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Abstract: Rayleigh–Bénard convection is a fundamental fluid dynamics phenomenon that signif-
icantly influences heat transfer in various natural and industrial processes, such as geophysical
dynamics in the Earth’s liquid core and the performance of heat exchangers. Understanding the
behavior of conductive fluids under the influence of heating, rotation, and magnetic fields is critical
for improving thermal management systems. Utilizing the Boussinesq approximation, this study
theoretically examines the nonlinear convection of a planar layer of conductive liquid that is heated
from below and subjected to rotation about a vertical axis in the presence of a magnetic field. We
focus on the onset of stationary convection as the temperature difference applied across the planar
layer increases. Our theoretical approach investigates the formation of parallel rolls aligned with the
magnetic field under free–free boundary conditions. To analyze the system of nonlinear equations,
we expand the dependent variables in a series of orthogonal functions and express the coefficients of
these functions as power series in a parameter ϵ. A solution for this nonlinear problem is derived
through Fourier analysis of perturbations, extending to O(ϵ8), which allows for a detailed visualiza-
tion of the parallel rolls. Graphical results are presented to explore the dependence of the Nusselt
number on the Rayleigh number (R) and Ekman number (E). We observe that both the local Nusselt
number and average Nusselt number increase as the Ekman number decreases. Furthermore, the
flow appears to become more deformed as E decreases, suggesting an increased influence of external
factors such as rotation. This deformation may enhance mixing within the fluid, thereby improving
heat transfer between different regions.

Keywords: magnetohydrodynamics; electrically conducting fluid; nonlinear convection; parallel rolls

1. Introduction

The magneto-convection issue explored in this paper is motivated by research into
the magnetohydrodynamics of the Earth’s outer core, which involves the behavior of
liquid metals. The flow of electric current across a magnetic field is associated with a
body force called the Lorentz force, which influences the fluid flow. As the strength of
the magnetic field increases, the Lorentz forces become more dominant compared to the
Coriolis force. Given that convection in a rotating and magnetized environment requires a
delicate balance of forces, interpreting the results of these models can be quite complex.
The geodynamo functions at a low Ekman number (E), as this condition is pertinent to
geophysical scenarios. Likewise, the growth rate of the parallel rolls remains unaffected by
the magnetic field strength (Λ). When Λ, the absence of a magnetic field means there is no
preferential horizontal direction, resulting in a horizontally isotropic layer that corresponds
to the Λ-independent parallel mode. Instabilities that can develop in a rapidly rotating
magnetohydrodynamic system, such as the Earth’s core, are often regarded as essential to
dynamo theory. This area of research examines how the magnetic field is preserved within
the system even in the presence of Ohmic dissipation.
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In recent years, notable progress has been made in the creation of dynamos driven
by convection. Chendrasekhar [1] examined the linear stability of the layer under the si-
multaneous action of rotation and magnetic field when both the angular velocity (

−→
Ω )

and applied magnetic field (
−→
B0) are vertically aligned and the boundaries are stress-

free. The numerical results indicated that if the Taylor number (T) is fixed and Chan-
drasekhar number (Q) increases from zero, the critical Rayleigh number (Rc) remains
constant until Q reaches a certain value before decreasing. When Q is increased further,
Rc decreases, reaching a minimum before increasing again. Roberts and Jones [2] exam-
ined how convection begins when the temperature difference across the layer is increased,
focusing on the planform and time-dependent behavior of small amplitude convection.
Their analysis was guided by a similar study that used specific boundary conditions for
illustration. Eltayeb [3] studied the linear stability of a rotating and electrically conducting
viscous layer in the Rayleigh–Bénard system with a uniform magnetic field, applying the
Boussinesq approximation. He considered several orientations of the magnetic field and
rotation axes under various surface conditions. For example, when the magnetic field is
horizontal and the rotation is vertical, the rolls align parallel to the magnetic field, provided
that the field is weak enough. Childress and Soward [4] presented a hydromagnetic dy-
namo by examining Bénard convection between rotating parallel planes. Their approach
was based on an asymptotic expansion involving two spatial scales, which is suitable for
scenarios with large Taylor numbers. Soward [5] has discussed various models of thermal
convection in rapidly rotating fluids permeated by strong magnetic fields. Braginsky [6]
highlighted the crucial influence of nonuniform rotation in the core. He analyzed small
oscillations in electrically conducting fluid affected by magnetic, buoyancy (Archimedean),
and Coriolis forces, incorporating Ohmic diffusion to reflect conditions similar to those
in the Earth’s fluid core. Glatzmaier and Roberts [7] developed and analyzed the first
three-dimensional self-consistent numerical solution of the MHD equations, which model
thermal convection and magnetic field generation in a rotating spherical fluid shell with a
conducting solid inner core. Their results demonstrate a self-sustaining dynamo that can
sustain a magnetic field for three different magnetic diffusion times. Jones and Roberts [8]
investigated three-dimensional convection-driven dynamos through numerical simulations.
Their study uncovered a rich variety of dynamical behaviors that necessitate systematic
examination. They focused on both the kinematic and magnetically saturated regimes,
proposing a simplified model of the dynamo mechanism. Furthermore, they analyzed the
influence of the parameters R and E and the diffusivity ratio q on the dynamo, while also
considering the significance of the Taylor constraint in low E convection-driven dynamos.
Their results included a snapshot of the flow in the (y,z) plane, revealing a strong correla-
tion between vertical velocity and temperature, as anticipated. Taylor [9] has discussed
the influence of magnetic force on the behavior of a rotating incompressible conducting
fluid. Soward [10] studied weakly nonlinear convection in Braginsky’s model. Geiger and
Busse [11] studied the removal of the degeneracy of the patterns of convective motion in
a spherically symmetric fluid shell by the effects of rotation. Matthews [12] investigated
simple steady flows generated by thermal convection to determine which of them can
generate a magnetic field through dynamo action. Kono and Robert [13] described ways of
avoiding ambiguity and presented a preferred definition of the R that is particularly well
suited for geodynamo simulations. Cattaneo and Hughes [14] studied dynamo processes in
a convective layer of Boussinesq fluid rotating about the vertical, and measured the average
electromotive force using an externally imposed uniform field. Roberts and Kono [15]
presented a new method for evaluating the total energy release. They showed that the
gravitational source that stirs the fluid core is less than 30 percent of the total gravitational
energy released through the contraction of the Earth as it cools. Tilgner [16] presented
numerical simulations of dynamos in rotating Rayleigh–Bénard convection in plane layers.

