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Abstract: As the low-carbon economy continues to advance, New Energy Vehicles (NEVs) have risen
to prominence in the automotive industry. The design and utilization of lithium-ion batteries (LIBs),
which are core component of NEVs, are directly related to the safety and range performance of electric
vehicles. The requirements for a refined design of lithium-ion battery electrode structures and the
intelligent adjustment of charging modes have attracted extensive research from both academia and
industry. LIB models can be divided into mechanism-based models and data-driven models; however,
the distinctions and connections between these two kinds of models have not been systematically
reviewed as yet. Therefore, this work provides an overview and perspectives on LIB modeling from
both mechanism-based and data-driven perspectives. Meanwhile, the potential fusion modeling
frameworks including mechanism information and a data-driven method are also summarized.
An introduction to LIB modeling technologies is presented, along with the current challenges and
opportunities. From the mechanism-based perspective of LIB structure design, we further explore
how electrode morphology and aging-related side reactions impact battery performance. Furthermore,
within the realm of battery operation, the utilization of data-driven models that leverage machine
learning techniques to estimate battery health status is investigated. The bottlenecks for the design,
state estimation, and operational optimization of LIBs and potential prospects for mechanism-data
hybrid modeling are highlighted at the end. This work is expected to assist researchers and engineers
in uncovering the potential value of mechanism information and operation data, thereby facilitating
the intelligent transformation of the lithium-ion battery industry towards energy conservation and
efficiency enhancement.

Keywords: lithium-ion batteries; mechanism modeling; data-driven modeling; battery aging mechanism;
structure–activity relationship; state of health estimation

1. Introduction

Lithium-ion batteries (LIBs) are environment-friendly energy storage tools that exhibit
numerous advantages. Their remarkable energy density, coupled with extensive recycla-
bility and a minimal self-discharge rate, positions them as highly promising candidates
for wide applications in the field of energy storage [1,2]. Currently, the application of LIBs
is experiencing a crucial stage of rapid expansion across diverse scenarios such as electric
vehicles, portable electronic devices, and energy storage systems [3,4]. They serve as a key
technology in energy transition, thereby facilitating the optimization and upgrading of the
energy structure [5]. At the current stage, the development and application of LIBs still face
obstacles, notably the further enhancement of charging speed and the significant decline in
battery capacity after multiple charge–discharge cycles [6]. These limitations have ignited
widespread research interest among both academia and industry [7–10].
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At the stage of battery design, it is imperative to conduct a comprehensive exploration
of the internal micro-operation mechanism within the battery, which could underly the
influence of internal and external factors on battery performance, ultimately facilitating the
design of optimal electrode structures that exhibit significantly enhanced overall perfor-
mance. Regarding the operational level of batteries, it is necessary to accurately estimate
the operating status, State of Health (SOH), and the remaining capacity of the battery
throughout the charge–discharge cycle. This information is essential not only for ensuring
the safety of the battery system but also for guiding the development of optimized charging
and discharging strategies that maximize battery performance and lifespan [11]. Generally,
mechanism models that rely on mathematical equations offer invaluable assistance to
researchers in exploring the structure–activity relationship within batteries, thereby reduc-
ing experimental costs and enhancing research efficiency, while data-driven models that
leverage data collected during the battery cycling process can easily and efficiently predict
changes in both the State of Charge and health of the battery to improve the intelligence
level of the battery management system (BMS) [12–15]. Existing review articles mostly
tend to concentrate either exclusively on data-driven modeling approaches or solely on
mechanism-based modeling frameworks. To set our work apart from the existing literature,
the existing battery models from the perspectives of a data-driven and intrinsic mechanism
are both reviewed in this paper; on this basis, the exploration of data–mechanism hybrid
modeling is also summarized, considered as a potential research direction to overcome the
limitations in single data-driven models and single mechanism models.

For mechanism models, various complex electrochemical and physical processes occur
inside LIBs, e.g., the transportation of ions through the electrolyte, their insertion and
extraction at the electrode surfaces, and their diffusion within the electrode materials,
etc. Additionally, the performance of the LIBs is also influenced by multiple factors, such
as the choice of electrode materials and electrolyte types, the manufacturing processes
adopted to prepare the electrodes, and the operating conditions during repeated cycling.
Studying the influence of various factors on different processes in batteries to improve their
performance has always been an important issue of concern [16]. However, LIBs exhibit
spatial multi-scale characteristics ranging from electrode particles to the overall battery,
as well as temporal cross-scale characteristics spanning microscopic ion movements to
thousands of cycles of battery aging in practical applications. This complexity has led to a
fragmentation of research concerns, and simultaneously poses challenges in correlating
research findings at smaller scales with practical applications at higher scales. On the other
hand, the physical and chemical changes occurring inside the battery during its operation
can be reflected in the process data collected by the sensors, including variables such as
current, voltage, internal resistance, impedance, and maximum available capacity, which in
turn can indirectly indicate the SOH of LIBs. With sufficient historical data, data-driven
models can feasibly fit the changes in the internal and external characteristic parameters
of the battery over time, enabling the precise acquisition of the real-time health status of
LIBs. In particular, the development of machine learning (ML) technology has led to the
development and application of numerous advanced artificial intelligence (AI) algorithms
in LIB modeling. These algorithms have achieved remarkable results in terms of accuracy
while simultaneously demonstrating superior computational efficiency, which is difficult
to match by a mechanistic model [17]. Despite their numerous advantages, data-driven
models predominantly operate as black boxes, whose generalization capabilities are limited
by the quality and comprehensiveness of historical data. Furthermore, the features extracted
from these models often lack interpretability, which hinders their practical application in
performance prediction and optimization for batteries over long usage cycles [18].

Overall, the primary objective of this paper is to comprehensively review existing
mechanistic models and data-driven models, with a particular emphasis on the application
of ML in the data-driven modeling for LIBs. The strengths, limitations, and scopes of
applicability of the different methods are discussed, offering researchers valuable insights
for model selection in their studies. Meanwhile, the opportunities and challenges faced
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by the development of LIB models are summarized, through which future advancements
in the field of LIB modeling are expected to be clearly outlined. Through this study, it
is expected to systematically sort through the advancement of the modeling technology
of LIBs to reveal potential research directions and clarify the differences and connections
between the data-driven models and mechanism models, so as to provide a reference for
researchers in model selection.

The remainder of this paper is organized as follows: A comprehensive review of
mechanism models for LIBs is presented in Section 2. In Section 3, he data-driven LIB
modeling methods are summarized, and a generic data-driven framework is introduced.
Challenges and future research prospects for LIB modeling are discussed in Section 4. Then,
this paper is concluded in Section 5.

2. A Comprehensive Review of Mechanism Models for LIBs

Mechanism models typically rely on a preset battery physical model (such as equiv-
alent circuit models [19,20], electrochemical models [21], thermodynamic models [22],
and diffusion models [23], etc.) to obtain characteristic parameters that can represent
the physical and chemical changes occurring inside the battery, by which the impacts of
material properties and electrode structure on battery performance can be further analyzed,
making them an effective tool to assist in the design of electrode structures. This section
presents an overview of several prevalent mechanistic models employed for LIB modeling.
The incorporation of electrode morphology and battery aging processes in the long-cycle
modeling of LIBs and their impact on the battery performance considered in these models
are investigated.

2.1. Mechanism Models for LIBs
2.1.1. Equivalent Circuit Model

The equivalent circuit model serves as a crucial tool in circuit analysis and design. By
constructing circuits with a range of electronic components such as resistors, capacitors,
and power sources, it provides a means to describe the dynamic characteristics of batteries.
However, it does not take into account the physicochemical processes occurring within the
battery [24]. Table 1 presents five common equivalent circuit models: the Rint model [25],
the Thevenin model [26], the second-order RC model [27,28], the PNGV model [29,30], and
the GNL model [31].

Table 1. A brief overview of common equivalent circuit models.

Types Schematic State Equation

The Rint model UL(t) = UOCV(t)− iL(t)R0

The Thevenin model UL(t) = UOCV(t)− Up(t)− iL(t)R0

The second-order RC model UL(t) =
UOCV(t)− Up(t)− Up2(t)− iL(t)R0

The PNGV model UL(t) =
UOCV(t)− U0(t)− Up(t)− iL(t)R0

The GNL model UL(t) = UOCV(t)− U0(t)− Up(t)−
Up2(t)− iL(t)R0
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In general, the more complex the structure of the equivalent circuit model, the higher
the estimation accuracy of the battery’s electrochemical information, accompanied by a
greater computational load. Therefore, when selecting a model in practice, it is necessary
to choose an appropriate equivalent circuit model based on the battery type and research
objectives. Meanwhile, the resistance and capacitance in the equivalent circuit model are
time-varying because of the impact of the charging rate, temperature, etc. Parameter identi-
fication is necessary in the equivalent circuit model to adapt to practical operations [32].
Although the equivalent circuit model is more convenient to calculate than the traditional
electrochemical model, it does not consider the physical and chemical reactions inside the
battery, making it insufficient for analyzing various influencing factors within the battery.

2.1.2. Pseudo-Two-Dimensional (P2D) Model

The electrochemical model delves deeply into the microscopic reaction characteristics
of batteries, including electrochemical reactions such as liquid-phase diffusion, solid-phase
diffusion, and migration. The initial electrochemical model was based on porous electrode
and concentrated solution theories, which utilized a series of Partial Differential Equations
(PDEs) and algebraic equations related to battery ion concentration and electric potential to
describe the operating state of batteries [33,34]. Currently, most electrochemical models of
LIBs are developed from the classical P2D model, which relies on porous electrode theory
and the Butler-Volmer (BV) interfacial reaction equation to calculate physicochemical
processes across three scales: particle, electrode, and battery [35–37]. In 1975, Newman and
Tiedemann first introduced the porous electrode theory [38], which divides the interior of a
battery into two regions: solid phase and liquid phase. The solid phase consists of solid
particles, while the liquid phase comprises the electrolyte within the pores. Furthermore,
they subdivided the charging and discharging processes of lithium-ion batteries into
four crucial steps: solid-phase diffusion, liquid-phase diffusion, electromigration, and
electrochemical reactions.

