Furthermore, the
algorithm performs grouping based on the total features and computed legitimacy scores.

A closer look at this algorithm shows that initialization has been performed for local
parameters such as the score of transactions, value of threshold, and score of legitimacy.
This is followed by estimating the global parameters of the legitimacy score per the total
frequency of accomplished transactions based on the computed score of legitimacy and
cumulative extracted features. This means that the proposed framework computes the
legitimacy score. However, it was initialized first, which offers potential adaptability to
the algorithm to fine-tune itself to various dynamic conditions of cyber threats. Desig-
nated flagging of the message to be regular and threatening is performed based on this
computation. Therefore, this algorithm contributes to a simplified and novel approach for
computing the eligibility of an IoT node to be considered secure and reliable using the new
concept of legitimacy score.

Further, back-tracing the steps of this algorithm will be challenging for any adversary
if they attempt to disclose the data. The second conditional statement poses the first im-
pediment to an adversary, where it is infeasible for an adversary to compute the A1 and
A2 attributes that consist of private information depending on the network coefficient and
the currently extracted feature. The next impediment is the computation of the legitimacy
score (Line 10), as an attacker cannot gain information associated with the cardinality of
transactions related to the blockchain, which repositions a massive amount of transac-
tional information. Hence, extracting one set of specific transaction information without
timestamp information from a voluminous transaction requires extensive computational
resources from any form of adversary. Therefore, this algorithm introduces a robust first
line of defense and legitimacy computation.

This study addresses the security issues of data vulnerabilities in smart cities by
introducing a decentralized system to manage IoT devices. Further, the scheme uses a
lightweight consensus method for minimizing resource requirements. In contrast, the
presented blockchain scheme offloads specific computational demands to an explicit edge
layer to reduce the associated cost and blockchain usage. This significantly increased the
capability of the proposed model to handle large-scale IoT deployment.

4.2. Ethereum Data Reposition

Once the legitimacy score is estimated in the previous algorithm, the communication
and data exchange are initiated within the IoT cloud environment. This will eventually
mean that safeguarding the data exchanged among IoT devices is the most critical task. The
proposed framework utilizes an Ethereum blockchain with a more robust trapdoor function
to ensure both forward and backward secrecy. The term trapdoor function represents an
operation that is simpler to compute in one direction but challenging to compute in the re-
verse direction without secret dependable data. Simultaneously, the algorithm emphasizes
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retaining the maximum data integrity, confidentiality, and non-repudiation. In contrast, the
exchanged data are subjected to repositioning within the Ethereum blockchain network.

Various operational steps are involved in the proposed framework for storing sen-
sory data. The initial step toward storing sensory data is understanding the necessary
data format. To format the data originating from the IoT device, encoding generates the
binary format required for smart contract management in the Ethereum blockchain [43].
Furthermore, the smart contract used in our prior model was deployed to handle the data
type for information generated by IoT devices [44]. Moreover, the encryption algorithm
utilized in our previous model was deployed to cipher the information before storing the
data in the blockchain [44]. The benefit of this approach is that it allows only legitimate
members to have permitted access to and decrypt the exchanged information. Another
significant advantage of this framework is that the proposed Ethereum blockchain can
facilitate the storage of voluminous sensory data directly on the blockchain, unlike con-
ventional Ethereum, which suffers from scalability issues. In the proposed framework, the
facilitation of voluminous storage is ensured by storing the reference to the data in the form
of hashtags. In contrast, actual data are stored in distributed clusters of cloud storage units.
The operational steps of this algorithm (Algorithm 2) are as follows.

Algorithm 2. For Ethereum Data Reposition.

Input: ηtr, n
Output: ψ

Start
1. init ηtr = 0, ψ = 0
2. For i = 1 : n
3. ηtr → extract scores from IoT devices
4. If ηtr = T
5. ψ →Evaluate data linked to ηtr
6. store ψ → n(Ht)
7. ψ → forward(edge, cloud)
8. End
9. End
End

The discussion of the above-mentioned algorithmic steps is as follows. The algorithm
takes the input of ηtr (cardinality of the transaction) and n (number of IoT devices), which,
after processing, yields an outcome of ψ (reposited Ethereum data). The first steps of
the algorithmic implementation are associated with initializing specific arguments. The
algorithm initializes ηtr (cardinality of the transaction) and the hash value of the message
exchanged by sensory device ψ as zero (Line 1). Considering all the n IoT devices (Line 2),
the algorithm evaluates the content of the IoT devices. All scores associated with the IoT
devices from the prior algorithm were obtained and stored in the same attribute as ηtr
(Line 3).

Furthermore, the algorithm checks whether ηtr is true T (i.e., valid) (Line 4). Upon
confirming the validity ηtr, the data are evaluated, which acts as a reference to the original
data in the form of a hash score ψ (Line 5). The acquired information of the hashed scores
is updated back to the file-sharing system within IoT devices. This is followed by storing
the exchanged information in a hashed tree Ht and stored in the same matrix of ψ (hash
value of the message exchanged) (Line 6). Finally, this information is forwarded to the
edge and cloud nodes (storage units), completing the algorithm’s operation (Line 7). The
outcome of this algorithm is matrix ψ, now termed the reposited Ethereum data. A critical
insight into the steps of algorithmic formulation shows that the proposed scheme offers a
higher degree of security for data stored in hashed trees maintained in edge and cloud layer
operations. This will eventually mean the algorithm assures a highly secure communication
system, even if any private key is likely compromised. This phenomenon complies with
forward secrecy. At the same time, this algorithm also offers higher security for keys
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and all prior communications, even if any potential attacker compromises the current key.
This phenomenon complies with backward secrecy. Hence, the proposed scheme exhibits
forward and backward secrecy characteristics, which are the prime elements for designing
any trapdoor function. Furthermore, it should be noted that the trapdoor function is one of
the foundations of different variants of security protocols in cryptography. It offers a one-
way function that is easier to evaluate in one direction. Still, reversing them without using
an explicit token called trapdoor is impossible. In its distinct way, the hashing operation
acts as that trapdoor function.