Earlier research suggests that further investigation is needed into the relationship
between the heat transfer rates and control parameters associated with magnetohydro-
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dynamic stability. There is also potential for studying flow visualization in electrically
conducting fluids rotating about a vertical axis under the influence of a magnetic field.

The current study is particularly relevant to the research conducted by Roberts and
Jones [2], which examined the onset of convection. This model involves a vertically rotating
Rayleigh–Bénard layer of electrically conducting fluid that generates a magnetic field ((

−→
B0))

in the horizontal direction. We analytically solve the nonlinear governing equations using
the perturbation method proposed by Kuo [17], computing approximate solutions for the
dependent variables up to O(ϵ8) with free–free boundary conditions. The flow behavior in
our dynamo models with stress-free boundary conditions closely resembles that observed
with rigid boundary conditions. Our investigation centers on the onset of convection and
assesses how various parameters influence fluid flow, temperature distribution, and heat
transfer rates. To visualize the fluid flow, temperature distribution, and heat transfer, we
utilize the streamline, isotherm, and heatline concepts initially introduced by Kimura and
Bejan [18]. Recent studies, such as that by Rameshwar et al. [19], have performed nonlinear
analysis of cross-rolls in electrically conducting fluids subjected to an applied magnetic field
with rotation. Khedher et al. [20] explored the effects of heating and magnetohydrodynam-
ics (MHD) on the periodic behavior of current density and heat transfer amplitude in electri-
cally conducting fluids. Shuguang et al. [21] analyzed heat transfer in the MHD stagnation
point flow of a Maxwell nanofluid over a rotating porous disk, noting that the rotating
disk phenomenon leads to the formation of a circular arc at every point on the disk during
uniform rotation about an axis. Additionally, Shamshuddin et al. [22] investigated entropy
generation in the flow of a tangent hyperbolic magnetized hybrid nanofluid over a stretch-
able rotating disk, incorporating physical effects such as Ohmic dissipation, nonlinear
thermal radiation, heat dissipation, and entropy analysis. Taghreed et al. [23] numerically
assessed the combined influence of the wedge angle and melting energy transfer on the
flow of tangent hyperbolic magnetohydrodynamic (MHD) nanofluid across a permeable
wedge, and also examined the effects of thermal radiation and heat source/sink on the flow
of tangent hyperbolic nanofluid (THNF). In their research, Ramanuja et al. [24] examined
the steady-state behavior of an electrically conducting and compressible fully developed
viscous Jeffrey fluid flowing through infinitely parallel porous vertical microchannels and
subjected to a transverse magnetic field. Their study modeled the fluid dynamics using
the Navier–Stokes equations combined with energy conservation principles, enabling a
detailed analysis of the flow characteristics and thermal behavior under these specific
conditions. Qianqian Tang et al. [25] addressed the challenge of enhancing the thermal
storage stability of nanosuspension concentrates (SC) derived from low-melting-point pes-
ticides. Their study focused on the preparation of a 25 wt% pyraclostrobin nanosuspension
concentrate using a water-based grinding technique, with pyraclostrobin serving as the
primary raw material. Jun-Xia Li et al. [26] reported the synthesis of two cobalt(II) com-
plexes via a solvothermal reaction using cobalt chloride hexahydrate and triclopyr acetic
acid. Single-crystal X-ray diffraction analysis indicated that both complexes crystallized in
the triclinic system, specifically within a defined space group. Yun-Long Wu et al. [27] ex-
plored metal–organic framework (MOF)-supported metal nanoparticle (MNP) composites
(MNPs@MOFs), which leverage the synergistic effects of both materials. They outlined four
main synthesis strategies for these composites: ship-in-the-bottle, bottle-around-the-ship,
one-pot, and sandwich assembly. Their review summarizes recent developments in these
methods for designing and fabricating various MNPs@MOFs composites.

This version provides a clearer structure and emphasizes the significance of the re-
search questions in relation to the introduction:

• How does the rotation speed of the electrically conducting fluid affect the onset of
convection in a vertically oriented Rayleigh–Bénard layer?

• What role do control parameters such as fluid viscosity and thermal conductivity play
in the stability of magnetohydrodynamic convection?