Upon the robust foundation of the porous electrode theory, Doyle et al. further
constructed the P2D battery model, which is shown in Figure 1 [39]. The characteristic of
this P2D model lies in its simplification of the lithium-ion diffusion process within the solid-
phase particles. Specifically, the process is simplified by considering only the diffusion
along the radial direction (R) of spherical particles, thereby achieving dimensionality
reduction in the model. Meanwhile, owing to the minute size of the spherical particles in
comparison to the liquid phase, the model assumes that the solid-phase concentration at
each point in the liquid phase is determined by the diffusion equation along the R direction,
and the electrode particles are presumed to be of uniform size and evenly distributed. On
the other hand, the lithium ions in the liquid phase undergo diffusion and electromigration
along the x direction. Due to the continuity assumption, each point along the x direction
possesses a corresponding solid-phase condition, implying the continuous presence of both
solid and liquid phases along the x axis. The material exchange between the solid and
liquid phases at each point is computationally determined by the BV equation.

The mathematical equations included in the P2D model are comprised of six parts [39]:

(1) The concentration distribution equation of lithium ions in the solid phase (along the r
direction).

∂cs

∂t
=

Ds

r2
∂

∂r

(
r2 ∂cs

∂r

)
(1)

where cs denotes the solid-phase lithium-ion concentration, Ds represents the solid-phase
diffusion coefficient, r is the distance from the center of a spherical particle, and t stands
for time. During the charge and discharge of the battery, lithium ions at the positive and
negative electrodes gradually diffuse out of the crystal lattice of the electrode material.
Lithium ions mainly move through diffusion in the solid-phase particles inside the battery.
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(2) The concentration distribution equation of lithium ions in the liquid phase (along the
x direction).

εe
∂ce

∂t
= De

∂2ce

∂x2 +
1 − t0

+

F
JLi (2)

where ce denotes the concentration of the liquid phase, De represents the diffusion coefficient
of the liquid phase, t0

+ is the transference number, JLi stands for the solid–liquid interfacial
flux of lithium ions, and F is the Faraday constant. During the charging and discharging
process of a battery, lithium ions diffuse in the electrolyte due to concentration gradients
and undergo electromigration under the influence of an electric field, enabling continuous
transport between the anode and cathode. Consequently, the temporal distribution of
lithium-ion concentration within the electrolyte can be described as Equation (2).

(3) The electric potential distribution in the solid phase.

σ
∂2ϕs

∂x2 = JLi (3)

where ϕs denotes the electric potential in the solid phase and σ represents the electrical
conductivity in the solid phase. The variation in electric potential distribution within
solid particles can be represented using Ohm’s law for porous electrodes, as shown in
Equation (3).

(4) The electric potential distribution in the liquid phase

κe f f ∂2ϕe

∂x2 +
κ

d f f
d

ce,0

∂2ce

∂x2 + JLi = 0 (4)

κ
e f f
d =

2RTκe f f

F

(
t0
+ − 1

)(
1 +

dln f
dlnce

)
(5)

The electric potential distribution in the liquid phase is described using a modified
Ohm’s law for porous electrodes, as shown in Equations (4) and (5), where ϕe denotes the
liquid-phase electric potential, κeff represents the effective liquid-phase conductivity, κd

eff is
the effective diffusion conductivity, and f stands for the ionic activity coefficient.

(5) The BV equation.

JLi = kce
0.5

(
cs,max − cs,sw f

)0.5
cs,sw f

0.5
(

exp
(

αFη

RT

)
− exp

(
−αFη

RT

))
(6)

η = ϕs − ϕe − E0 (7)

where cs,max denotes the maximum particle concentration, cs,surf represents the particle
surface concentration, α is the electrode transfer coefficient, ηr stands for the reaction
overpotential, and E0 is the equilibrium potential related to the properties of the electrode
and particles. The BV equation can be employed to describe the relationship between the
overpotential at the surface of a positive solid spherical particle and the flux of lithium ions
through the surface of the particle.

(6) The terminal voltage of the battery.

V(t) = ϕs(L, t)− ϕs(0, t) (8)

The difference between the solid-phase potential at the rightmost side of the battery
and the solid-phase potential at the leftmost side represents the terminal voltage of the
battery. The terminal voltage is a crucial variable that indicates the load conditions of the
battery and is frequently used for validation between the P2D model and experimental data.
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Figure 1. The schematic diagram of the P2D model for LIBs.

Moreover, the boundary conditions of the model vary according to different charging
and discharging conditions. For instance, during constant current charging, the partial
derivative of the potential at the cathode current collector in the x direction is set to
the specified current value. In contrast, during constant voltage charging, the potential
difference between the two boundaries is maintained as constant. Detailed boundary
conditions can be found in the reference of Mu et al. [40].

Depending on diverse research objectives, the P2D model can be further simplified
or complicated accordingly. Its development trends can be mainly categorized into three
directions. The first one is to progress towards a microscopic scale, enhancing the char-
acterization of the mass transfer process within solid particles to investigate how particle
morphology influences battery performance. Another direction is to integrate it with multi-
physics fields to involve the impact of environmental variables such as temperature. The
last one is to simplify the model to accelerate its solution process, to meet the demands of
the online management of battery systems and optimal battery design.

For the first direction, it is difficult to study the impact of irregular particle shapes and
an uneven particle distribution on battery performance using the P2D model because it
assumes that spherical particles are uniformly dispersed. However, it has been verified
through experiments that the non-uniformity of particles is a potential factor in improving
the battery performance mentioned above. To overcome this limitation, Jiang et al. estab-
lished a realistic two-dimensional model of LIBs, in which every part of the P2D model was
extended into two dimensions and a quadruple-structure generation algorithm was utilized
to create solid-phase particles with irregular shapes and discontinuous distributions [41].
This approach was used to study the relationship between electrode microstructure and
battery performance, and it reached the conclusion that large negative electrode particles
with low porosity and small positive electrode particles with high porosity can effectively
enhance battery performance. Inspired by this work, Kespe and Nirschl further established
a three-dimensional model based on the P2D model theory, and approximated the mor-
phology and distribution of electrode particles with spherical particles of different sizes to
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make the model close to reality [42]. It was concluded through simulation that arranging
small particles near the separator can help delay the degradation process of the electrolyte
in high-power applications. Furthermore, Lu et al. considered complex physicochemical
processes across multiple length scales in their three-dimensional battery model, enabling
the collaborative study of the influence of crystal orientation at the single-particle level and
particle distribution at the electrode level [43]. However, the above simulation methods are
all based on PDEs, which require a large number of iterative solutions when faced with
irregular solid–liquid boundary conditions, leading to slow computation speeds and high
computational costs, making them impractical for fine-scale simulation and emulation.

For the second aspect, the interaction of multiple physical fields is ever-present in
complex electrochemical systems like LIBs. Beyond the fundamental concentration and
electric fields, the impact of the temperature field cannot be ignored. An excessively
high temperature could trigger battery side reactions, significantly increase thermal stress,
shorten battery lifespan, and even lead to safety accidents. Conversely, an excessively
low temperature will pose difficulties for the charging and discharging process of LIBs,
hindering the full expression of their performance. Since the traditional P2D model is
based on the assumption of isothermal conditions, incorporating thermal effects into
the model has emerged as a significant area of battery research, which could contribute
to battery safety design and the optimization of charging and discharging strategies.
Li et al. integrated the P2D model with a thermal model to establish an electrochemical–
thermal coupling model, which is capable of solving the temperature distribution within
batteries [44]. Building upon this foundation, researchers have incorporated various heat
transfer mechanisms into the electrochemical–thermal coupling model to investigate battery
heat dissipation, expanding from understanding the heat generation patterns of individual
cells to designing external cooling strategies for battery systems, including external air
cooling, liquid cooling, and phase-change material cooling, etc. [45]. In the design of battery
thermal management systems, researchers have discovered that temperature is also related
to abnormal battery expansion, which can lead to electrolyte leakage, battery short circuits,
and other failures. Consequently, the factor of the stress field has been introduced into
the model design, accounting for stress variations induced by temperature and pressure
changes [46]. Overall, battery simulation and modeling have evolved into a multi-physics
coupling framework encompassing electric, thermal, and stress fields. As an open-ended
model, the P2D model serves as a foundational platform that can interface and couple with
various physical fields.

For the last research scope, effective numerical methods or model reduction ap-
proaches are adopted to reduce the computational complexity of PDE models. Among the
reduced-order models, the simplest form is the Single Particle Model (SPM) [47], where
both the cathode and anode are represented by a single spherical particle, while the influ-
ence of the electrolyte is neglected. Although the computational loads of the model can
be significantly reduced, its accuracy can deteriorate rapidly when high current densities
are applied due to the apparent diffusion limitations within the electrolyte [48]. To expand
the application scope of the SPM, the diffusion of lithium ions in the electrolyte phase [49]
and thermal behavior in electrodes [50] have been introduced, while the heterogeneity
of particles remains unconsidered within the SPM framework. To address this gap, the
Multi-Particle Model (MPM) was proposed to extend the SPM by incorporating electrode
particles with varying radii and contact resistances [51]. When the charge–discharge rate
exceeds 1C, the voltage curve accuracy of the MPM is notably higher than that of the
SPM, but the increase in the number of parameters also imposes a heavier burden on the
parameter identification [52]. Another dimension reduction approach is the multi-scale,
multi-domain (MSMD) model [53], which divides the spatial domain into particle, elec-
trode, and battery domains based on different length scales, with only average values
shared between adjacent domains. The MSMD model considers the states of various
internal components of the battery while maintaining high computational efficiency. How-
ever, its spatial resolution is limited, as only averages are exchanged between domains.
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Allu et al. [54] employed a set of mesoscopic volume elements to describe mass and charge
transport within electrodes, in which governing equations were solved within each repre-
sentative volume element and then the volume-averaging approach was applied to obtain
macroscopic variable values. This model could consider three-dimensional information
while effectively reducing computational costs through volume averaging, which repre-
sents a promising dimension reduction method. Nevertheless, electrode particles are still
assumed to be spherical, and the diffusion equations in the solid phase need to be solved
for each volume element. Hence, irregular electrode morphologies are not considered in
this model, and it is better for the number of diffusion equations to be reduced. Addition-
ally, there are also numerous numerical schemes to mitigate the computational burden
of PDE models. The finite difference (FD) [55] and finite element (FE) [56] methods are
two of the most commonly used approaches, in which PDEs are only discretized in the
spatial or spatio-temporal domain to transform them into Differential Algebraic Equations
(DAEs) or algebraic equations (AEs) [57]. An alternative efficient numerical technique is
the Orthogonal Collocation Method (OCM) [58,59], where the PDE solution is assumed
as a sum of orthogonal polynomials. After appropriate coordinate transformations, the
collocation method is used to determine the polynomial coefficients. Nonetheless, the
number of discrete algebraic equations depends on the initial PDE model, and the solution
of nonlinear algebraic equations remains challenging, which indicates that combining
model reduction methods with numerical techniques is a more promising direction than
only relying on a single approach.