A closer look at this algorithmic implementation shows that the reference-based
hash score of the original sensory data is stored in a distributed cloud environment. The
input of essential sensory information associated with transactions is considered, leading
to generating a hash score in a distributed form maintained in a tree as an outcome.
The benefit of this approach is that no adversary can possess actual data, even if this
algorithm attempts to be maliciously accessed. The distributed hashed information is
computationally intensive to disclose by an adversary owing to multiple dependencies
that require extensive resources. Hence, this algorithm can introduce data integrity. In
addition, essential dependable attributes (e.g., transactional scores) are obtained from all
individual IoT devices, whose legitimacy scores are assessed using a prior algorithm. Upon
determining the legitimacy of these devices, the algorithm estimates the hash scores of the
data carried by each IoT device. To ensure higher scalability in the proposed Ethereum
data repositioning, the proposed framework considers that all cloud servers use a protocol
for sharing exchanged sensory data maintained as a distributed file system to leverage
higher and concurrent storage [43]. The value-added advantage of adopting this storage
framework is that the conventional Ethereum blockchain facilitates a decentralized way
to store data and provides a highly transparent mechanism to validate data/transactions;
however, it must enable a robust distribution strategy. The proposed framework uses this
protocol within a blockchain to offer decentralized storage and a faster and more effective
distribution system. Thus, robust scalability was introduced by the proposed framework.
The second benefit of this framework is that the generated hashed score is forwarded to the
edge and cloud nodes for further assessment of any abnormality. It should be noted that
the hosting of edge nodes is performed within the network layer, where the block nodes
are maintained in distributed cloud storage units. Hence, all block nodes within a cloud
correlate with the original data nodes and are kept as a decentralized hashed tree. This
indicates that no member apart from IoT devices with higher legitimacy scores can access
these block nodes. Hence, a higher degree of data confidentiality was incorporated into
this framework.

This algorithm estimates the global legitimacy score in the prior algorithm, where
the authenticated user/node is determined. Only in the case of a validated transaction
(indicating a higher legitimacy score) will it be considered a criterion for storing data in the
proposed Ethereum blockchain. Hence, the proposed algorithm offers non-repudiation of
services in addition to data integrity and confidentiality. This can be stated based on the
fact that for any attempt of a regular or illegitimate access request when forwarded to the
application, the request message is subjected to verification by referring to the metadata
stored within the block nodes in a cloud environment. Additionally, all transactional
records are maintained and seamlessly updated over the decentralized hash tree. Hence,
a higher degree of accountability for all nodes and transactions was retained within the
proposed framework. The next part of the algorithm implementation further extends this
operation to incorporate and emphasize the confidentiality perspective.

4.3. Ethereum-Based Confidentiality

This is the next module of implementation that emphasizes retaining the maximal
level of data confidentiality in the Ethereum blockchain to ensure more secure internal
communication in the IoT cloud environment. The proposed framework uses a consensus-
based approach, leveraging the Proof-of-Work technique to validate the data for resisting
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lethal cyber threats in the IoT. It should be noted that the proposed framework also uses an
analytical approach to resist threats by subjecting data to the encoding mechanism. This
helps safeguard the data from various types of attacks. This algorithm offers optimal data
confidentiality for transforming the data into block structures in Ethereum. Under this
framework, a public key is used to encrypt the data, whereas decryption is performed
using a private key. The overall steps of this algorithm (Algorithm 3) implementation are
as follows.

Algorithm 3. For Ethereum-based Confidentiality.

Input: Ib(indexed identity of Ethereum block), hp(prior hash score)
Output: β f (final evidence matrix), ba(block added)
Start
1. init Ib = 0, hp = 0
2. constructBlock(β )
3. If ηtr = T
4. evaluate hash(bh)
5. End
6. If Ib > 0
7. bh = f3

(
barg

)
8. End
9. EvaluateMiner(Fe( β))
10. While (A3 == 0)
11. do compute β = β + 1
12. End
13. If (i == 1)
14. β = 1;
15. ba = constructBlock(β)
16. Else
17. Fe = i
18. β f = EvaluateMiner (β f )
19. ba= constructBlock(β )
20. End
End

The illustration of the algorithm mentioned above for Ethereum-based confidentiality
is as follows. The algorithm takes the input of Ib (indexed identity of the Ethereum block)
and hp (prior hash score), which, upon execution, results in an outcome of β f (final evidence
matrix) and ba (block added). In the preliminary step, both input arguments are initialized
to 0 (Line 1). An explicit function constructBlock() is constructed considering the β evidence
matrix to construct individual blocks using a precise hash score associated with the data
(Line 2). After constructing a respective block, the algorithm checks for the condition to
check if the ηtr cardinality of the transaction is true (T representing valid) (Line 3). The
favorable case of this condition results in the evaluation of hash scores associated with
block bh (Line 4). Furthermore, the algorithm checks whether the value of the indexed
identity of block Ib is greater than 0, representing the presence of at least one block (Line 6).
If the indexed identity of the block is found to be valid, then the hashed block score is
estimated using an explicit function f3(x) considering the input argument of blocks, that
is, barg (Line 7). This function f3(x) extracts the digest score associated with the attribute
barg, which further consists of hashed-based encryption SHA3, the current score of hash
hc, evidence matrix β, the indexed identity of block Ib, transaction λ, prior hash score hp,
and timestamp t. This operation returns the current value of the block bh. The next step
of implementation is associated with the execution of miners using a consensus approach
with Proof-of-Work. For this purpose, another explicit function, EvaluateMiner(), was
constructed, which considers its argument to be the final evidence Fe concerning β evidence
matrix (Line 9). The β evidence matrix is empirically represented as ( Fe + 1). The algorithm
constructs a new attribute, A3, which is checked for equivalence with 0 (Line 10). The
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new attribute A3 represents the logical AND operations between (β + Fe) and (2n − 1).
Simultaneously, if the condition formed by A3 is equivalent to 0, the algorithm increases the
value of the β evidence matrix (Line 11). The outcome of this operation results in potential
evidence adhering to the consensus protocol, followed by the addition of novel blocks to
the existing Ethereum blockchain network. A conditional logic to check for at least one
block i is carried out (Line 13), and then the β evidence matrix is assigned as the highest
probability score of 1 (Line 14). The function constructBlock() is the currently updated β
evidence matrix in the prior step to generate a new block ba to be added to the existing
Ethereum blockchain (Line 15). However, suppose that the conditional logic is found to
violate (Line 13). In this case, the algorithm assigns the current block I to the final evidence
Fe (Line 17), followed by updating the β f final evidence matrix and newly added block ba
(Line 18 and Line 19), thereby completing the final steps of this algorithmic implementation.