• How can the streamline, isotherm, and heatline visualization techniques enhance our
understanding of flow dynamics and heat transfer in MHD systems?
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• What are the implications of entropy generation in the flow of magnetized hybrid nanoflu-
ids over rotating disks with regard to energy efficiency in engineering applications?

This research work is organized as follows: Section 2 provides the magnetohydrody-
namic equations in the Boussinesq approximation for the description of the flow; Section 3
presents the linear stability analysis; the method of solution is discussed in Section 4;
Section 5 presents the derivation of approximate solutions; analytical approximate ex-
pressions for Nu are obtained in Section 6; the patterns of streamlines and isotherms are
presented in Section 7; Section 8 deals with the heatfunction and heatline patterns; and
Section 9 deals with entropy generation. Finally, the conclusions are provided in Section 10.

2. Mathematical Model

Electrically conducting fluids of uniform density are positioned in infinite horizon-
tal layers that rotate about the vertical (OZ) axis with an angular velocity expressed as
Ω⃗(= Ω1⃗z). A uniform magnetic field B⃗0(=B01⃗y) is assumed to be applied in the horizontal
direction in the presence of uniform gravitational field g⃗ (=g1⃗z) (Figure 1). The momentum
equation neglects inertial forces as compared to Coriolis forces. This consideration arises
from the assumption of a large Prandtl number (Pr). The mathematical equations for the
model, based on the Boussinesq approximation, are presented as follows [2]:

Figure 1. Schematic diagram of the physical system.

2Ω⃗ρ0 × V⃗′ = −∇′P′ + J⃗′ × B⃗′

µm
+ g⃗αρ0 T′ + µ∇′2V⃗′, (1)

∂B⃗′

∂t′
= ∇′ × (V⃗′ × B⃗′) + η∇′2B⃗′, (2)

∂T′

∂t′
+ V⃗′ · (∇′T′) = κ∇′2T′, (3)

∇′ · B⃗′ = 0, (4)

∇′ · V⃗′ = 0, (5)

where J⃗′ = ∇′ × B⃗′ is the dimensional electric current density. To make Equations (1)–(4)
non-dimensional, the following scale parameters are taken into consideration [2]:

X =
1
d

X′, Y =
1
d

Y′, Z =
1
d

Z′, t =
η

d2 t′, u =
d
η

u′,

v =
d
η

v′, w =
d
η

w′, T =
T′

βd
, B =

1
B0

B′, p =
1

2Ωρ0η
p′.

Equations (1)–(4) then take the following dimensionless form:

1⃗Z × V⃗ = −∇p + Λ J⃗ × B⃗ + qR T1⃗Z + E∇2V⃗, (6)
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∂B⃗
∂t

= ∇× (V⃗ × B⃗) +∇2B⃗, (7)

∂T
∂t

+ V⃗ · (∇T) = q∇2T. (8)

∇ · V⃗ = 0, (9)

∇ · B⃗ = 0, (10)

where J⃗ = ∇× B⃗. Equations (6)–(10) are employed to examine the linear stability of a static
state:

V⃗s = 0⃗, B⃗s = 1⃗Y, Ts = −Z. (11)

After perturbation, these variables are expressed as dependent variables, provided by

V⃗ = V⃗s + V⃗∗, B⃗ = B⃗s + b⃗∗, θ = Ts +
θ∗

q
. (12)

In the following, the asterisk symbol will be removed for simplicity in the analysis
below, and the perturbed dimensionless equations become

E∇4w − ∂wZ
∂Z

+ qR∇h
2θ + Λ

∂

∂X
∇2bZ = Λ⃗1Z · ∇ × {∇× [(∇× b⃗)× b⃗]}, (13)

(
∂

∂t
+ V⃗ · ∇

)
θ − q w − q∇2θ = 0, (14)

(
∂

∂t
−▽2

)
bZ =

∂w
∂X

+ 1⃗Z · ∇ × (V⃗ × b⃗), (15)

(
∂

∂t
−▽2

)
BZ =

∂wZ
∂X

+ 1⃗Z · ∇ × [∇× (V⃗ × b⃗)], (16)

E∇2wZ + Λ
∂BZ
∂X

+
∂w
∂Z

+ Λ⃗1Z · ∇ × [(∇× b⃗)× b⃗] = 0, (17)

where

▽ = 1⃗X
∂

∂X + 1⃗Y
∂

∂Y + 1⃗Z
∂

∂Z ,▽2
h = ∂2

∂X2 +
∂2

∂Y2 ,

▽2 = ∂2

∂X2 +
∂2

∂Y2 +
∂2

∂Z2 , Bz = (
∂by
∂X − ∂bx

∂Y ), wz = ( ∂v
∂X − ∂u

∂Y ).

Here, V⃗ = V⃗(u, v, w) is the perturbed velocity, b⃗ = b⃗(bX , bY, bZ) is the perturbed mag-
netic field and θ is the perturbed temperature field, w⃗ = w⃗(wx, wy, wz) is the vorticity vector,
and the other notations are as explained in the Nomenclature. In Equations (13)–(17),
the control physical parameters are as follows: R = βgαd2/2Ωκ is the Rayleigh number,
accounting for buoyancy; E = ν/2Ωd2 is the Ekman number, which measures the viscous
force against the Coriolis force; and Λ = B0

2/2Ωηµmρ0 is the Elsasser number, which mea-
sures the magnetic forces against Coriolis force. The fourth parameter, q = κ/η, denotes
the ratio of the thermal diffusivity to the magnetic diffusivity.