2.1.3. Cellular Automata (CA) Model

As mentioned before, LIB models are primarily described by PDEs. CA, as a discrete
modeling framework, can also be employed to depict the evolution of system states over
time and space [60]. The differential equation model is established based on the conserva-
tion laws and differential units within the system, to derive the distribution functions of
variables in continuous time and space. In contrast, the CA model is established based on
flexible interaction rules among cells, which are not constrained by closed or continuous
assumptions but place greater emphasis on local mechanisms. It is worth noting that CA
and differential equation methods are not mutually exclusive. They can be combined or
alternated, since differential equations often require discretization in their solution pro-
cess. In 1986, Wolfram suggested that CA can be adopted to approximate any differential
equation system by introducing finite differences or finite elements [61]. When cells are
assumed to be differentiable units, they can be equivalent to different equations describing
continuous regions. Although the CA model inherently suffers from the limitation of
unclear physical meaning, its excellent compatibility with other methods can effectively
compensate for this limitation. A promising direction for the development of CA models is
to combine CA with other algorithms into a framework, where each method leverages its
unique strengths.

Similar to the P2D model, the CA model has also evolved into various forms to
adapt to different research demands. The CA model was first introduced by John von
Neumann in 1966 and gained significant attention from researchers in 1970 due to the self-
organizing behavior from disorder to order demonstrated by the “Game of Life”. In 1986,
Stephen Wolfram systematically classified various rules and phenomena of CA, leading to
the emergence of variants such as Lattice Gas Automata [62], Margolus CA [63], Lattice
Boltzmann CA [64], and Diffusion-Limited Aggregation (DLA) CA [65] to correspond to
different physicochemical processes. These forms all adhere to the principle of simulating
and evolving complex system behaviors through the interaction of local units.

The diffusion process represented the initial application of CA to practical physical
processes. Both the Lattice Gas Automata [66] and the naive CA diffusion models [67]
achieve the simulation of concentration diffusion in gases and liquids through the random
exchanges between cells and their neighbors, which is essentially derived from the concept
of Brownian motion, i.e., the perpetual and irregular motion of particles suspended in gases



Processes 2024, 12, 1871 9 of 37

or liquids. However, in this model, cells can only be updated asynchronously, because
synchronous updates would lead to the disappearance or increase of particles, which
violates the law of conservation of mass. Bandman introduced convection processes into
Margolus CA by incorporating unequal clockwise and counterclockwise rotation proba-
bilities and simulated the fluid flow in irregularly shaped media [68]. Ai et al. discussed
the grid anisotropy of propagation fronts in CA and applied it to simulate crystallization
processes [69]. Gurikov used the Margolus scheme to study diffusion and adsorption
phenomena in porous media [70], but the physical quantities were dimensionless, and the
relationship between CA diffusion results and actual diffusion coefficients remains unclear,
requiring further research.

As for the chemical reactions, Ai et al. simulated the spatio-temporal evolution
of the Belousov–Zhabotinsky (BZ) reaction using CA [71], and validated their results
against traditional finite difference methods. The establishment of this rule captured the
essence of the mutual conversion between the three reactants in the BZ reaction. Different
substances are represented by discrete cells, and their mutual conversion rules are set,
thereby simulating spatial oscillation phenomena such as chemical waves. Ackland and
Tweedie [72] proposed a Lattice Boltzmann CA model based on DLA theory to simulate
dendrite growth processes in lithium metal electrodes. The basic rule is that ion cells
randomly walk in the liquid-phase space, and their reaction probability is calculated based
on conditions such as current density and concentration when they approach crystal cells,
thereby becoming new crystal cells. Applying such simple rules globally can achieve the
simulation of complex dendrite morphology growth processes, which demonstrates the
advantages of CA.

Brokate et al. [73] utilized CA to simulate redox reactions on the surface of flat elec-
trodes, where the reaction probability of discrete ion cells upon contacting electrode cells
was calculated based on the Nernst equation. The simulation results were consistent with
those calculated using differential equations, while also providing the visualization of spa-
tial dynamic results. The Lattice Boltzmann CA has a closer relationship with differential
equations and can be seen as a numerical solution method for PDEs. By statistically analyz-
ing information on the velocity, temperature, and other aspects of a large number of discrete
particles, macroscopic characteristics of fluid motion can be obtained. The consistency of
its calculation results with finite difference methods proves the dialectical unity between
fluid continuity and discreteness. Jiang et al. [41] used the Lattice Boltzmann method
to solve the classical P2D model, demonstrating a significantly increased computational
speed compared to finite difference methods while maintaining a similar accuracy. Du
et al. constructed a CA-LBM framework that combined the strengths of CA and Lattice
Boltzmann Method (LBM) to simulate the lithium dendrite growth process [74].

However, existing CA models have not yet considered the influence of porous struc-
tures on reaction–diffusion processes. Given the advantages of CA, such as the ease of
setting complex boundaries, its suitability for parallel computing, and simplicity in pro-
gram implementation, it is worthwhile to integrate particle-scale models with battery-scale
models using CA to further investigate the impact of porous structural information on
battery performance.

2.2. The Incorporation of Electrode Morphology in Mechanism Models

The microstructure of electrodes plays a crucial role in the electrochemical performance
of LIBs. The porosity and particle-size distribution of electrodes are the most commonly
used parameters in electrode structure design [75]. During the charging process, the speed
of electron transfer is faster than that of ion diffusion, leading to the accumulation of elec-
trons on the surface of electrode particles. This accumulation forms an additional potential
difference, which acts as a driving force to facilitate ion migration. The voltage curve during
the constant current charging of a battery, as shown in Figure 2, indicates that the constant
current represents a consistent total amount of electrons entering the electrode per unit
time. The local overpotential resulting from electron accumulation serves as the impetus
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for the reaction to occur. The equilibrium voltage displayed in the figure corresponds to
the required driving force for the lithium-ion intercalation reaction. However, a reaction
cannot occur when the overpotential is exactly equal to the equilibrium potential, as the
battery requires additional overpotential to enable ions to pass through the membrane on
the particle surface. This additional potential is termed the ohmic polarization voltage [76].
Additionally, another portion of extra potential, known as the concentration polarization
voltage, is necessary to promote the concentration diffusion of ions. Polarization refers to
the deviation of the electrode potential from its equilibrium state [77]. Higher polarization
voltages lead to a lower actual charge capacity when the battery is charged to the cut-off
voltage, resulting in lower charging efficiency. Therefore, a method to enhance battery-
charging efficiency is to improve the mass transfer capability within electrode particles
and the electrolyte phase, which is closely related to the microstructure of electrode parti-
cles [78]. On the other hand, the energy density performance of a battery is determined by
the solid-phase fraction of electrode particles. Generally, a lower electrode porosity and
higher electrode thickness lead to the higher storage capacity of the battery [79].
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Chen et al. [80] indicated that the selection of porosity during electrode manufacturing
requires a trade-off between electronic conductivity and ion transport. While a higher
porosity facilitates iron transport, it also reduces electronic conductivity and energy density.
Zheng et al. [81] proposed a correlation between electrode inactive components and the
optimal porosity, with an optimal porosity of 30% and an inactive component mass fraction
of 8%. Zaghib discovered that a gradient distribution of lithium ions occurs in electrode
particles with larger radii, implying that the solid-phase transport rate is the primary
limiting factor during charging [82]. Lu and Lin [83] found that when lithium manganate
is used as the cathode material, smaller electrode particles provide a larger reaction surface
area, corresponding to a higher charge–discharge efficiency. Sivakkumar et al. [84] showed
through experimental data that an increase in the average particle size leads to the improved
initial charge–discharge efficiency of the battery, which corresponds to the formation of a
thinner Solid Electrolyte Interface (SEI) and higher battery capacity. With advancements
in electrode-manufacturing technology, the shape and orientation of electrode particles
can be controlled more precisely. Frankenberger et al. [85] utilized a magnetic field during
the coating process to control the orientation of graphite particles perpendicular to the
collector surface, which could effectively reduce liquid-phase transport resistance and
enhance charging efficiency. Furthermore, a set of electrodes composed of parallel graphite
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sheets was prepared using a magnetic field, whose rate capability was three times higher
than that of traditional electrode structures.

While these insightful findings are based on experiments, exploring a range of electrodes
with different microstructures through experimentation is costly and time-consuming. Dur-
ing multi-step preparation processes, uncertainties make it challenging to control particle
morphology. Therefore, numerous studies on electrode structure optimization have been
conducted in collaboration with numerical simulation methods. Kalnaus et al. [86] designed a
two-layer electrode consisting of a “power layer” and an “energy layer”, utilizing different
porosities in each layer to achieve a higher discharge capacity. Methekar et al. [87] designed
a gradient porosity electrode and optimized the porosity distribution across the electrode
thickness to minimize electrode resistance. Qi et al. [88] also designed a two-layer electrode
and achieved multi-objective optimization by adjusting the porosity of each layer to reduce
both resistance and overpotential. More complex layering schemes and optimization functions
have also been investigated in the literature [89,90]. It is concluded that increasing porosity
towards the separator is beneficial for both power and capacity.