A closer look at the implementation of this algorithm will show that it offers a higher
range of data confidentiality by leveraging the integrity of transactional records. This
is achieved by implementing SHA3 encryption, which efficiently computes the digest’s
record. It should be noted that this operation generates a hash score adhering to one-way
encryption, acting as a unique signature with a uniform-sized outcome. Such one-way
hashing operations safeguard the data against malware, and botnets may be present deep
within the network and often go undetected in conventional encryption frameworks. A
better form of accountability and reliability of this algorithm can be ensured because if an
adversary or any illegitimate node attempts to alter even one bit of data within the block,
the complete digest structure will change, resulting in a potential trapdoor function. In
addition, constructing a block in the Ethereum blockchain involves various forms of digest
integration; hence, a minor change in one block will alter the hash scores even to a smaller
extent. Furthermore, the integrity of this chain network of hash scores can be validated
by using the consensus protocol in the Ethereum blockchain. However, the proposed
framework uses a different consensus mechanism that requires extensive computational
resources to mitigate the complexities of simplifying hash scores. This problem is addressed
in the proposed algorithm by deploying a quantifiable evidence matrix, thereby securing the
forwarding of the digest information to the Ethereum blockchain network. This operation
requires little computational effort while maintaining higher hash chain integrity. This
algorithm generates block hash scores by using multiple inputs: hc, β, Ib, λ, hp, and t.
The framework entitles a block to estimate its hash scores only under the condition of
a validated transaction using the first and second algorithms. In the presence of a valid
number of blocks, as per their indexed information, the hash scores of each block are
generated using the digest.

The framework also performs mining operations of blocks by deploying the final
evidence matrix, whereas the verified generated evidence acts as an accountable parameter
for non-repudiation. It should be noted that once the algorithm verifies a block, it is not
possible to perform any form of alteration to the block content. Hence, the proposed
framework ensures higher sustainability toward data confidentiality and integrity, even
in the presence of highly vulnerable and unreliable IoT and cloud networks intruded
upon by lethal cyber-attacks. Therefore, the primary contribution of this algorithm is its
cost-effective integrity checks for hash chains and the less computational effort required to
generate evidence, unlike the conventional consensus method in blockchain. Furthermore,
a hash tree is implemented to retain hash scores and sensory data from the IoT devices.
This feature offers the immutability characteristics of the proposed Ethereum blockchain,
which can secure sensory data in a distributed and decentralized manner in IoT cloud
systems. The following algorithm performs further analytical operations to boost the
security features.

4.4. Analytical Method for Resisting Threats

This implementation module is meant to complement prior algorithmic operations.
From the previous algorithm, it is noted that the construction of a block is carried out after
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the validation of the sensory data has been accomplished, followed by forwarding the
evidence over the complete network structure of the Ethereum blockchain. This part of the
implementation applies a simplified analytical approach to add a layer of data confidential-
ity apart from that obtained from prior Ethereum-based confidentiality algorithms. The
first task toward accomplishing this target is to map the essential parameters for enhancing
computational efficiency by transforming the categorical scores into a numerical structure.
This operation is followed by the truncation of redundant and irrelevant features, resulting
in the optimal selection of parameters. This module of implementation selects the optimal
quantity of attributes using a similarity measure, which can be empirically represented
as follows:

µ =
A4

A5·A6
(2)

The above empirical expression (2) shows the formulation of similarity measures µ,
which are used to determine the association of two arbitrary attributes, g1 and g2. The
dependent variables for Equation (2) are as follows.

A4 =
d

∑
i=1

ρ1·ρ2 (3)

A5 =

√√√√ d

∑
i=1

(ρ1)
2 (4)

A6 =

√√√√ d

∑
i=1

(ρ2)
2 (5)

Equations (3)–(5) show the dependable variables A4, A5, and A6 formulations, respec-
tively. Furthermore, the formulations of these variables are carried out considering entities
such as ρ1 and ρ2 representing (u1 − g1) and (u2 − g2), respectively. Simultaneously, the
arbitrary inputs g1 and g2 are formed by extracting the mean value of the data points (u1
and u2) concerning the number of individual data d. The primary contribution of this
similarity measure metric, µ, is to efficiently transform the attributes to generate novel
dimensional data without eliminating or affecting the core information present within the
sensory data. This module also generates a simplified statistical function for encoding fen
as follows:

fen =
(

βup(D), δ(D)
)

(6)

According to empirical expression (6), the computation of the statistical function for
encoding fen is dependent on two variables, βup and δ, which represent novel samples of
updated data within the evidence matrix and error-prone scores, respectively, considering
dataset D. The system evaluates βup(D) by considering the mean of the feature γ within
datasets D and data point u1. It should be noted that this function fen is used to obtain the
encoded feature from the dataset by transforming it, which acts as an additional layer of
security toward the essential features of the data, thereby resisting potential threats.

4.5. AI-Based Security Optimization

The proposed framework includes a novel AI model that modifies conventional neural
networks for faster inference, efficient training, and compact representation. For this
purpose, the framework uses a neural network consisting of all interconnected nodes
(neurons) organized in the form of layers to learn the patterns of the dataset. The first
novelty of this AI model is the incorporation of a unique optimization policy designed to
work well in dynamic and practical environments. The second novelty of this AI model is
incorporating a mechanism to speed the optimization process, resulting in faster training and
effective inference as an outcome. These two joint features of conventional neural networks
in the proposed AI model are designed to be fast, efficient, and well suited for real-world
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IoT applications, possibly with a focus on human interaction or social systems. It targets
excelling tasks that require quick adaptation to changing conditions or in domains where
speed is essential. The proposed AI model classifies classes corresponding to the normal
and adversary. The idea is to maximize the detection of abnormalities and reduce the
duration of training. The adversary’s detection and classification are based on the features
acquired from the previously implemented algorithm to evaluate the legitimacy score. The
AI model was designed by constructing three layers of neural networks: input, hidden,
and output.

Figure 2 shows the solution representation of the proposed AI model, where the
input layer is fed with m number of features γ obtained from dataset D. The process of
abnormality detection in the transaction process is carried out by allocating weight scores ϕ,
where the hidden layer further performs fine-tuning of the weight score. The hidden layer
also computes the bias function with a target to generate a score of the resultant weight
score ϕγ+2 while the resultant bias function can be represented as ϕγ+3. The framework
proceeds further toward the computation of an activation function empirically defined
as follows:

A f = ϕ1·A7·ϕ2 (7)
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Equation (7) represents the formulation of the adopted activation function, A f , using
three dependable variables ϕ1, A7, and ϕ2. The first and third variables ϕ1 and ϕ2 repre-
sent the weight score and bias function, respectively, whereas the second variable A7, is
computed as follows:
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A7 = A f 1

[
γ

∑
i=χ

A8 + A9

]
(8)

In Equation (8), the computation of the second variable A7 in the parent expression
(7) considers A f 1 a sigmoidal activation function. Variable A8 represents the product of
the features extracted from the dataset (Dγ) concerning neuron weight χ and primary
weight score ϕγ, i.e., A8 = χ. ϕγ. The second variable, A9 in Equation (8), represents the
bias scores. Based on the activation function A f in (7), the proposed AI model generates
outcome labels to assist in tagging the analyzed feature as normal or adversary. There is a
specific rationale behind adopting this specific activation function, viz., sigmoidal activation
function, which offers a faster prediction response in the range of 0 and 1. At the same time,
it can normalize the outcome of neurons. Furthermore, this AI algorithm maintains a higher
degree of predictive accuracy by introducing nonlinearity through a sigmoidal activation
function that allows the proposed AI model to approximate a complex relationship with
the traffic information in IoT. This indirectly also contributes to optimizing smart contracts
to predict the results of various conditions, thereby leveraging anomaly detection.