By removing θ, wZ, bZ, and BZ from the linear section of Equations (13)–(17), we obtain

Lw = N , (18)

L = L1 + L2 + L3 + L4 + L5 + L6,
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and
N = N1 +N2 +N3 +N4 +N5,

where

L1 =

(
∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2 ∂2

∂Z2 ,

L2 = E2(
∂

∂t
− q∇2)

(
∂

∂t
−∇2

)2
∇6,

L3 = 2EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)(
∂2

∂X2

)
∇4,

L4 = Λ2
(

∂

∂t
− q∇2

)(
∂4

∂X4

)
∇2,

L5 = RqE
(

∂

∂t
−∇2

)2
∇2∇h

2,

L6 = RqΛ
(

∂

∂t
−∇2

)(
∂2

∂X2

)
∇h

2,

and

N1 =

[
ER
(

∂

∂t
−∇2

)2
∇2∇h

2 + RΛ
(

∂

∂t
−∇2

)(
∂2

∂X2

)
∇h

2

](
V⃗ · ∇

)
θ,

N2 = −
[

EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)
∇4 ∂

∂X
+ Λ2

(
∂

∂t
− q∇2

)(
∂3

∂X3

)
∇2
]⃗

1Z · ∇ ×
(

V⃗ × b⃗
)

,

N3 = −
[

Λ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)(
∂2

∂X∂Z

)]⃗
1Z · ∇ ×

[
∇× (V⃗ × b⃗)

]
,

N4 =

[
Λ2
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)
∂2

∂X2

]⃗
1Z · ∇ ×∇×

[
(∇× b⃗)× b⃗)

]
+[

EΛ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2
∇2

]⃗
1Z · ∇ ×∇×

[(
∇× b⃗

)
× b⃗
]
,

N5 = −
[

Λ
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2 ∂

∂Z

]⃗
1Z · ∇ ×

[(
∇× b⃗

)
× b⃗
]
.

The stress-free boundary conditions are specified on the horizontal planes at Z = 0
and Z = 1. Because the surface temperature is kept constant, we have

θ = 0 on Z = 0 and Z = 1 for every X, Y. (19)

At the boundaries, the standard component of velocity should also be equal to zero,
i.e.,

w = 0 on Z = 0 and Z = 1 for every X, Y. (20)

The conditions in (19) and (20) are independent of any type of boundaries. The
stress-free boundary conditions are considered; hence, we have the following:

∂2w
∂Z2 =

∂wz

∂Z
= 0 on Z = 0 and Z = 1 for every X, Y, (21)

BX = BY =
∂BZ
∂Z

= 0 on Z = 0 and Z = 1 for every X, Y. (22)
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3. Linear Stability Analysis

At the onset of convection, the system has only slight disturbances, causing the
nonlinear terms to be considerably smaller than the linear terms. As a result, nonlinear
contributions from Equation (18) are neglected. We obtain the linear differential equation,
with the solution being Lw = 0; thus,[(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2 ∂2

∂Z2 + E2
(

∂

∂t
− q∇2

)(
∂

∂t
−∇2

)2
∇6

+ R

(
qE
(

∂

∂t
−∇2

)2
∇2∇h

2

)]
w = 0. (23)

The resulting equation is linear. We define w(X, Y, Z, t) = W(Z)eikX+iaY+λt, where k
and a are constant wavenumbers. The modes with k = 0 are called parallel rolls, which are
independent of the magnetic field strength (Λ). When Λ = 0, the magnetic force does not
impart a preferred horizontal direction. The growth rate (λ) is a constant that remains real
for parallel rolls, indicating that they are never overstable [2]. The linear stability analysis is
explored by replacing w(Y, Z, t) = W(Z)eiaY+λt in the linearized equation Lw = 0, using
the normal mode analysis.

Stationary Convection

Equation (23) provides the Rayleigh number for stationary mode by taking λ = 0, and
is provided by

R =
π2 + d3

2E2

a2E
,

where d2 = a2 + π2. Figure 2 displays R as a function of a for various Ekman number
(E) values. It can be seen that as E decreases, the critical value Rcs also diminishes. This
suggests that a lower Ekman number (E) contributes to a destabilizing effect on the flow.
The critical value of R (Rcs) is found by setting ∂R/∂a2 = 0. The critical wavenumber is
provided by a2 = a2

cs = 2π2, and the critical value of (Rcs) of R for stationary convection is
defined as

Rcs =
27 E2π4 + 1

2E
.

5 6 7 8 9 10
0

200

400

600

800

1000

R

a

E = 0.03

E = 0.07
E = 0.05

Figure 2. Dependence of R on a for E = 0.03, 0.05 and 0.07.
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4. Method of Solution

According to Kuo [17], a solution can be achieved for the nonlinear system of equations
by means of two expansions. First, the dependent variables are expanded in a series of
orthogonal functions. Second, the coefficients associated with these functions are expanded
in a power series of a parameter ϵ < 1 as

ϵ2 =
R − Rcs

R
. (24)

The solutions for Equations (13)–(17) are represented as follows:

f = ϵ f1 + ϵ2 f2 + ϵ3 f3 + ϵ4 f4 + ϵ5 f5 + ϵ6 f6 + · · · , (25)

where
f = f (v, w, θ, bY, bZ, wZ, BZ).