Apart from porosity distribution, electrode performance is also influenced by particle-
size distribution. Bläubaum et al. [91] reported that a smaller mean particle size with lower
variance leads to a better performance in high-current applications. Taleghani et al. [92]
studied the effects of different particle-size distributions using an extended P2D model. The
results showed that the concentration polarization effect is lower for unimodal distributions
compared to bimodal and trimodal distributions. Kanchan and Randive [93] designed
a gradient particle-size electrode structure and demonstrated its superiority in reducing
capacity fade rates through simulation. More studies on the impact of electrode structures
on battery performance can be found in review papers [94,95].

However, existing battery models struggle to balance high computational efficiency
with a detailed consideration of electrode morphology, which is crucial in electrode struc-
ture design. There is a need to develop a more advanced electrochemical model that
captures the internal state of the battery, including a detailed electrode morphology, while
maintaining sufficient computational efficiency to meet the requirements of electrode mor-
phology optimization and long-term battery life prediction. To achieve this objective,
researchers have made improvements to existing mechanistic models to further consider
microelectrode morphology. Roder et al. [96] established a particle-size distribution (PSD)
model to investigate the influence of the PSD of active materials on the performance of
graphite electrodes. The surface overpotential and uneven reaction rates caused by particle
heterogeneity are revealed through analyzing the charging behavior of electrode particles
under different local current densities. Furthermore, Kirk et al. [97] designed a unimodal
PSD and a bimodal PSD based on the PSD model. Their simulations demonstrated the
equivalence between the unimodal PSD model and the SPM model and the advantage of
the bimodal PSD model in fitting experimental data. Sharma et al. [98] employed Compu-
tational Fluid Dynamics (CFD) methods to simulate the mass transport processes within
the morphology of real electrodes. This approach enabled them to obtain closer approxi-
mations to the actual concentration variation processes within electrodes. Dai et al. [99]
constructed a battery charging and discharging model capable of considering arbitrary
electrode morphologies through a hybrid modeling approach combining CA and PDEs. In
this model, irregular phase boundaries or moving phase interfaces were described using
CA, while the conservation of mass and energy in the physical field was captured by PDEs.
This method leveraged the strengths of both modeling techniques to efficiently model
different processes, thereby achieving the efficient operation of each component of the
model. A schematic diagram of different mechanism models for LIBs is shown in Figure 3,
and the strengths and limitations of different models are summarized in Table 2.
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Table 2. A summary of strengths and limitations of different LIB models.

Model Overview Strength Limitation

P2D

Under the assumption of the
uniform distribution of

spherical particles,
the liquid-phase variables are

calculated along the x direction,
while the solid-phase variables are

calculated along the r direction.

It is capable of considering
the influence

of porosity and particle size,
while maintaining

a moderate calculation efficiency.

It cannot consider the
non-uniform distribution

and irregular nature of particles,
and the calculation speed may not

satisfy the requirements for
electrode structure
optimization and

online applications.

SPM

The cathode and anode in the
P2D model

are simplified to a single
spherical particle.

It has the highest
computational efficiency

among electrochemical models.

The computational accuracy
decreases significantly

under high-current charging and
discharging conditions, and it fails
to consider the influence of porosity.

MPM

It is equivalent to the coupling of
multiple SPMs, in which both

the cathode
and anode are considered to be

composed of particles of
various sizes.

Featuring moderate
computational efficiency,

it also incorporates a degree
of consideration

for the distribution information of
electrode particles.

The influences of porosity and
particle position

distribution cannot be considered.

PSD

A further improvement of the
MPM, in which the influence

of particle-size distribution on
battery operational mechanisms

is incorporated.

The PSD model is capable of
considering various

particle-size distributions, enabling
a more detailed investigation into

the influence
of electrode particle sizes on

battery performance.

The influence of particle
position distribution
cannot be considered.
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Table 2. Cont.

Model Overview Strength Limitation

CFD

Considering mass transfer and
reaction processes

in electrodes with arbitrary
morphologies.

It enables the visualization of the
spatio-temporal evolution

of variables, and the construction
and evaluation

of electrodes with arbitrary shapes
and morphologies.

The computational efficiency is
generally low.

MSMD

Interacting with the averaged
values of variables

across different scales to achieve
multi-scale modeling.

By correlating the particle scale,
electrode scale,

and battery scale, it enables the
exploration of the interaction
mechanisms among variables

across different scales.

Using only averages for
interaction enhances

computational efficiency but results
in the loss

of spatial distribution information.

CA-FD

A hybrid approach for LIB
modeling, in which CA
is adopted to describe

reaction–diffusion processes
and FD methods are used to

calculate potential distributions

Capable of considering electrodes
with arbitrary morphologies

and featuring a high
computational efficiency.

The selection of time steps for the
two parts of the model requires
exploration to find a matching

time step
that maintains the rationality

and accuracy
of the step-by-step calculations.

In addition, a logic diagram for the mechanism models is shown in Figure 4; from
left to right, the lower the computational efficiency of the model, the more information
inside the electrode is considered. Researchers can choose the model type according to
their requirement.
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2.3. The Incorporation of Battery Aging in Long-Cycle Modeling of LIBs

Currently, the expected lifespan of electric vehicles ranges from 10 to 15 years, with the
durability of LIBs being the primary limiting factor. To facilitate the better understanding
of the battery aging mechanism, the main aging mechanisms within LIBs, as well as the
positive feedback mechanism in the aging process of LIBs, are summarized in Figures 5
and 6. Generally, battery aging in LIBs encompasses capacity loss, impedance increase, and
power degradation. Understanding the characteristics of battery aging could facilitate the
development of reliable battery management systems, thereby enabling accurate predic-
tions of battery life and remaining capacity. The primary aging mechanisms of LIBs include
the formation and growth of Solid Electrolyte Interface (SEI), the deposition of metallic
lithium at the anode, mechanical fracture of electrode materials, and the consumption of
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electrolytes and additives, etc. This section delves into the specific aging mechanisms and
their considerations in mechanistic modeling.
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2.3.1. Side Reactions Involved in the Growth of SEI Layer

The SEI is defined in the literature as a porous film structure that forms on the surface
of electrode materials during the initial charging process. Its primary function is to prevent
further reactions between the electrode and electrolyte while enabling the transmission
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of lithium ions through the film to reach the electrode surface, thereby facilitating normal
lithium-ion extraction/insertion during the charge–discharge process. However, due to the
porous nature of the SEI, after its initial formation during the first charge, a small amount
of electrolyte continues to diffuse into the SEI and diminish at the electrode surface, leading
to a gradual thickening of the SEI layer. This, in turn, results in the loss of active lithium
ions. It is generally recognized that the capacity fade attributed to SEI growth exhibits a
linear or square root dependence on the number of cycles, as the increasing thickness of the
SEI slows down the diffusion speed of lithium ions within the film.

The capacity fade of LIBs due to the SEI film has been investigated in numerous
mechanistic models, and the formation and growth of the SEI have also been extensively
studied. Spotnitz et al. [106] developed a mathematical model to investigate the impact
of the acid-induced erosion of the SEI layer on the capacity loss of LIBs. Liu et al. [107]
established an electrochemical–thermal model based on the diffusion process of solvents
through the film and the reaction kinetics at the interface. They hypothesized that the
SEI grows faster during charging processes than discharging processes, and temperature
increases accelerate SEI growth, leading to increased capacity loss in LIBs. Guan et al. [108]
constructed a two-dimensional phase-field model to simulate the microstructural evolution
during SEI growth and predicted the growth rate of SEI thickness. Xie et al. [109] discovered
that the assumed operating conditions of LIBs play a crucial role in capacity decay, with
higher charge–discharge rates accelerating capacity loss. Kim utilized molecular dynamics
to study the influence of electrolyte formation on the SEI layer [110]. Ramadass et al. [111]
built a capacity loss model for LIBs that incorporates solvent reduction reactions, in which
the SEI growth is assumed to be primarily concentrated in the interlayer region and is a
weak function of cycling conditions. Prada et al. [112] found that the capacity loss of LIBs
is a function of SEI formation and temperature. Tan et al. [113] also studied the formation
of the SEI on the anode of LIBs and indicated that a significant amount of lithium is lost
during SEI formation. Sungjemmenla et al. [114] reviewed research progress in preparing a
stable SEI from aspects such as the use of electrolyte additives, artificial engineering, and
cathode heteroatom doping. They pointed out that computational modeling is needed to
qualitatively and quantitatively predict the formation and degradation mechanisms of the
SEI in order to understand the interface’s formation and evolution.

2.3.2. Side Reactions of Lithium Deposition

The capacity fade of batteries exhibits an exponential increase phenomenon after
multiple cycles. Schuster et al. [115] conducted a study on a set of 1.95 Ah commercial
18,650 batteries under a constant temperature and charging rate. During the initial stages,
the capacity fade and impedance increase exhibited a linear relationship with the number
of cycles, with the growth of the surface SEI layer being the primary aging mechanism.
However, after prolonged cycling, the battery capacity decreased sharply, and the battery
impedance increased drastically, indicating that some other mechanism had dominated
the aging process. On this basis, key features of the nonlinear aging phenomenon can
be summarized.

It first occurs in various LIBs using lithium oxide-based cathodes, including lithium
iron phosphate, lithium manganese oxide, and lithium cobalt oxide. Additionally, the
loss of lithium ions primarily occurs at the anode. Through energy-dispersive X-ray
spectroscopy analysis of severely aged batteries, a thick film was observed near the an-
ode/separator interface, while the cathode material showed no significant morphological
changes. Therefore, it is reasonable to assume that this nonlinear aging behavior is closely
related to the mechanism of lithium-ion insertion into the anode. Klett suggested that a
significant amount of metallic lithium exists within the SEI layer at the anode/separator
interface, leading to the conclusion that the nonlinear battery aging after prolonged cycling
is caused by lithium deposition reactions [116]. The equilibrium potential for lithium
insertion into graphite is quite close to that for lithium deposition reactions. Consequently,
these two reactions compete during battery charging. Under a high current or near the
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end of charging, the solid–liquid phase potential difference at the anode becomes negative,
leading to lithium deposition instead of intercalation. Plated lithium can react with the
electrolyte to form a new SEI layer or become isolated from the electronically conductive
matrix, resulting in a loss of lithium inventory. Furthermore, plated lithium metal may
form dendrites, which, in the worst-case scenario, can puncture the separator, causing
internal short circuits and potentially hazardous consequences [117].