The next part of the proposed AI model is associated with implementing a unique
optimization policy in which a metaheuristic optimization approach is adopted to find the
optimal solution. The first step of this unique optimization policy is to perform initialization,
in which the system starts with a population of candidate solutions that are usually arbitrar-
ily generated. The population data are generated as σγ(x, y) where the σγ represents the
position of the population data y at a specific position of x, and the ranges of the values of
x and y are (1, γ) and (1, D), respectively. The next part of the implementation is associated
with evaluating the fitness function using a predefined objective function. This fitness function
aims to identify the robustness of the solution to security problems related to optimizing
an adversary’s detection and classification. The proposed framework outperforms the
estimation of the fitness function to explore the optimal result for determining abnormality
patterns caused by cyber threats. Hence, the proposed framework empirically formulates
the optimal solution as follows:

Ω = S−1[∆r] (9)

Equation (9) shows the computation process of the fitness function to explore the
optimal solution for determining any forms of abnormalities. The variable Ω represents
the optimal solution, S represents the complete sample, and ∆r represents the effective
result r obtained by differentiating the target resultant Tr and classifying the resultant Cr.
The prominent location of the sample was detected based on this fitness function, and the
location of the sample was subjected to an updating process.

It should be noted that such location information can be constantly updated in a
dynamic environment in IoT. This completes the selection process in which an individual
from the population is selected for further processing based on their fitness. This step
involves probabilistic selection mechanisms, in which solutions with higher fitness are more
likely to be chosen. Based on the higher score of the optimal fitness function, the framework
updates the operation of features mainly associated with anomalies. After meeting the
maximum number of simulation iterations, the system executes the termination condition.

A closer look at the proposed AI scheme shows that it has used a revised neural
network version. It is meant to eliminate complexities associated with iterative operation
with suboptimal performances reported in existing learning-based models in Section 2. Fur-
thermore, the model parameters are transferred to smaller, more efficient models (hidden
layers), reducing computational demands. Moreover, the core architecture (Figure 1) con-
sistently monitors the outcome of both the edge and cloud layers, which induces persistent
monitoring of both the AI and blockchain systems, where inefficiencies can be identified
and curtailed significantly. Hence, considerably less computational overhead is observed
in the proposed system when AI is integrated into the blockchain. The contribution of the
proposed AI model is that it effectively maintains a balance toward exploring novel regions
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associated with the search space and utilizing the optimal solutions for accomplishing an
optimal solution leading to the classification of the nodes. Furthermore, the proposed AI
model contributes to effective classification performance with reduced issues of overfit-
ting and minimal processing duration. The following section discusses the outcomes of
the study.

5. Results

This section presents the results of the study. As the proposed study introduces a
novel form of Ethereum blockchain design, it is necessary to develop an effective strategy
to analyze its outcome, as it is meant to support the maximum number of elements of
smart cities in the IoT, and its performance is not restricted to specific elements of smart
cities. For this purpose, the model is primarily analyzed for its confidentiality in the IoT
environment, where the requirements for strengthening the confidentiality of IoT appli-
cations are investigated. From the IoT application perspective, confidentiality concerns
are assessed via generated voluminous sensory data that may consist of proprietary in-
dustrial data, personal information, and location data. The assessment also investigated
potential threats associated with transaction linkability, data leakage, various attacks, and
blockchain analysis.

Furthermore, a test environment is designed to simulate IoT transactions on the pro-
posed Ethereum blockchain with confidentiality attributes. At the same time, a standard
performance metric was used to monitor the effectiveness of the study model. The per-
formances of the proposed Ethereum blockchain and AI model were validated and tested
using various performance metrics.

5.1. Assessment Environment

The proposed study was performed on a standard 64-bit Windows machine with a
core-i7 processor. The simulation parameters used to configure the proposed model are
presented in Table 1. The initialized IoT devices were set to 200 for the preliminary part
of the experimental analysis, which was later maximized to 500 to check the system’s
sustainability. The IoT devices involved in the assessment are allocated specific account
information, a public/private key, and a blockchain wallet that can be used to access
the user account and verify the transaction in the Python environment. The Ethereum
nodes were initialized using go-Ethereum [45] and configured over a virtual machine.
The framework also uses a public and private key pair to implement encryption in the
proposed framework, thereby ensuring the presence of a minimally single account owned
externally. The system generates 10-bit public addresses using public keys associated with
an externally constructed user account in the blockchain network. This means that the
public address can be utilized to deploy the user’s smart contract, followed by forwarding
transactions. A dedicated communication interface between the Ethereum blockchain and
the application interface was established using NodeJS (latest v. 22.x). The duration of
transactions is monitored using a decentralized smart contract known as Etherscan [46],
whereas the initial blockchain network is designed using the Ganache tool.

Table 1. Simulation parameters.

Parameter Values

Number of accounts 200
Number of transactions in 1 batch 20

Number of peers/devices 10
Type of genesis block override

Generated transaction rate 0.01 s
Frequencies of transaction 40,000

IoT devices 200
Mode of smart contract Independent execution
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The proposed framework was implemented and analyzed using the CIC-IoT dataset,
a benchmark real-time dataset encapsulating various forms of lethal cyber threats in the
IoT [47]. The dataset was designed considering 105 IoT devices, with 33 reported lethal
attacks categorized into seven classes. The captured traffic in its original form during
reported attacks was maintained in the form of .pcp files, while .csv files were used to
reposition the extracted features .pcp files using a machine-learning approach. Furthermore,
multiple tools were used to organize the dataset suitable for analysis, which used feature
extraction using DPKT and classification .pcp files were generated using TCPDump to
generate smaller files of multiple numbers. PySpark handles the data, whereas Mergecap
integrates all classified data .pcp files. The algorithms were extensively benchmarked after
setting up the Python environment to obtain the final outcome.