The value of R according to Equation (24) is expressed as

R =
Rcs

1 − ϵ2 , (26)

and is either expanded in a power series in ϵ or the finite formula is applied as

R = Rcs + Ros(ϵ
2 + ϵ4 + ϵ6 + . . . + ϵ2s), (27)

where

Ros =
Rcs

1 − ϵ2s , s = 1, 2, 3 . . . . . . (28)

By introducing Equations (25) and (27) into Equation (13), the following different-order
equations are obtained:

O(ϵ) : (L1 + L2 + L3 + L4)w1 + Rcs(L5 + L6)w1 = 0, (29)

O(ϵ2) : (L1 + L2 + L3 + L4)w2 + Rcs(L5 + L6)w2 = 0. (30)

O(ϵ3) : (L1 + L2 + L3 + L4)wi + Rcs(L5 + L6)wi + Ros(L5 + L6)wi−2

= RcsN1 +N2 +N3 +N4 +N5, for i = 3. (31)

O(ϵ4) : (L1 + L2 + L3 + L4)wi + Rcs(L5 + L6)wi + Ros(L5 + L6)wi−2

+Ros(L5 + L6)wi−4 = (Rcs + Ros)N1 +N2 +N3 +N4 +N5, for i = 4, 5. (32)

In general,

(L1 + L2 + L3 + L4)wi + Rcs(L5 + L6)wi + Ros(L5 + L6)wi−2

+Ros(L5 + L6)wi−4 = (Rcs + 2Ros)N1 +N2 +N3 +N4 +N5, for i ≥ 6. (33)

Here, the linear operators in Li, i = 1, 2, 3, 4, 5, 6 and the nonlinear terms in Ni,
i = 1, 2, 3, 4, 5 are the functions of vi, wi, θi, bYi and bZi . Each vi, wi and θi must satisfy the
boundary conditions in Equations (19)–(21). In addition, θi, bYi and bZi are evaluated from
vi and wi using an auxiliary equation derived from the Equations (31)–(33). The spectral
equation for the temperature is provided by(

∂

∂t
−∇2

)
θ1 = qw1, (34)
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(
∂

∂t
−∇2

)
θ2 + (

−→
V 1.∇)θ1 = qw2. (35)

In general, (
∂

∂t
−∇2

)
θi +

i−1

∑
l=1

(
−→
V l .∇)θi−l = qwi, for i ≥ 3. (36)

Similarly, the equations for the magnetic field are formulated as follows:(
∂

∂t
−∇2

)
bY1 =

∂v1

∂X
, (37)

(
∂

∂t
−∇2

)
bYi =

∂vi
∂X

+
∂

∂X
(
v1bXi−1 + · · ·+ vi−1bX1 − u1bYi−1 · · ·+ ui−1bY1

)
+

∂

∂Z
(
v1bZi−1 + · · ·+ vi−1bZ1 − w1bYi−1 · · ·+ wi−1bY1

)
, for i ≥ 2, (38)

(
∂

∂t
−∇2

)
bZ1 =

∂w1

∂X
, (39)

(
∂

∂t
−∇2

)
bZi =

∂wi
∂X

− ∂

∂X
(
u1bZi−1 + · · ·+ ui−1bZ1 − w1bXi−1 · · ·+ wi−1bX1

)
− ∂

∂Y
(
v1bZi−1 + · · ·+ vi−1bZ1 − w1bYi−1 · · ·+ wi−1bY1

)
for i ≥ 2. (40)

5. Discussion of the Solution

The approximate solutions for w, θ, bY, and bZ are calculated in terms of amplitude.
For the case with two free boundaries, the spatial functions associated with the differ-
ent modes w, θ, bY, and bZ are represented by sine and cosine functions. Hence, from
Equations (29), (34), (37) and (39), the first order of the approximate solution is provided by

w1 = A1 cos aY sin πZ,

v1 =
1
a2

∂2w1

∂z∂y
,

θ1 =
q

π2 + a2 A1 cos aY sin πZ,

bY1 = 0,

bZ1 = 0, (41)

where the amplitude A1 is determined from the nonlinear terms. Generally, the terms in
Equation (25) may be written as

wi = Ai cos aY sin πZ + ∑
p1,q1

w(i)
p1q1 cos p1aY sin q1πZ, (42)

vi =
1
a2

∂2wi
∂z∂y

, (43)

θi =
qAi

π2 + a2 cos aY sin πZ + ∑
p1,q1

θ
(i)
p1q1 cos p1aY sin q1πZ, (44)

bYi = 0, (45)

bZi = 0, (46)
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where w(i)
p1q1 and θ

(i)
p1q1 are nonlinear functions of the amplitudes A1, A2, A3. . . . . . Ai−1. The

unknown functions w(i)
p1q1 , θ

(i)
p1q1 (and the amplitudes A1, A2, A3. . . . . . Ai−1) are obtained by

substituting Equations (25) and (27) in Equations (13)–(17). We utilize the principle that the
coefficients of each power of ϵ must equal zero.