With respect to the Li/Li+ potential as the reference, the insertion potential of Li in
graphite ranges from 65 to 200 mV. When the local potential of the anode becomes negative,
the process of lithium ions being reduced to metallic lithium at the graphite anode is ther-
modynamically feasible, known as lithium deposition [118]. The overpotential generated
by polarization is primarily composed of ohmic overpotential, charge transfer overpo-
tential, and diffusion overpotential, which are the kinetic causes of lithium deposition.
Experimentally, it is challenging to distinguish between these three overpotentials [119],
but simulations can be used to calculate the overpotential, which serves as a kinetic condi-
tion for lithium deposition. Lithium deposition occurs when the sum of the equilibrium
potential and overpotential is negative relative to Li/Li+. Lithium deposition and inter-
calation/deintercalation reactions occur in parallel, with lithium ions being inserted and
deposited during charging, and deintercalated and stripped during discharging. However,
some inactivated lithium cannot be stripped, while some deposited lithium strips to form
new active lithium. Thus, lithium deposition is partially reversible, occurring in LIBs with
different cathode materials (NCM [115], LCO [117], LFP [120]). The occurrence of lithium
deposition is determined by the interplay of charging rate, temperature, and State of Charge
(SOC), with lower temperatures, higher rates, and higher SOCs more prone to promoting
lithium deposition [121]. Even under relatively mild conditions, lithium deposition may
occur, due to factors such as reduced anode porosity and weakened ion transport caused
by SEI growth [122]. Consequently, the decline curve becomes highly nonlinear in the later
stages of long-term cycling or high-current charging and discharging, representing the
second stage primarily dominated by lithium deposition. Depending on the trend of this
second stage, it can be further classified into accelerated, decelerated, or linear decline, all
primarily caused by lithium deposition [122]. Pankaj et al. [123] employed the BV equation
to describe the kinetics of lithium deposition side reactions and argued that the lithium
deposition reaction is partially reversible. Yang et al. [124] proposed an aging model for
lithium-ion batteries that considers SEI film growth and lithium deposition side reactions,
in which the aging results of NCM batteries under prolonged cycling under moderate
operating conditions were investigated. The research indicates that battery aging is linear
during the initial cycling stage, primarily driven by SEI film growth, while it becomes
highly nonlinear towards the end of cycling. The transition from linear to nonlinear aging
is dominated by lithium deposition.

2.3.3. The Consumption of Electrolytes and Additives

Aging or disintegration of active materials (primarily referring to cathodes) is also a
crucial factor contributing to the capacity fade of LIBs. Possible reasons for the dissolution
of cathode materials include acid erosion, material structural defects, overcharging, and
high-rate charging. Aurbach et al. [125] conducted a study on the capacity fade of LiCoO2
intercalation electrodes, in which the formation of cathode surface films and cobalt dissolu-
tion at different temperatures were analyzed. It was concluded that the capacity fade of
LiCoO2 electrodes is primarily due to changes in electrode surface morphology rather than
bulk degradation. Therefore, increasing the electrode surface area/solution volume can
reduce the losses caused by electrode disintegration. Wu et al. [126] investigated the capac-
ity loss and cycling performance of LiMn2O4/C batteries under alternating temperature
and vibration operating conditions. The experiments revealed that the batteries exhibit
a faster capacity decay under these conditions compared to a constant temperature due
to the reduced crystallinity of LiMn2O4, increased lattice constants, and enhanced Mn
dissolution, which accelerate capacity loss. Additionally, as the number of cycles increases,
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the surface film on the battery anode is damaged, leading to decreased thermal stability.
This damage to the surface film also accelerates its repair rate, further increasing internal
impedance and capacity loss. Fang et al. [127] first confirmed during cycling that Ni and
Mn deposit on the anode surface when LiNi0.5Mn1.5O4 is used as the cathode material.
Since the conductivity of metallic Ni and Mn is inferior to Li+, this increases impedance and
causes capacity decay. Yoon et al. [128] studied the capacity fade mechanism of lithium-ion
batteries with silicon nanoparticles as the anode and concluded that capacity loss stems
from incomplete de-lithiation during charging and discharging. They suggested that the
remaining capacity can be enhanced by reducing the cut-off voltage for de-lithiation or
adding electrolyte additives.

The dissociation of electrolytes is another factor that affects capacity fade. Solids
generated from side reactions may adhere to electrode surfaces, hindering lithium-ion inter-
calation/deintercalation and increasing electrode interface resistance. Electrolyte reduction
also consumes lithium salts and solvents, altering electrolyte concentration and potentially
generating gases, posing safety risks. Markevich et al. [129] analyzed the capacity fade of
batteries using LiCoPO4 as the cathode and LiPF6 as the electrolyte and found that the
nucleophilic attack of F− from HF formed by electrolyte dissociation on P− leads to the
cleavage of phosphorus–oxygen bonds and the formation of LiPO2F2 salts soluble in the
electrolyte, which further damages the electrode surface structure, causing capacity loss.
Wu et al. [130] studied the relationship between battery voltage and the electrochemical
stability of electrolytes and discovered that higher battery voltages promote oxidative de-
composition reactions between the electrolyte and cathode materials. Apart from common
SEI and lithium deposition side reactions, ester exchange and polymerization reactions
occur in organic solvents within the electrolyte. Conductive salts such as LiPF6 will degrade
during the reaction to generate organic phosphates and fluorides. Henschel et al. [131]
constructed a lithium battery model based on Support Vector Machines (SVM) to analyze
the aging of five commercial lithium-ion battery electrolytes. The results indicated that both
energy-type and power-type batteries experience varying degrees of electrolyte depletion
as their capacities decline, with a significant drop in LiPF6 concentration.

Generally, model-based methods can achieve a high precision in LIB modeling. How-
ever, in the process of model construction, both the selection of model types and the
acquisition of model parameters require a high level of experience and knowledge from
the operators in this field. Additionally, the finally obtained mechanistic models are often
not universally applicable across different types of batteries, which limits their practical
application in industry.

3. Data-Driven Modeling for LIBs

Although the structure–effect mechanism of batteries can be reflected in the afore-
mentioned electrochemical models, they still suffer from complexity and unmeasurable
internal parameters, making it challenging to integrate them with real electrodes. For
instance, the estimation of the actual battery operating state based on the mechanistic
model necessitates rapid convergence to facilitate online parameter identification and state
estimation. With advancements in data acquisition and AI technology, data-driven models
have emerged as the preferred method for battery modeling and have been widely applied
in BMS [132–134]. Generally, the main applications include fault diagnosis and health
management, cell monitoring, cell balancing, state estimation, charge and discharge control,
and thermal management [135]. Under this scope, a total of 68 papers published within the
last five years were investigated, which are summarized in Figure 7. It can be observed
that battery state estimation is an important research focus and also the most key feature
within the application of BMS. Therefore, the estimation of battery state is regarded as an
emphasis in this section discussing data-driven models. The battery state represented by
State of Health (SOH), State of Charge (SOC), and Remaining Useful Life (RUL) reflects the
ratio of the battery’s maximum available capacity at the current moment to its capacity in
a fresh state. This metric serves as feedback on the battery’s performance after extended
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cycling, enabling the quantification of the degree of internal aging of the battery at any
given time. Based on an accurate acquisition of the battery’s operational status, the BMS
could regulate the operational parameters of vehicle batteries, ensuring that they operate
within a reliable safety range while meeting driving requirements, thereby extending the
battery’s service life.
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The degradation of LIBs is a nonlinear and dynamic electrochemical process [136,137],
and data-driven methods aim to extract the nonlinear and dynamic characteristics from
historical aging process data for the purpose of estimating the battery state. A well-trained
data-driven model based on extensive and high-quality process data can typically be
employed for online estimation of the battery state [18]. It can achieve a high estimation
accuracy without the need to consider the underlying process mechanisms. The generic
framework for data-driven LIB modeling is illustrated in Figure 8.

Figure 8. The generic framework for data-driven estimation of battery state.
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(1) Data collection and preprocessing

The first step involves the data collection and preprocessing. Data related to the
battery aging process are collected from sensors, including variables such as current,
voltage, internal resistance, impedance, and maximum available capacity. Then the data
preprocessing has to be conducted because the raw data may contain outliers and missing
values. Moreover, during the process of meter acquisition and signal transmission, the
data inevitably suffer from various types of noise interference. Therefore, data denoising is
typically performed on the raw data. Common data denoising methods primarily involve
filtering techniques, which include both time-domain smoothing methods like a moving
average [138] and weighted moving average [139], as well as signal time–frequency analysis
methods including Fourier Transform [140], Short-Time Fourier Transform [141], wavelet
transform [142], and empirical modal decomposition [143].

(2) Health indicator extraction and feature selection

The next step is the extraction of battery health indicators, which usually include
fundamental process features such as the denoised current and voltage, as well as derived
features extracted from these baseline features. Examples of derived features include the
average battery temperature across each cycle, the peak point of the first-order moment
of the voltage curve, the peak points on the incremental capacity curve, and the peak
points on the differential voltage curve. Given the complex nonlinear electrochemical
environment within batteries, the simplified features like denoised current and voltage
alone are insufficient to support the high-precision estimation of the battery state through
data-driven methods. Consequently, a more targeted extraction of health indicators is
necessary for the denoised data. Under varying charging and discharging conditions,
batteries exhibit distinct effective curve characteristics, which require a context-specific
approach for health indicator extraction. Current research often relies on empirical methods
for simplistic feature extraction [144–146], while the extraction of features relevant to battery
state estimation from raw data has been an attractive research focus in recent years and
will be further discussed in Section 3.2.

Moreover, the extracted health indicators may not always be mathematically corre-
lated with the battery’s state, which could lead to redundancies that can increase model
complexity and decrease prediction accuracy. Hence, feature selection is also a crucial and
indispensable step in data-driven LIB modeling. The relevant studies on feature selection
will be introduced in Section 3.3.