5.2. Result Accomplishment

The numerical results are presented in Tables 2–4, where multiple performance metrics
are used to assess the effectiveness of the proposed framework. The primary benchmarking
of the proposed model was performed by comparing the proposed study model with
existing AI models (Tables 2 and 3) and existing blockchain approaches (Table 4). The
outcome in Table 3 was obtained by averaging all individual outcomes of the standalone AI
models shown in the existing system. Secondary benchmarking of the proposed framework
was carried out by comparing the proposed study with some recent literature, such as
Aldyaflah et al. [21], Elisa et al. [22], Javed et al. [17], Khor et al. [23], Lee and Song [18],
Omar et al. [19], Qiu et al. [20], Ugochukwu et al. [24], Ullah et al. [25], Viswanadham and
Jayavel [26], Yousra et al. [27], and Aguero et al. [16]. The primary reason for considering
the literature mentioned above as existing systems in comparative analysis is that they
have innovative methods of blockchain design that have been reported to be much better
than conventional blockchain design in the literature.

Table 2. Numerical outcomes for AI approaches.

Approaches Accuracy (%) Algorithm Processing Time (s)

Proposed 98.4 0.389
Decision Tree (DT) 85.2 0.687

Support Vector Machine (SVM) 87.5 0.509
Random Forest (RF) 90.5 0.299

Logistic Regression (LR) 88.7 0.898
K-Means Clustering (KMC) 82.3 1.207

Reinforcement Learning (RL) 92.2 0.908
Artificial Neural Network (ANN) 91.5 2.871

Convolution Neural Network (CNN) 93.7 3.803
Recurrent Neural Network (RNN) 85.4 2.596
Long Short-Term Memory (LSTM) 90.1 1.977

Auto Encoder (AE) 92.8 2.902

Table 3. Detection accuracy for multiple adversaries.

Classes of Adversary Proposed Existing System

DDoS 98.5 90.4
Brute-Force 99.5 89.6

Spoofing 99.8 87.8
Recon 98.9 87.9

Host Discovery 97.3 92.1
Web-based 97.1 92.3

Mirai 98.1 92.4
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Table 4. Multi-metric performance outcome for blockchain approaches.

Blockchain
Approaches

Transaction
Throughput

Resource
Consumption

Confirmation
Time

Detection
Accuracy

Processing
Time

Proposed 4500 29.87 0.2665 98.65 0.6766
Aldyaflah et al [21] 2765 49.89 2.544 91.45 5.9978

Elisa et al [22] 1988 47.83 1.006 89.03 1.1886
Javed et al. [17] 2296 42.11 2.313 89.57 5.872
Khor et al. [23] 2011 47.29 1.926 87.06 2.6088

Lee and Song [18] 2981 62.56 3.216 90.02 6.446
Omar et al. [19] 1989 51.99 1.132 85.11 3.897
Qiu et al. [20] 1303 51.05 0.997 87.11 2.651

Ugochukwu et al. [24] 3101 62.12 1.093 91.37 2.196
Ullah et al. [25] 3655 54.13 3.887 91.76 4.127

Viswanadham and Jayavel [26] 2199 55.36 2.187 90.1 4.302
Yousra et al. [27] 3211 43.87 2.876 92.67 4.968
Aguero et al. [16] 3266 65.02 3.107 91.52 5.302

The numerical evaluation shows that the proposed framework of the Ethereum
blockchain uses a unique and novel AI model to perform better in terms of multiple
performance parameters. The outcome shows that the proposed study model offers opti-
mal confidentiality and cost-effective operation capable of resisting cyber threats without
affecting the primary operation in IoT and cloud environments. The discussion of the
results is as follows.

5.3. Result Discussion

The results are discussed with respect to the benchmarked outcome in the context
of the AI (Figures 3–5) and blockchain models (Figures 6–10). The analysis considers
the standard and most frequently adopted AI methods as conventional machine-learning
approaches (Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), Lo-
gistic Regression (LR), K-Means Clustering (KMC), and Reinforcement Learning (RL)) and
conventional deep learning approaches (Artificial Neural Network (ANN), Convolution
Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM), and Auto Encoder (AE)). The performance metrics considered were the predictive
accuracy, processing time, and detection accuracy.

Processes 2024, 12, 1825 20 of 29 
 

 

Viswanadha
m and Jayavel 

[26] 
2199 55.36 2.187 90.1 4.302 

Yousra et al. 
[27] 

3211 43.87 2.876 92.67 4.968 

Aguero et al. 
[16] 

3266 65.02 3.107 91.52 5.302 

The numerical evaluation shows that the proposed framework of the Ethereum 
blockchain uses a unique and novel AI model to perform better in terms of multiple 
performance parameters. The outcome shows that the proposed study model offers 
optimal confidentiality and cost-effective operation capable of resisting cyber threats 
without affecting the primary operation in IoT and cloud environments. The discussion 
of the results is as follows. 

5.3. Result Discussion 
The results are discussed with respect to the benchmarked outcome in the context of 

the AI (Figures 3–5) and blockchain models (Figures 6–10). The analysis considers the 
standard and most frequently adopted AI methods as conventional machine-learning 
approaches (Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), 
Logistic Regression (LR), K-Means Clustering (KMC), and Reinforcement Learning (RL)) 
and conventional deep learning approaches (Artificial Neural Network (ANN), 
Convolution Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Auto Encoder (AE)). The performance metrics considered 
were the predictive accuracy, processing time, and detection accuracy. 

 
Figure 3. Predictive accuracy for AI approaches. Figure 3. Predictive accuracy for AI approaches.



Processes 2024, 12, 1825 20 of 28Processes 2024, 12, 1825 21 of 29 
 

 

 
Figure 4. Processing time for AI approaches. 

 
Figure 5. Detection accuracy for AI approaches. 

The inference of the outcome accomplished is as follows: 
• Predictive Accuracy: Predictive accuracy is expressed as a percentile and is computed by 

dividing the number of correct predictions by the total number of predictions. The 
quantified outcome in Figure 3 shows that the proposed AI model offers approximately 
9.3% increased predictive accuracy compared with the mean value of all existing AI 
models. Lower predictive accuracy scores were observed for KMC (Acc = 82.3%), RNN 
(Acc = 85.4%), and DT (Acc = 85.2%). The primary reason for this is the unsuitability of 
these algorithms for capturing highly complex relationships associated with traffic data 
in a threat environment. However, approaches such as CNN (Acc = 93.7%) and AE (Acc 
= 92.8%) have better predictive accuracy after the proposed framework. However, the 
higher computational resource demands for CNN and AE reduce their applicability to 
yield fewer practical outcomes. The primary reason based on specific scenarios for the 
optimal predictive accuracy score (Acc = 98.4%) can be explained by two main reasons: 
(i) the proposed framework performs the analytical operation in both the edge and 
cloud layers that maintain a higher degree of indexed transactional information to yield 
better accuracy even before subjecting it to the AI model; (ii) unlike any existing AI 
models used for secured blockchain operation, the proposed framework implements a 
neural network integrated with a metaheuristic optimization method acting as 
multiple levels of faster-operating filtering process to narrow down the predictive 
outcome to a highly accurate one; 

• Processing Time: This performance metric is responsible for computing the overall 
algorithm processing time for the proposed and conventional AI methods under 

Figure 4. Processing time for AI approaches.