5.1. Evaluation of Amplitude A1

To solve the second-order solutions w2, θ2, bX2 , and bZ2 , the nonlinear term N needs
to be calculated. From Equation (30), it is observed that N = 0; this leads to Lw2 = 0 and

w(2)
02 = 0 and θ

(2)
02 =

−qπA2
1

8π2(π2 + a2)
. (47)

The unknown functions w2, θ2, bY2 , and bZ2 are obtained from Equations (30), (35), (38)
and (40), respectively, and are expressed as follows:

w2 = A2 cos aY sin πZ,

v2 =
1
a2

∂2w2

∂z∂y
,

θ2 =
qA2

π2 + a2 cos aY sin πZ + θ02
(2)A1

2 sin 2πZ,

bY2 = 0,

bZ2 = 0. (48)

From Equation (31), for i = 3, the amplitude A1 is calculated as

(L1 + L2 + RcsL5)w3 + RosL5w1

= Rcs[Eq(a2 + 9π2)
3
a2]πθ

(2)
02 A1

3 cos aY sin 3πZ

− Rcs[Eq(a2 + π2)
3
a2]πθ

(2)
02 A1

3 cos aY sin πZ. (49)

Solving the above equation provides A1, and can be expressed by

A1 =

√
Rcs π θ

(2)
02 Ros q

Rcs π θ
(2)
02

. (50)

The unknown functions w3 and θ3 are obtained from Equations (31) and (36), respec-
tively, which are provided by

w3 = A3 cos aY sin πZ + w(3)
13 cos aY sin 3πZ,

v3 =
1
a2

∂2w3

∂z∂y
,

θ3 =
qA3

π2 + a2 cos aY sin πZ + θ
(3)
11 cos aY sin πZ

+ θ
(3)
13 cos aY sin 3πZ + θ

(3)
02 sin 2πZ, (51)

where

w(3)
13 =

Rcs Eq
(
9 π2 + a2)2a2π θ

(2)
02

D13

and

θ
(3)
11 = −

π θ
(2)
02

d2
,
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θ
(3)
13 =

q2(9 π2 + a2)Rcs Ea2π θ
(2)
02

−9 q(9 π2 + a2)
3
π2 − E2q(9 π2 + a2)

6 + Rcs q2E(9 π2 + a2)
3a2

−
π θ

(2)
02

9 π2 + a2 .

This iterative process is continued to find A2, A3, A4, A5, A6 and the corresponding w,
θ, bX , bZ.

5.2. Evaluation of Amplitudes A2 and A3

Initially, Equation (32) is solved for i = 4, i.e.,

(L1 + L2 + RcsL5)w4 + RosL5w2 = (Rcs + Ros)N1 +N2 +N3 +N4 +N5. (52)

The nonlinear terms Ni, i = 1, 2, 3, 4, 5 are determined by utilizing Equations (41), (48)
and (51). From the solvability condition of Equation (52), we have A2 = 0. This means that
all second-order solution vanish except for θ

(2)
02 , which is shown in Equation (48). Therefore,

Equation (52) reduces to

(L1 + L2 + RcsL5)w4 + RosL5w2 = K1 A1
4 cos 2aY sin 4πZ

+ K2 A1
4 cos 2aY sin 2πZ. (53)

The coefficients K1 and K2 in Equation (53) are functions of a, E, and q, while w4, θ4
are evaluated by Equations (32) and (36) and are provided by

w4 = A4 cos aY sin πZ + w(4)
24 A4

1 cos 2aY sin 4πZ

+ w(4)
22 A4

1 cos 2aY sin 2πZ,

v4 =
1
a2

∂2w4

∂z∂y
, (54)

θ4 =
q

(a2 + π2)
A4 cos aY sin πZ + θ

(4)
02 A1 A3 sin 2πZ

+ θ
(4)
02 A4

1 sin 2πZ + θ
(4)
22 A4

1 cos 2aY sin 2πZ

+ θ
(4)
24 A4

1 cos 2aY sin 4πZ + θ
(4)
04 A4

1 sin 4πZ (55)

where

w(4)
24 = 4

Eqd24
3a2(Rcs + Ros)

D24

(
1
2

π θ
(3)
13 +

1
4

qav(3)13
d2

+
1
4

qπ w(3)
13

d2

)
,

w(4)
22 = 4

Eqd22
3a2(Rcs + Ros)

D22

(
−π θ

(3)
13 − 1

4
qav(3)13

d2
+

1
4

qπ w(3)
13

d2

)
,

θ
(4)
02 = −1

4
1

π2

(
−1

2
π θ

(3)
13 +

1
4

qav(3)13
d2

+
1
4

qπ w(3)
13

d2
+

1
2

π θ
(3)
11

)
,

θ
(4)
04 = − 1

16
1

π2

(
π θ

(3)
13 − 1

4
qav(3)13

d2
+

1
4

qπ w(3)
13

d2

)
,

θ
(4)
22 =

1
d22

(
qw(4)

22 + π θ
(3)
13 +

1
4

qav(3)13
d2

− 1
4

qπ w(3)
13

d2

)
,

θ
(4)
24 =

1
d24

(
qw(4)

24 − 1
2

π θ
(3)
13 − 1

4
qav(3)13

d2
− 1

4
qπ w(3)

13
d2

)
,

and
D24 = −16 q(d24)

3π2 − E2q(d24)
6 + 4 Rcs q2E(d24)

3a2,
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D22 = −4 q(d22)
3π2 − E2q(d22)

6 + 4 Rcs q2E(d22)
3a2,

d22 = 4a2 + 4π2, d24 = 4a2 + 16π2.