(3) Feature extraction for battery state estimation

The last step is to utilize the battery health indicator obtained from the aforementioned
steps to construct a data-driven model to extract critical internal features for battery state
estimation. This part of the study is usually oriented towards differences in algorithms to
capture various factors reflected in process data during battery degradation process [5,147,148].
Generally, data-driven feature extraction methods for LIB modeling are categorized into
filtering techniques, Stochastic Processes, and AI [137]. Among these methods, filtering
techniques, often implemented using Kalman Filters [149,150], typically rely on state–space
equations and involve simplifications such as assuming the battery is discharging at a constant
temperature and current, which deviate from the actual operation process of lithium batteries,
resulting in significant discrepancies between predicted and actual values. Stochastic Processes,
on the other hand, can better characterize the degradation processes of lithium batteries.
However, they often overlook the influence of a time-varying environment, randomly varying
currents, self-recharge characteristics, and system configurations during battery operation, and
their computational complexity is relatively high [137]. With the advancement in computer
technology and the popularity of artificial intelligence, massive attractive ML algorithms
have been proposed for extracting various complex data features [151–156]. These methods
span statistical models and machine learning models to deep learning models. They are
computationally efficient, do not require prior knowledge or experience-based modeling,
and exhibit strong capabilities in capturing the nonlinear and time-varying characteristics
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of battery degradation processes. Consequently, they have emerged as the most extensively
researched and widely applied methodologies. A detailed introduction to ML-based feature
extraction algorithms will be provided in Section 3.4.

3.1. Public Database for LIB Modeling

Data-driven models do not require a precise process mechanism or prior knowledge of
the battery aging process, but high-quality training datasets are an important prerequisite
for data-driven models to achieve high estimation accuracy and generalization perfor-
mance. Therefore, battery cycling test datasets are becoming increasingly important with
the demand for the development of data-driven models. The data collected during the
charging and discharging process of a battery, as well as the assessment of the battery’s
performance and degradation over time, contain important information regarding the
battery’s behavior [157]. The open battery-cycling database stands out prominently due
to its invaluable contribution of detailed cycling data for a broad spectrum of commer-
cial LIBs. Such a rich resource facilitates the development, refinement, and validation of
battery models and algorithms, while also promoting standardization in battery testing
methodologies and reporting practices. This standardization is paramount for advancing
the field and fostering the creation of more efficient and reliable battery systems. Several
commonly used open datasets for LIB modeling are summarized in this section, in which
the main characteristics of batteries, the data sources, and their applications and purposes
are presented to provide a reference for readers.

(1) MIT dataset

The MIT dataset [158] primarily comprises laboratory-scale cycling test data of 124
APR18650M1A batteries under a constant ambient temperature of 30 ◦C. These batteries
are grouped into three distinct batches, “2017-05-12”, “2017-06-30”, and “2018-04-12”, each
with a nominal capacity of 1.1 Ah and a nominal voltage of 3.3 V. During testing, various
fast-charging strategies are implemented for different batteries, as illustrated in Figure 9.
Q1 denotes the charging status when batteries switch from C1 to C2. During the SOC
ranging from 80% to 100%, all batteries adopt a constant current–constant voltage (CC-CV)
charging strategy, with a charging rate of 1C (i.e., 1.1 A), a cut-off voltage of 3.6 V, and a
cut-off current of C/50. Additionally, all batteries share the same discharging conditions,
following a strategy that initially maintains a constant current and then transitions to
constant voltage, with a corresponding discharging rate of 4C and a cut-off voltage of 2.0 V.
Information regarding the five batteries from this dataset is detailed in Table 3, where cycle
life refers to the number of charge–discharge cycles required for the battery’s health state to
degrade from its initial state to 80% of its original capacity.

Table 3. A brief overview of batteries in the MIT dataset.

Encoding Charging Strategy Channel Cycle Life

EL150800460623 3.6C(80%) −3.6C 3 1177
EL150800464977 4.0C(80%) −4.0C 5 1226
EL150800464883 4.4C(80%) −4.4C 7 1074
EL150800465027 4.8C(80%) −4.8C 9 870
EL150800464002 5.4C(80%) −5.4C 11 534

(2) NASA dataset

The NASA dataset provides six files in the Matlab2016B data storage format, as
summarized in Table 4. These files contain nine groups of battery samples, with each
group consisting of 3 or 4 individual battery samples, totaling 34 individual batteries in
all. These six battery sets differ in terms of their depth of discharge, discharge rates, and
ambient temperatures. The dataset can be downloaded at https://www.nasa.gov/content/
prognostics-center-of-excellence-data-set-repository (accessed on 1 December 2023).

https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
https://www.nasa.gov/content/prognostics-center-of-excellence-data-set-repository
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Table 4. A brief overview of six data files in the NASA dataset.

No. Name Encoding

1 BatteryAgingARC-FY08Q4 B0005–B0007, B0018
2 BatteryAgingARC_25_26_27_28_P1 B0025–B0028
3 BatteryAgingARC_25-44 B0025–B0034, B0036, B0038–B0044
4 BatteryAgingARC_45_46_47_48 B0045–B0048
5 BatteryAgingARC_49_50_51_52 B0049–B0052
6 BatteryAgingARC_53_54_55_56 B0053–B0056

(3) Center for Advanced Life Cycle Engineering (CALCE) dataset

The CALCE dataset was proposed by a research team at University of Maryland, and it
can be downloaded at https://calce.umd.edu/battery-data (accessed on 1 December 2023).
The CALCE dataset offers test data for a total of six types of batteries, including cylindrical
batteries such as INR 18650-20R and A123, prismatic batteries like CS2 and CX2, pouch cells
denoted as PL, and other types of batteries labeled as K2. Among these batteries, the test
data for prismatic batteries CS2 and CX2 can be utilized to conduct remaining life prediction.
The CALCE dataset characterizes the performance of LIBs through parameters such as
voltage, current, resistance, and battery capacity. These parameters are also influenced by
ambient temperature and experimental testing procedures. Among them, the primary focus
remains on battery capacity. Taking the CS2 battery as an example, it has a rated capacity of
1.1 Ah. All CS2 batteries undergo a similar charging process, adhering to a standard CC-CV
protocol. The constant current rate is either 0.5 C or 1 C and continues until the voltage
reaches 4.2 V, whereupon the voltage is maintained at 4.2 V until the charging current drops
below 0.05 A. Ordinarily, the discharge cut-off voltage for these batteries is 2.7 V. Overall,
the CALCE battery dataset has a relatively small number of individual battery samples
per group, with a maximum of four samples per group. Compared to the NASA dataset,
each individual battery in the CALCE dataset has a relatively abundant number of sample
points, approaching 1000 sample points. However, the overall degradation trends of the
capacity degradation curves exhibit similar characteristics.

(4) Oxford Dataset

The Oxford Battery Degradation Dataset comprises eight Kokam (SLPB533459H4) Li-
CoO2 lithium-ion pouch cells with a rated capacity of 740 mAh. These cells feature cathodes
made from lithium cobalt oxide and lithium cobalt nickel oxide, and anodes made from
graphite. The cells are labeled as Cell1 through Cell8. The cycling aging tests for these cells

https://calce.umd.edu/battery-data
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were conducted in a temperature chamber set at 40 ◦C. The experiments employed a CC-CV
charging mode and simulated the dynamic discharge patterns of the Urban Artemis electric
vehicle during actual driving conditions. Following this, charge–discharge tests were per-
formed every 100 aging cycles until the battery life reached the aging threshold. Throughout
the experiments, an 8-channel Big-Logic MPG-205 experimental instrument was used to
record data such as cycle number, time (t), current (740 mA), voltage (V), temperature (◦C),
and charge (q) during the charge–discharge process. Additionally, researchers recorded
Open Circuit Voltage (OCV) data for fitting the OCV-SOC curve. The dataset, as well as
a detailed description, can be referred to at http://howey.eng.ox.ac.uk/data-and-code/
(accessed on 1 December 2023).

The four datasets introduced above are commonly used in current research to validate
and compare newly proposed data-driven battery state estimation algorithms. In addition
to these datasets, several other lithium-ion battery datasets have been publicly released by
research institutions and industries in recent years, including the Cambridge University
and Faraday Institution dataset [160], the Sandia dataset [161], and the Huazhong Univer-
sity of Science and Technology (HUST) dataset [162], etc., which further enrich the data
resources for advancing the development of machine learning algorithms in battery state
estimation research.

3.2. The Extraction of Health Indicators for LIBs

As mentioned before, the information provided by raw charging and discharging
curves is inherently limited, which poses challenges in the accurate estimation of battery
state solely through these curves. However, by extracting health indicators related to the
battery’s maximum available capacity from these curves, more comprehensive information
can be obtained [23]. Depending on the form of feature extraction, health indicators can be
classified into basic indicators and secondary indicators. Basic indicators refer to those that
can be directly obtained from raw current, voltage, and temperature profiles, such as the
time difference corresponding to the same voltage range in a voltage profile [163] and the
peak value of a temperature profile [158].

Xiong et al. [164] collected aging data from eight second-life LIBs and observed that
during the constant current charging phase, batteries with varying degrees of aging exhibit
different changes in charge capacity within the same voltage range in the voltage–time
curve. They subsequently divided the voltage range into eight segments and extracted the
corresponding capacity changes in each segment as health indicators. Beyond segmenting
the voltage range, Guo et al. [145] calculated the capacity difference between the first and
the 100th voltage segment, and their results demonstrated a linear correlation between this
capacity difference indicator and battery SOH.

It is worth noting that laboratory-scale tests often involve full charging and discharging
cycles, whereas in practical applications, traction batteries are rarely fully discharged,
which can impact the CC charging phase of the subsequent cycle. Therefore, Liu et al. [146]
collected aging data from four LIBs under CC-CV charging conditions. They extracted
various health indicators, including charging time, charging capacity, average current,
and time differences corresponding to each current range during the CV charging phase.
The results revealed that eight out of the nine extracted indicators exhibited strong linear
correlations with battery SOH.