Processes 2024, 12, 1825 21 of 29 
 

 

 
Figure 4. Processing time for AI approaches. 

 
Figure 5. Detection accuracy for AI approaches. 

The inference of the outcome accomplished is as follows: 
• Predictive Accuracy: Predictive accuracy is expressed as a percentile and is computed by 

dividing the number of correct predictions by the total number of predictions. The 
quantified outcome in Figure 3 shows that the proposed AI model offers approximately 
9.3% increased predictive accuracy compared with the mean value of all existing AI 
models. Lower predictive accuracy scores were observed for KMC (Acc = 82.3%), RNN 
(Acc = 85.4%), and DT (Acc = 85.2%). The primary reason for this is the unsuitability of 
these algorithms for capturing highly complex relationships associated with traffic data 
in a threat environment. However, approaches such as CNN (Acc = 93.7%) and AE (Acc 
= 92.8%) have better predictive accuracy after the proposed framework. However, the 
higher computational resource demands for CNN and AE reduce their applicability to 
yield fewer practical outcomes. The primary reason based on specific scenarios for the 
optimal predictive accuracy score (Acc = 98.4%) can be explained by two main reasons: 
(i) the proposed framework performs the analytical operation in both the edge and 
cloud layers that maintain a higher degree of indexed transactional information to yield 
better accuracy even before subjecting it to the AI model; (ii) unlike any existing AI 
models used for secured blockchain operation, the proposed framework implements a 
neural network integrated with a metaheuristic optimization method acting as 
multiple levels of faster-operating filtering process to narrow down the predictive 
outcome to a highly accurate one; 

• Processing Time: This performance metric is responsible for computing the overall 
algorithm processing time for the proposed and conventional AI methods under 

Figure 5. Detection accuracy for AI approaches.

Processes 2024, 12, 1825 23 of 29 
 

 

allow the system to operate faster to detect any form of abnormalities and 
inconsistencies but also offer reliable closure toward its inference. 
The next part of the assessment is associated with benchmarking the proposed model 

based on the recent literature on various evolving blockchain frameworks in IoT. The 
evaluation was carried out using multiple performance metrics: (i) transaction throughput 
(Figure 6), which measures the number of transactions processed per second, as high 
throughput is essential for IoT applications with numerous devices generating 
transactions; (ii) resource consumption (Figure 7): this is evaluated as the computational 
resources (CPU, memory) and storage space required to execute privacy-preserving 
transactions on the Ethereum blockchain because high resource consumption can limit 
scalability and increase costs; iii) confirmation time (Figure 8): this measures the time 
taken for a transaction to be included in a block and confirmed by the network, as short 
confirmation times are essential for IoT applications that require timely and reliable 
transaction processing—the detection accuracy (Figure 9) and processing time (Figure 10). 
The graphical outcomes are as follows. 

 
Figure 6. Transaction throughput for blockchain approaches [16–27]. 

 
Figure 7. Resource consumption for blockchain approaches [16–27]. 

Figure 6. Transaction throughput for blockchain approaches [16–27].



Processes 2024, 12, 1825 21 of 28

Processes 2024, 12, 1825 23 of 29 
 

 

allow the system to operate faster to detect any form of abnormalities and 
inconsistencies but also offer reliable closure toward its inference. 
The next part of the assessment is associated with benchmarking the proposed model 

based on the recent literature on various evolving blockchain frameworks in IoT. The 
evaluation was carried out using multiple performance metrics: (i) transaction throughput 
(Figure 6), which measures the number of transactions processed per second, as high 
throughput is essential for IoT applications with numerous devices generating 
transactions; (ii) resource consumption (Figure 7): this is evaluated as the computational 
resources (CPU, memory) and storage space required to execute privacy-preserving 
transactions on the Ethereum blockchain because high resource consumption can limit 
scalability and increase costs; iii) confirmation time (Figure 8): this measures the time 
taken for a transaction to be included in a block and confirmed by the network, as short 
confirmation times are essential for IoT applications that require timely and reliable 
transaction processing—the detection accuracy (Figure 9) and processing time (Figure 10). 
The graphical outcomes are as follows. 

 
Figure 6. Transaction throughput for blockchain approaches [16–27]. 

 
Figure 7. Resource consumption for blockchain approaches [16–27]. Figure 7. Resource consumption for blockchain approaches [16–27].

Processes 2024, 12, 1825 24 of 29 
 

 

 
Figure 8. Confirmation time for blockchain approaches [16–27]. 

 
Figure 9. Detection accuracy for blockchain approaches [16–27]. 

 
Figure 10. Processing time for blockchain approaches [16–27]. 

Figure 8. Confirmation time for blockchain approaches [16–27].

Processes 2024, 12, 1825 24 of 29 
 

 

 
Figure 8. Confirmation time for blockchain approaches [16–27]. 

 
Figure 9. Detection accuracy for blockchain approaches [16–27]. 

 
Figure 10. Processing time for blockchain approaches [16–27]. 

Figure 9. Detection accuracy for blockchain approaches [16–27].



Processes 2024, 12, 1825 22 of 28

Processes 2024, 12, 1825 24 of 29 
 

 

 
Figure 8. Confirmation time for blockchain approaches [16–27]. 

 
Figure 9. Detection accuracy for blockchain approaches [16–27]. 

 
Figure 10. Processing time for blockchain approaches [16–27]. Figure 10. Processing time for blockchain approaches [16–27].

The inference of the outcome accomplished is as follows:

• Predictive Accuracy: Predictive accuracy is expressed as a percentile and is computed
by dividing the number of correct predictions by the total number of predictions. The
quantified outcome in Figure 3 shows that the proposed AI model offers approximately
9.3% increased predictive accuracy compared with the mean value of all existing AI
models. Lower predictive accuracy scores were observed for KMC (Acc = 82.3%), RNN
(Acc = 85.4%), and DT (Acc = 85.2%). The primary reason for this is the unsuitability
of these algorithms for capturing highly complex relationships associated with traffic
data in a threat environment. However, approaches such as CNN (Acc = 93.7%) and AE
(Acc = 92.8%) have better predictive accuracy after the proposed framework. However,
the higher computational resource demands for CNN and AE reduce their applicability
to yield fewer practical outcomes. The primary reason based on specific scenarios for
the optimal predictive accuracy score (Acc = 98.4%) can be explained by two main
reasons: (i) the proposed framework performs the analytical operation in both the edge
and cloud layers that maintain a higher degree of indexed transactional information
to yield better accuracy even before subjecting it to the AI model; (ii) unlike any
existing AI models used for secured blockchain operation, the proposed framework
implements a neural network integrated with a metaheuristic optimization method
acting as multiple levels of faster-operating filtering process to narrow down the
predictive outcome to a highly accurate one;