To determine the value of A3, the fifth-order equation for i = 5 of Equation (32) is
solved, which can be written as follows:

(L1 + L2 + RcsL5)w5 + RosL5(w3 + w1) = (Rcs + Ros)N1. (56)

Evaluating N1 from Equations (41), (48), (51), (54) and (55) we obtain

N1 = D1 A5
1 cos aY sin 5πZ + D2 A5

1 cos aY sin 3πZ

+ D3 A5
1 cos 3aY sin 5πZ + D4 A5

1 cos 3aY sin 3πZ

+ D5 A5
1 cos aY sin πZZ + D6 A5

1 cos 3aY sin πZ

+ D7 A2
1 A3 cos aY sin 3πZ + D8 A2

1 A3 cos aY sin πZ. (57)

In Equation (57), the coefficients Di, i = 1, 2 . . . , 8 are the functions of a, E, and q
(Di = Di (a, E, q)). Thus, A3 is provided by

A3 =
S1

S2
, (58)

where
S1 = −Ros q2Ed2

3a2 A1

+Eqd2
3a2

(
π θ

(2)
02 w(3)

13 +
aqv(4)22

4d2
+

π qw(4)
22

4d2
+

1
4

π θ
(4)
22 − θ

(4)
02 π

)
×(Rcs + Ros)A1

5,

and
S2 = Ros q2Ed2

3a2 − Eqd2
3a2
(
−π θ

(2)
02 − θ

(4)
02 π

)
(Rcs + Ros)A1

3.

The amplitude A3 is determined from the first-, second, third-, fourth-, and fifth-order
approximate solutions; w5 and θ5 are evaluated from Equations (36) and (56), and are
provided by

w5 = A5 cos aY sin π Z + D9 A1
3 cos aY sin 3 π Z

+ D10 A1
5 cos aY sin 3 π Z + D11 A1

2 A3 cos aY sin 3 π Z

+ D12 A1
5 cos aY sin 5 π Z + D13 A1

5 cos 3 aY sin 5 π Z

+ D14 A1
5 cos 3 aY sin 3 π Z + D15 A1

5 cos 3 aY sin π Z,

v5 =
1
a2

∂2w5

∂z∂y
,

θ5 =
A5q cos aY sin π Z

d2
+ D16 A1

3 cos aY sin 3 π Z

+ D17 A1
5 cos aY sin 3 π Z + D18 A1

2 A3 cos aY sin 3 π Z

+ D19 A1
5 cos aY sin 5 π Z + D20 A1

5 cos 3 aY sin 5 π Z

+ D21 A1
5 cos 3 aY sin 3 π Z + D22 A1

5 cos 3 aY sin π Z

+ D23 A1
2 A3 cos aY sin π Z + D24 A1 A4 sin 2 π Z, (59)

where the coefficients Di, i = 9, 10 . . . , 24 are the functions of a, E, and q (Di = Di (a, E, q)).

5.3. Evaluation of Amplitudes A4, A5, and A6

Proceeding as above, the sixth-order approximate solutions are obtained from
Equations (33) and (36) and are provided by
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w6 = A6 cos aY sin πZ

+ cos 2aY(E1 sin 2πZ + E2 sin 4πZ + E3 sin 6πZ)

+ cos 4aY(E4 sin 2πZ + E5 sin 4πZ + E6 sin 6πZ),

v6 =
1
a2

∂2w6

∂z∂y
,

θ6 =
qA6

π2 + a2 cos aY sin πZ

+ cos 2aY(E7 sin 2πZ + E8 sin 4πZ + E9 sin 6πZ)

+ cos 4aX(E10 sin 2πZ + E11 sin 4πZ + E12 sin 6πZ)

+ E13 sin 2πZ + E14 sin 4πZ + E15 sin 6πZ. (60)

In Equation (60), the coefficients Ei (i = 1, 2 . . . , 15) are functions of a, E, and q (Ei = Ei
(a, E, q)). The solution of the sixth-order equation provides A4 = 0. The above solution
plays an important role in the calculation of A5, which can be found by solving the seventh
order of Equation (33). The computation becomes more tedious as the order of ϵ increases.
Proceeding as above, A6 = 0 can be obtained; thus, it can be observed that A2 = A4 =
A6 = 0.

6. Natural Convective Heat Transport

The local Nusselt number (NL), which represents the heat transfer coefficient, is
defined as follows [18–31]:

NL =
∂T
∂n

, (61)

where ∂
∂n stands for dimensionless derivation of the normal direction on the plane. The

average Nusselt number Nu for heat transfer, which is independent of the axial coordinate
Z, can be expressed as follows:

Nu = wT − ∂T
∂Z

. (62)

In this context, the overbar indicates that we are using the mean value of the convective
heat transfer coefficient across the horizontal plane. Using Equation (62), we obtain Nu by in-
tegrating the expression over the range of interest, such as on the boundary, with Z = 0 [30].

Nu =
1
L

∫ L

0

(
WT − ∂T

∂Z
|Z=0

)
dY, (63)

where L denotes the normalized horizontal cell width.