Given the limited information reflected by basic health indicators, secondary indicators
have been introduced, which employ mathematical transformations such as differentia-
tion [165,166] for aging indicator extraction. Incremental Capacity Analysis (ICA) [167–169]
is a commonly used method for extracting health indicators. By differentiating the charge
capacity difference and terminal voltage difference for each cycle, the voltage curve can be
converted into an incremental capacity (IC) curve with a series of peaks and valleys. The
IC curve reflects an increase in battery power per unit voltage and can be used to detect
electrochemical changes caused by capacity loss [170]. The regular changes in the positions
of IC peaks and valleys for different aging levels can be leveraged to estimate the health

http://howey.eng.ox.ac.uk/data-and-code/
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state of LIBs. Weng et al. [171] determined the ordinate of the peak points on the differential
curve as an aging indicator through the ICA method. The effectiveness of this indicator
was validated on eight batteries with a prediction error of less than 1%. Wen et al. [172]
conducted cycle charge–discharge tests on five 18650-type LIBs and identified the abscissa,
ordinate, and peak slope of the IC curve as health indicators for SOH estimation, achieving
an average prediction error of 1.16%.

Furthermore, Goh et al. [173] observed regular changes in curvature within the dis-
charge curve and proposed a novel health indicator extraction method based on the U-
shaped curvature. By dividing the curve into three sections based on curvature, they
extracted the time difference, voltage difference, area under the curve, and abscissa and
ordinate of the endpoints in the plateau section as health indicators. The effectiveness of
this method was validated in a machine learning model, achieving a mean absolute error of
less than 1.08%. Tao et al. analyzed the battery aging mechanism and the changing law of
the curves and extracted a total of 61 health indicators related to performance degradation
from the cycling curves [159]. In summary, the selection of health indicators plays a crucial
role in improving the prediction accuracy of data-driven models. Extracting health indica-
tors solely based on fundamental curve patterns is limited, and performing a secondary
indicator extraction based on these foundational curves to obtain valuable indicators that
underly mechanisms of battery behavior is vital for enhancing prediction accuracy.

3.3. Feature Selection

The extracted health indicators need not be mathematically correlated with the battery
state to be estimated. Part of them could be highly correlated with the estimation target,
while others may have poor correlations. Moreover, the health indicators that are highly
related with battery health state could also be redundant with each other. Using all health
indicators directly for machine learning modeling not only increases the model complexity
but also decreases the estimation accuracy, and is prone to causing overfitting [174]. Feature
selection methods play an important role in classification or regression tasks to save
computational costs, refine the size of the dataset, and improve the operational efficiency
and estimation accuracy of machine learning methods [175].

Generally, feature selection methods are categorized into filter-based methods, wrapper-
based methods, and fusion-based methods [176]. In summary, the primary target of feature
selection is to identify a subset of the most relevant features, while minimizing redundancy
among them. Correlation analysis approaches are commonly used in machine learning to
evaluate the degree of correlation between features and the prediction target. The Pearson
correlation coefficient is the most classic method for correlation analysis, which is capable
of evaluating the linear relationship between features and the target. Considering that the
battery aging process is a nonlinear process, certain related features may not be effectively
identified by linear approaches. For nonlinear relationships, information theory, repre-
sented by Mutual Information (MI), demonstrates significant advantages by estimating
the shared information content between variables through the estimation of their joint
distributions [177]. However, a limitation is that there is no upper limit for the MI value,
and there is no threshold for the MI to determine whether the correlation is significant.
To address this limitation, Ji et al. suggested estimating the threshold of MI through ran-
dom sequences generated by the Monte Carlo method [178]. Estevez et al. proposed a
normalized MI to standardize MI to between 0 and 1 [179]. On this basis, Reshef et al.
further proposed a maximal information coefficient to improve the estimation precision of
MI in big datasets [180]. The above studies focus on the calculation of correlation, while
the redundancy is hard to characterize. Information theory also provides the theoretical
foundation for the calculation of redundancy. The max-relevance and min-redundancy
criteria has been widely adopted in information theory for feature selection [181]. Bennasar
et al. [182] proposed joint MI maximization to measure the importance of candidate features
using a conditional MI. Xiao et al. [183] proposed a max-relevance and min-redundancy
method based on neighborhood MI. Yin et al. [184] proposed a maximum dynamic rele-
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vancy, minimum redundancy-based feature selection algorithm. Che et al. further proposed
a maximum relevance, minimum common redundancy feature selection method, which
comprehensively considers the redundancy among candidate features [185]. Through
the evaluation of relevance and redundancy, the importance of candidate features can be
systematically ranked, and the optimal feature subset can be further determined through
the assessment of information gain of the target variable [186].

3.4. Feature Extraction by ML Algorithms

After determining the optimal subset of extracted health indicators, the feature ex-
traction is a critical step to capture useful information to achieve an accurate and real-time
estimation of the battery health state. As one of the dominant data-driven methods, ML
technology, mainly including linear regression, Support Vector Regression (SVR), Gaussian
process regression (GPR), and deep learning, etc., has garnered a widespread application
in the realm of such regression task.

Linear regression, represented by partial least squares regression and Gaussian process
regression [187], exhibits notable advantages in terms of computational efficiency, model
interpretability, and generalization ability. However, linear models are usually overly
simplistic and thus inadequate for capturing the intricate nonlinear features inherent in
battery degradation processes. The SVR is an effective supervised learning approach that
introduces kernel functions to transform low-dimensional data into a higher-dimensional
space, where the nonlinear relationships between inputs and outputs can be extracted.
Nuhic et al. [188] proposed a novel data-driven strategy that combines collected feature
signals such as capacity and temperature as inputs into an SVR model to achieve an
accurate prediction of battery SOH. To facilitate online estimation of the battery health state,
Klass et al. [131] applied standard battery tests conducted in a laboratory and parameters
collected from regular EVs to an SVR model, and the effectiveness of the SVR model was
demonstrated through comparing the estimated SOH indicators with those measured
directly. Meng et al. [189] conducted current pulse tests on lithium iron phosphate batteries,
extracting features such as sharp points and slopes from the voltage response curves.
Utilizing the SVR method, they achieved an accurate estimation of battery SOH, with the
final battery capacity estimation error being less than 1%. Beyond the basic SVR prediction
model, Qin et al. [190] introduced a Particle Swarm Optimization (PSO) algorithm to
optimize the parameters of the SVR, thereby enhancing the prediction accuracy of battery
SOH. The SVR model is commonly used for regression tasks on small datasets. However,
as the size of the training dataset increases, it directly leads to an increase in the number
of support vectors, which in turn raises computational costs. Comparatively, the GPR is
an emerging approach whose hyperparameters can be acquired adaptively and which is
relatively easy to implement [191]. Furthermore, the GPR is built upon a probability-based
form, which makes its prediction results highly interpretable [192].

On the other hand, the battery degradation process is a time-varying process. These
dynamic characteristics have not been considered by the aforementioned methods. In con-
trast, deep learning models are more competitive in terms of feature-processing capabilities
and data-fitting effects. Under this category, recurrent neural networks, especially the
Long Short-Term Memory (LSTM) unit, have been effectively utilized to extract dynamic
features through the information transition through memory cells. Qu et al. [193] intro-
duced complete ensemble empirical mode decomposition with adaptive noise to denoise
the battery health data, and then leveraged LSTM to construct a prediction model. By
implementing a sliding window approach, an accurate estimation of battery SOH has
been achieved. He et al. [194] proposed an LSTM algorithm based on a quantum genetic
algorithm for battery SOH prediction. For the features extracted from raw data such as
current and voltage, they employed random forest to screen out important features, which
were then input into the LSTM network for SOH prediction. Fasahat et al. [195] put forward
a hybrid model combining autoencoder and LSTM for battery capacity estimation. The
data features extracted by AE were utilized to construct the hybrid LSTM prediction model.
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Finally, the prediction errors of the constructed hybrid model were compared with those
of conventional models such as LSTM, and the prediction results applied to the CACLE
dataset validated the effectiveness of the hybrid model. Tang et al. further proposed a SOC
estimation method that fused neural networks with the equivalent circuit model to capture
the dynamic characteristics of a battery in a wide temperature range over the full SOC
range [196]. Deep learning algorithms generally exhibit excellent self-learning and adapt-
ability capabilities. However, as black box models, enhancing their interpretability and
generalization performance remains an area that requires intensive research in the future.

The methods for battery SOH estimation are summarized in Figure 10. These meth-
ods can be categorized into three primary groups: experimental methods, model-driven
approaches, and machine learning techniques. Notably, machine learning methods rep-
resent a fusion of experimental and model-based methodologies. Several comprehensive
reviews have outlined these categories, highlighting their respective strengths and limita-
tions [18,197,198].
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respective modeling capabilities are introduced:

Equivalent circuit models are typically established by Simulink, in which a highly in-
tuitive visual interface allows users to create equivalent circuit models graphically. Various
circuit element modules such as resistors, capacitors, inductors, and power sources can
be set into the model by a simple drag-and-drop approach with a mouse. This graphical
modeling method renders the process of constructing equivalent circuit models more intu-
itive and comprehensible, thereby lowering the threshold for modeling. Furthermore, a
modular design is recommended in Simulink; a complex equivalent circuit model can be
divided into multiple submodules for individual modeling and simulation. This modular
approach not only enhances the scalability of the models but also facilitates collaboration
and task division among team members.

Ready-made cases for the P2D model, SP model, and MP model can be found in
COMSOL; on this basis, multiple physical fields can be coupled into the mechanistic models,
thereby enabling a more accurate simulation of the working process of lithium-ion batteries.
COMSOL’s full coupling simulation capability allows researchers to comprehensively
understand and analyze the complex mechanisms within the battery. However, due to the
fact that some model assumptions and calculation methods are built-in within COMSOL,
there are limitations to the flexibility in modifying the case models. Matlab is more powerful
in terms of establishing custom models; Matlab offers a comprehensive set of toolboxes
and function libraries that empower users to flexibly construct customized battery models.
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Additionally, as a professional mathematical computing software, exceptional capabilities
in numerical computation, symbolic computation, and graphics processing are included
in Matlab. These strengths enable Matlab to efficiently handle the complex mathematical
equations and algorithms involved in lithium-ion battery modeling. Furthermore, Matlab
possesses robust data visualization functionalities, allowing users to intuitively present
the simulation results of lithium-ion battery models in the form of charts, graphs, and
curves. Sometimes, a synergy simulation of COMSOL and Matlab is required, in order to
comprehensive utilize the advantages of Matlab in flexibility and COMSOL in multi-physics
simulations.