• Processing Time: This performance metric is responsible for computing the overall
algorithm processing time for the proposed and conventional AI methods under con-
sideration. Figure 4 shows that the proposed framework reduces the algorithmic
processing time by approximately 13% in contrast to the mean values of existing
AI models. The justification behind this outcome is as follows. Unlike the existing
approaches discussed in Section 2, the proposed framework does not instantly convert
the incoming data to the blockchain or directly apply its AI model. This is a particular
scenario when the proposed scheme reduces the processing time while the existing
system cannot. The proposed framework initially constructs a structure for repositing
data over the Ethereum blockchain, followed by building blocks and evaluating the
miners. Furthermore, it introduces an analytical method to thwart all possible dynamic
threats and then implements the AI model. Hence, the input data to the AI model
are characterized by higher-quality data and require a less iterative method for its AI
model to generate its predictive outcome. However, this is not the case with conven-
tional AI models, which otherwise apply a series of standalone iterative operations,
resulting in a higher processing time. It should also be noted that deep learning-based
approaches, such as AE (proctime = 2.9 s), RNN (proctime = 2.5 s), CNN (proctime = 3.8 s),
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and ANN (proctime = 2.8 s), consume more processing time than conventional machine-
learning approaches. It can also be noted that RF (proctime = 0.299 s) offers reduced
processing time in contrast to the proposed framework (proctime = 0.389 s); however, it
lacks interpretability, and the processing time is expected to increase when exposed
to real-time streamed data. It should be noted that the proposed scheme empha-
sizes processing time (PT) during its final evaluation in contrast to the conventionally
adopted metric of Computational Time Complexity (CTC) owing to the following
reasons: (i) both PT and CTC are typically used for assessing algorithmic performance;
however, CTC provides only a theoretical efficiency measure while PT provides empir-
ical evidence of applying algorithms to practical world scenarios based on hardware;
(ii) the CTC parameter emphasizes the asymptomatic behavior of an algorithm by
offering high-level performance visualization; however, it abstracts away the inclusion
of any implementation specifications while PT offers a concrete measure of the runtime
of an algorithm considering extensive attributes, for example, environmental factors,
software, hardware, etc.;

• Detection Accuracy: This performance metric was computed by dividing the number of
attacks positively detected by the total number of attack test instances introduced. The
outcome in Figure 5 shows that the proposed framework offers an improved detection
accuracy of approximately 8.1% %in contrast to the mean values of conventional AI
models. The proposed AI models offer higher threat detection accuracy, specifically for
DDoS attacks (Detacc = 98.5%), Brute-Force attacks (Detacc = 99.5%), spoofing attacks
(Detacc = 99.8%), and Recon attacks, mainly concerning vulnerability scan and port
scans (Detacc = 98.9%). The proposed framework also showed better threat detection
accuracy for Mirai attacks (Detacc = 98.1%). At the same time, there is a less significant
difference in detection accuracy performance for identifying host discovery attacks
(Detacc = 97.3%) and web-based attacks (Detacc = 97.1%). On the other hand, the
existing AI model shows effective threat detection for Mirai attacks (Detacc = 92.4%),
Web-based attacks (Detacc = 92.3%), and host discovery attacks (Detacc = 92.1%). Other
attacks, such as DDoS, brute-force attacks, spoofing attacks, and Recon attacks, must be
more optimally detected by the existing system. It was noted that most of the existing
AI models must undergo extensive operation, which is costly and time-consuming,
with overfitting issues surfacing. The exact scenario of better performance of the
proposed system for higher detection accuracy is noted because of the decentralized
blockchain operation performed on multiple edge devices, whose interconnected
network is further indexed and hosted in the cloud layer in its distributed storage units.
Furthermore, the analytical method implemented in the proposed framework is meant
to eliminate unnecessary data and features that reduce computational processing time
and offer ample scope for both neural network and metaheuristic optimization. These
integrated operations not only allow the system to operate faster to detect any form of
abnormalities and inconsistencies but also offer reliable closure toward its inference.

The next part of the assessment is associated with benchmarking the proposed model
based on the recent literature on various evolving blockchain frameworks in IoT. The
evaluation was carried out using multiple performance metrics: (i) transaction throughput
(Figure 6), which measures the number of transactions processed per second, as high
throughput is essential for IoT applications with numerous devices generating transactions;
(ii) resource consumption (Figure 7): this is evaluated as the computational resources (CPU,
memory) and storage space required to execute privacy-preserving transactions on the
Ethereum blockchain because high resource consumption can limit scalability and increase
costs; iii) confirmation time (Figure 8): this measures the time taken for a transaction to be
included in a block and confirmed by the network, as short confirmation times are essential
for IoT applications that require timely and reliable transaction processing—the detection
accuracy (Figure 9) and processing time (Figure 10). The graphical outcomes are as follows.

The inference of outcomes (Figures 6–10) are as follows:
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• Transaction Throughput: Higher transaction throughput is always anticipated for any
blockchain operation concerning large-scale real-world IoT applications. A closer
look at Figure 6 shows that the approaches of Elisa et al. [22], Omar et al. [19], and
Qiu et al. [20] recorded the lowest transaction throughputs. Elisa et al. [22] intro-
duced an authentication mechanism that considers multiple contents of blockchain
addresses, such as user identity, transactions, and record numbers. At the same time,
these values continue to escalate, demanding more computational effort toward iter-
atively reforming authentication. Hence, the throughput declines. Omar et al. [19]
offered a segregated structure for system applications with intrinsic data, while the
blockchain was kept as an external structure. Hence, fetching services and verifying
many users are witnessed with a reduced throughput. Qiu et al. [20] introduced a
private blockchain with sophisticated query request processing using dynamic loca-
tion variables. The anonymizer module performs its task effectively to obfuscate the
query for the server. However, when exposed to a dynamic threat environment, this
approach demands a higher dependency on the blockchain network to undergo a
re-analysis process concerning its query. Hence, the throughput drops significantly,
even though it is one of the best static data/transaction approaches. However, the
approaches of Ullah et al. [25], Yousra et al. [27], and Aguero et al. [16] have been
shown to offer better throughput after the proposed framework. However, these
frameworks are specifically designed for particular applications that need to be more
flexible in supporting generalized IoT applications with a more significant stream of
transactions. Two factors of the explicit scenario can justify the optimal throughput
results for the proposed model: (i) the mechanism of evaluation and assessment of
the legitimacy score offers more accountable nodes to participate in the transaction
process, while the new Ethereum design generates a final evidence matrix that reduces
the computational effort required by a system hosted in edge devices, and (ii) a novel
neural network-based approach with the inclusion of dynamic weight and bias tuning
with selection of optimal conditions leads to more accountable records needed to sup-
port a large number of transactions. The quantified outcome shows that the proposed
framework offers an approximately 20% increase in throughput compared with the
mean scores of the blockchain-based approaches;

• Resource Consumption: Almost every blockchain operation includes extensive computa-
tional resources, and consistency increases with more users joining the network. A
closer look at Figure 7 shows that the proposed framework offers significantly lower
resource consumption. In contrast, the approaches of Lee and Song [18], Ugochukwu
et al. [24], and Aguero et al. [16] offer significantly higher resource consumption. The
approach proposed by Lee and Song [18] was used to deploy ring signatures to de-
velop a blockchain structure. Although this adoption offers better privacy preservation
by hiding the sender’s and receiver’s addresses, its smart contract method extensively
deploys symmetric key encryption, which increases the dependencies of secret key
storage within the nodes. This architecture was initially designed for the healthcare
sector in IoT; however, when exposed to a much larger-scale IoT environment with
multiple constructed application domains, the resource dependencies significantly
increase. The study model implemented by Ugochukwu et al. [24] suffered from
similar challenges associated with smart contract operations between IoT devices and
blockchain networks. The framework presented by Aguero et al. [16] involves many
software components to manage node identification, including the cyclic process of
managing and retaining identifiers. This cyclic task offers a significant hurdle to the
intruder; however, it also impedes an average user, preventing them from undergo-
ing similar authentication iteratively. Although this study model provides genuine
resistance to multiple levels of security threats, there is a trade-off between data in-
tegrity and data non-repudiation when this model is exposed to a dynamic form of
cyber threats in a large environment. The prime event when the proposed system
is found to excel at optimal performance in contrast to the existing scheme can be
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justified by three factors concerning the reduced score of resource consumption for
the proposed framework: (i) the proposed framework progressively increases the data
quality in every incremental step of operation, leading to less computational effort
toward the minimized size of data; (ii) the encoding mechanism further compliments
this evaluation process during verification with much less computational effort and
data dependencies; and (iii) the method of generating evidence in the consensus ap-
proach and hash-based integrity checks is carried out using extracted features and not
raw data, leading to increasingly lower resource dependencies. The quantified out-
come shows that the proposed framework offers approximately 22% reduced resource
consumption compared to existing AI models;

• Confirmation Time: This performance parameter represents the system’s response time
toward validating transactions, which is essential for any blockchain-deployed IoT
application that demands faster responsiveness. This responsiveness depends on
the structure of the blockchain and its integration into the system. Figure 8 shows
the existing approaches to encounter slightly longer confirmation times. Although
this higher confirmation time score is no more than 4 s, they can go extensively with
many transactions on streamed IoT applications. Ullah et al. [25] reported a higher
confirmation time of 3.887 s when analyzed in a standard test environment in the
proposed analysis. The Merkle root tree has been used to manage use-case data,
increasing the computational overhead due to data block hashing and integration.
This increased the confirmation time. The blockchain model presented by Aguero
et al. [16] was also found to have a higher confirmation time of 3.107 s, which is mainly
due to the involvement of an external transaction manager in validating the account.
This mechanism includes extensive validation and unlocking of information using
sophisticated passphrase management. Although this framework offers better data
integrity and a higher degree of bidirectional secrecy in cryptography, its extensive
operation requires more resources and validation time. The model presented by
Aldyaflah et al. [21] also exhibited a slightly longer confirmation time of 2.544 s. This
model introduced an access control system using the roles of users for better data
confidentiality, whereas smart contracts were used as secured data stores. The data
structure used involves extensive mapping of tag indexes with the database, offering
better data secrecy; however, fetching and query management for concurrent clients on
a large scale is challenging, apart from including a higher confirmation time. However,
the reduced confirmation time for the proposed framework was mainly attributed to
the inclusion of similarity measures for the optimal selection of features. Furthermore,
the encoding process performed on features offers extensive resistance to dynamic
cyber threats and a lightweight transformation process. This phenomenon within the
proposed scheme is another specific scenario that reduces the dependency on iterative
validation, even on a large scale, and for concurrent users, reducing confirmation time.
Unlike existing blockchain models, the quantified outcome shows that the proposed
model offers an approximately 19% reduced confirmation time.

Apart from the above results, it was found that the proposed framework offers 89% in-
creased detection accuracy (Figure 9) and 34% reduced processing time in contrast to
existing blockchain methods (Figure 10). Hence, from the perspective of the accomplished
outcome, the proposed framework offers cost-effective data confidentiality when encounter-
ing dynamic cyber threats for the maximal elements of smart cities in an IoT environment.
In addition, computational cost-effectiveness has been proven to support the newly intro-
duced security features.

6. Conclusions

In conclusion, our innovative three-layered mechanism integrating a decentralized
Ethereum blockchain with AI models significantly improves data confidentiality, partic-
ularly in IoT smart city applications. By distributing blockchain operations across edge
devices and cloud environments, our framework enables multidimensional secure data
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management within an IoT cloud ecosystem. By leveraging a unique legitimacy scoring
system, our approach secures data stored within edge and cloud systems, ensuring trans-
action integrity and confidentiality. Upon identifying secure transaction conditions, the
framework collects sensor data and stores them in a tamper-resistant format to mitigate
cyber threats effectively. Our implementation includes a novel consensus method that
significantly reduces the computational overhead while maintaining the integrity of the
transaction hashes. By distributing the blockchain network with digests generated through
algorithmic processes, we enhance the security of the original sensory data generated by IoT
smart cities, thereby minimizing intrusion risks. The primary security stage verifies digests
on distributed hashes generated across edge nodes, followed by a secondary security stage,
where the AI model appends blocks to the proposed blockchain network after data verifica-
tion. Utilizing a confidentiality method, we transformed raw sensory data into a distinct
form to prevent data disclosure to potential attackers. Additionally, an analytical model en-
codes features to resist data disclosure, whereas a neural network-based approach predicts
abnormalities in the IoT cloud environment. Our framework demonstrated approximately
9.3% increased predictive accuracy, 13% reduced processing time, and 8.1% increased detec-
tion accuracy compared to conventional AI models. Furthermore, it exhibits approximately
20% increased transaction throughput, 22% reduced resource consumption, 19% reduced
confirmation time, 89% increased detection accuracy, and 34% reduced processing time
compared with conventional blockchain-based approaches. Future work will explore scala-
bility, enhance consensus methods, optimize resource consumption, integrate additional
AI techniques, and conduct real-world deployments to advance further and validate our
proposed solution in diverse smart city environments.
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