Machine learning-based SOH estimation is commonly implemented through Python
3.7. As an open-source software, numerous publicly accessible packages for Python can be
found in GitHub. And there are many libraries for data processing and machine learning,
such as NumPy 1.20.3, Pandas 1.3.4, Scikit-learn 0.24.2, TensorFlow 2.8.0, PyTorch 1.13.1,
and so on. These libraries offer extensive functionalities for data preprocessing, feature
extraction, model training, and result evaluation, significantly simplifying the process of
lithium-ion battery SOH estimation. SOH estimation for lithium batteries relies heavily on
vast amounts of charging and discharging data, which typically encompass intricate pa-
rameters such as voltage, current, and temperature. The data processing libraries in Python
can manage these data and extract features correlated with SOH efficiently. Additionally,
multithreading, multiprocessing, and other parallel computing techniques are supported
in Python, enabling further enhancements in data processing speed and efficiency.

4. Challenges and Potential Directions for Future Research

Constructing mechanistic models for the cycling process of LIBs enables the efficient
study of the relationship between electrode structure and battery performance, thereby
assisting in the optimal design of electrode structures. Complemented by data-driven
models, which can perform online estimation of the LIB health state based on battery
operation data, the enhancement of LIB performance throughout its entire lifecycle can
be achieved. However, as the design of electrode microstructures becomes increasingly
intricate and sophisticated, and the requirements for the generalization capabilities of
data-driven models are raised, there are still several problems that have not been effectively
solved as yet. In this section, the current challenges of mechanistic and data-driven models
are outlined, and potential directions for future research are proposed.

4.1. Limitations of Mechanistic and Data-Driven Models

The operational mechanisms of LIBs include spatial multi-scale connections ranging
from electrode microstructures to battery pack series–parallel configurations, as well as
temporal cross-scale characteristics spanning molecular micro-motions to thousands of
cycles of usage. This poses limitations on the coverage of the existing mechanistic models.
In other words, spatial multi-scale models that consider electrode microstructures are often
constrained by computational efficiency, making it difficult to simulate the evolution of
battery health status over long-term usage. Conversely, temporal multi-scale models that
account for gradual aging during battery cycling tend to significantly simplify spatial small-
scale processes. One of the pressing issues is establishing a spatio-temporal multi-scale
model that simultaneously considers electrode microstructures and the macro-performance
of batteries over long-term operation. This would enable a more detailed investigation
into the structure–performance relationship mechanisms of batteries. Model algorithm
fusion and computational technology upgrades are effective means to achieve this goal.
For instance, adopting suitable models to describe processes at different scales and then es-
tablishing multi-scale modeling through setting up information exchange between models.
Additionally, attempts can be made to utilize parallel computing and GPU acceleration for
the rapid computation of multi-scale models, thereby efficiently predicting state changes
during long-term battery cycling processes.
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Furthermore, mechanistic information is rarely incorporated into the online estimation
of battery’s actual operating states in the existing research. Currently, the mainstream
data-driven models used for battery online monitoring lack internal mechanisms, making
it difficult to extrapolate beyond the training data. While mechanistic models inherently
excel in extrapolation compared to data-driven models, their disadvantages in computa-
tional efficiency often limit their application in online operation. Additionally, the internal
mechanisms are deterministic in mechanistic models and cannot be adaptive, to consider
the uncertain fluctuations arising from random factors during actual operation. The inte-
grated development of mechanistic and data-driven models could represent a solution to
overcome these current limitations, but another critical issue that needs to be addressed is
how to comprehensively consider both the actual operating data and internal microscopic
mechanisms within the model, and achieve accurate predictions of battery performance
evolution over long periods based on early and limited data from the battery’s opera-
tional process. Physics-Informed Neural Networks (PINNs) offer a specific model fusion
paradigm; however, the consideration of mechanistic information in existing PINNs re-
mains relatively simplistic, with mechanistic model components often limited to empirical
models or equivalent circuit models. In the future, it is imperative to introduce mechanistic
models that encompass more electrochemical information into neural network models.

4.2. Future Prospects

To establish a long-term battery operation model that considers irregular electrode
microstructures and spans across temporal scales, while maintaining a computational effi-
ciency suitable for online operations, a promising approach is to decompose the reaction–
diffusion processes within the electrode across various scales, including the diffusion
processes within the solid-phase electrode, diffusion in the liquid-phase electrolyte, lithium-
ion insertion/extraction reactions at the electrode surface, the growth of SEI layers, and
lithium plating reactions. The portions involving irregular phase boundaries or moving in-
terfaces can be described using CA, while those related to mass and energy conservation in
physical fields can be modeled through PDEs. By leveraging the strengths of each modeling
method for different processes, the efficient operation of individual model components can
be achieved. Additionally, by establishing an information exchange between these models,
a multi-scale model that considers the connection between electrode microstructures and
macro-performance can be established.

On the other hand, image recognition techniques can be employed to process com-
puted tomography images of specific electrodes, to obtain geometrical parameters and
reconstruct two-dimensional morphologies of real electrodes, providing near-realistic solid–
liquid phase boundary positions for the mechanistic model. Through model simulations,
the evolution of unmeasurable variables such as concentration and potential within differ-
ent electrode structures can be obtained, which enables the elucidation of the microscopic
process mechanisms underlying the influence of electrode morphologies on battery per-
formance, as well as the extraction of evolution patterns for key internal variables during
long-term operation.

Moreover, to enhance the generalization performance of data-driven models in the
real-time estimation of the battery health state, certain important pieces of mechanism
information could be considered for integration. Hou et al. proposed a novel hybrid model
that integrates both model-based and data-driven techniques for battery SOC estimation, in
which an eXtreme Gradient Boosting model was adopted to further fit the residues from the
battery model [199]. However, the integration of the mechanism model and the data-driven
model is quite straightforward. Comparatively, an example of a PINN model is presented
in Figure 11. By incorporating appropriate physical constraints, data-driven models can
not only learn the distribution patterns within training data samples but also capture the
physical laws described by mathematical equations. This integration imposes physical
information constraints during the training process, enabling the model to develop a higher
degree of generalization ability even with limited data samples. By incorporating such
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constraints, the model learns not just from the data but also from the underlying physics,
ultimately yielding a more robust and widely applicable solution.
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5. Conclusions

As a crucial technology driving energy transition and sustainable development, LIBs
will occupy an increasingly important position in future energy systems. However, their
current development is still hindered by issues such as battery safety, limited battery en-
durance, slow charging rates, and a short lifespan. Process mechanisms and operational
data serve as two effective tools to assist in the optimal design of battery structures and the
optimization of operational strategies. Investigating the internal operating mechanisms
of LIBs and establishing mechanistic models that can correlate internal electrode states
with macroscopic performance will enable the efficient optimization of electrode structures.
Combining data-driven models to capture critical information from battery operational
data and establishing machine learning models for the real-time prediction of battery health
status hold significant research importance for enhancing the operational performance
throughout the entire battery lifecycle. This work presents an overview of the existing
mechanism-based and data-driven approaches to LIB modeling. The mechanistic models,
including equivalent circuit models, electrochemical models, and CA models, are com-
prehensively reviewed. Considerations of electrode morphology and the battery aging
mechanism, as well as their impact on battery performance in mechanistic models, are
summarized. Then, data-driven models for the estimation of the battery health state in
BMS are introduced from the perspectives of health indicator extraction, feature selection,
and feature extraction. Finally, challenges and potential directions for future research are
discussed. More efficient mechanistic modeling approaches and the integration of process
mechanisms into data-driven models for the real-time estimation of battery health state are
expected to be the future trend.

Based on this review, the future of LIBs is predicted to be developed in the following
two directions. In terms of electrode structure design, this is a potential research direction
to achieve intelligent electrode design by applying the mechanism model, so as to further
improve charging efficiency, lifespan, and other battery performance metrics. The estab-
lishment of an electrochemical model that accurately describes the relationship between
microscopic mechanisms and macroscopic properties can improve research efficiency by
reducing the number of experiments. However, it is extremely difficult and unnecessary to
build a mechanism model that connects microscopic and macroscopic information in suffi-
cient detail. How to realize a multi-scale model that can guide experiments through model
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simplification and numerical calculation methods is the challenge for the future. In terms
of battery states estimation, a data–mechanism fusion modeling approach is a promising re-
search direction. This can contribute to overcoming both the limitation of the extrapolative
capabilities in data-driven models and the limitation of adaptability to random fluctuations
in mechanism models. Essentially, through this fusion, the two approaches can compensate
for each other’s deficiencies. The PINN is one potential framework; however, existing
PINNs do not systematically represent the internal process mechanisms of batteries. The
challenge for the future lies in how to introduce more detailed mechanism information into
data-driven models to achieve higher extrapolative capabilities and computation efficiency.

Given the limitations inherent in our literature review process, our analysis primarily
reflects our current knowledge and understanding of this subject matter. Consequently, it is
possible that not all relevant works in this field have been included, and we acknowledge
the potential for misinterpretation of specific findings. Nevertheless, we aspire to have
introduced a novel perspective on this topic and to offer a resource-rich reference point for
our fellow researchers to build upon and from which to further explore.
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Abbreviations
The description and units for the parameters and variables.
cs Lithium-Ion Concentration in Solid Phase mol·m−3

ce Lithium-ion concentration in liquid phase mol·m−3

r Radial direction m
x Thickness direction m
t Time s
Ds Solid diffusion coefficient m2·s−1

De Liquid diffusion coefficient m2·s−1

t0
+ Transfer number /

JLi Solid–liquid interfacial flux mol·m−2·s−1

εe Porosity /
F Faraday constant C·mol−1

φs Electric potential in solid phase V
φs Electric potential in liquid phase V
E0 Equilibrium potential V
η Reaction overpotential V
σ Conductivity of solid phase S·m−1

κeff Effective liquid-phase conductivity S·m−1

κd
eff Effective diffusion conductivity A·m−1

f Ionic activity coefficient /
T Temperature K
R Gas constant J·mol−1·K−1

cs,max Maximum particle concentration mol·m−3

cs,surf Particle surface concentration mol·m−3

cs Lithium-ion concentration in solid phase mol·m−3

ce Lithium-ion concentration in liquid phase mol·m−3
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