6.1. Local Nusselt Number (NL)

The influence of the Rayleigh number and Ekman number on heat transfer across a
boundary is analyzed through the local Nusselt number. Figure 3a,b displays the local
Nusselt number distributions along the heated bottom wall for different Rayleigh and
Ekman numbers. In Figure 3a, it is evident that an increase in the Rayleigh number leads to
a higher heat transfer rate, which is attributed to improved fluid flow. At lower Rayleigh
numbers the convection is minimal and heat transfer is primarily governed by conduction,
resulting in the presence of small spikes in the Nusselt number. Figure 3b shows how the
local Nusselt number varies along the bottom wall for various Ekman numbers while the
Rayleigh number is kept constant at R = 8Rcs. This demonstrates how changes in the
Ekman number affect the local heat transfer performance, complementing the findings from
varying Rayleigh numbers. This phenomenon can be attributed to the reduced viscous
damping effects at lower Ekman numbers, which allow for more vigorous fluid motion
and enhanced convective heat transfer. As the Ekman number decreases, the flow becomes
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less influenced by viscous forces, facilitating stronger thermal gradients and increased heat
flux across the fluid layer.

Figure 3. Variation of NL with respect to Y: (a) E = 0.03, Rcs = 5262.664915, and q = 0.01 for different
R; (b) R = 8Rcs and q = 0.01 for different E.

6.2. Average Nusselt Number (Nu)

The average Nusselt number (Nu) can be calculated to characterize the overall heat
transfer behavior in a system. For this analysis, we consider Nu(2)(s = 1), Nu(4)(s = 2), and
Nu(6)(s = 3), to represent the second-, fourth-, and sixth-order approximations of the Nusselt
number, respectively; Nu(2) is calculated, and is provided by

Nu(2) = 1 + 0.787
1

πRcs
·
√

(27 E2π4 − 2 Rcs qE + 1)Rcs q
E

. (64)

Due to the lengthy expression of A3 and A5, the approximations for Nu(4) and Nu(6)

are lengthy, and are not included here to conserve space.
Figure 4 illustrates the influence of the Rayleigh number R on the Nusselt number Nu

for various Ekman numbers (E). From the figure, it can be seen that at low Rayleigh
numbers the average Nusselt number is roughly equal to the Rayleigh number; however,
when R surpasses 104, the mean Nusselt number shows an increasing trend with rising
Rayleigh numbers. Additionally, a transition from conduction to convection heat transfer
occurs beyond R = 104. It is important to note that the heat transfer coefficient is influenced
not only by the Rayleigh number but also by the Ekman number, with the average Nusselt
number rising as the Ekman number decreases. If the Ekman number is low, then the
viscous force is weak, while if the Ekman number is large, then the viscous force is strong.
Therefore, the combination of the largest Rayleigh number and smallest Ekman number in
the selected region provides the maximum value of the average Nusselt number. Figure 5
shows the plot of energy versus R/Rcs for several values of E. We find that the potential
energy is almost constant for all combinations of the Rayleigh number and Ekman number,
while the kinetic energy increases as the value of the Ekman number decreases. This is
because a lower Ekman number reduces viscous forces and increases kinetic energy.
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Figure 4. Dependence of Nu on R for E = 0.03, 0.05, 0.07, and q = 0.01.

Figure 5. Kinetic energy and potential energy against R/Rcs for q = 0.01.

7. Distortion of Streamlines and Isotherms

Fluid motion is characterized by a stream function (Ψ) derived from the velocity
components v and w. The relationship between the stream function Ψ and the velocity
components v and w in a two-dimensional flow can be expressed as follows:

v = −∂Ψ
∂Z

and w =
∂Ψ
∂Y

,
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resulting in a single equation. The arbitrary constants of integration are eliminated by
applying the following boundary conditions for Ψ [17]:

Ψ = ∇2Ψ = 0 for Y = 0,
√

2π/a and Z = 0, 1.

Snapshots of the flow field and heat transfer near the onset of steady-state convection
are plotted in the form of streamlines and isotherms, respectively, for various values
of R and E. To find the absolute minimum or absolute maximum values of Ψ(Y, Z), all
of the critical points are initially calculated; then, each critical point is examined using
sufficient conditions to decide whether Ψ has an absolute minimum or absolute maximum
value at this point. It is assumed that Ψ is continuous and possesses first- and second-order
partial derivatives at a point P(a, b). If P is a critical point, then P(a, b) is a point of

absolute minimum if rτ − s2 > 0 and r > 0, (65)

absolute maximum if rτ − s2 > 0 and r < 0, (66)

where
r = ΨYY(a, b), s = ΨYZ(a, b) and τ = ΨZZ(a, b).

No conclusion about an extremum can be drawn if rτ − s2 = 0, in which case further
investigation is needed. If rτ − s2 < 0, then Ψ has no absolute minimum or absolute
maximum at this point, in which case P(a, b) is called a saddle point.

A parametric investigation was carried out to examine how the Rayleigh number (R)
and Ekman number (E) affect the fluid flow and temperature distribution, as shown in
Figures 6–8. Figure 6 illustrates the impact of E on the streamlines and isotherms near the
critical Rayleigh number (Rcs). In Figure 6a, the streamlines for E = 0.03 and q = 0.01 reveal
that the absolute maximum and minimum values of the circulation strength are 0.4155 and
0.41549, respectively. Figure 6c presents the streamlines for E = 0.07 and q = 0.01, showing
a reduction in the absolute maximum and minimum circulation intensities to −0.00998
and −0.01002, respectively. Both subfigures in Figure 6a,c indicate that the streamlines
exhibit concentric rolling patterns at R ≃ Rcs. The temperature distribution is represented
in Figure 6b,d with isotherms at R ≃ Rcs. The viscous forces near the onset are comparable
to the buoyant forces, and give rise to conduction modes of heat transfer. As E increases
from 0.03 to 0.07 (Figure 6b,d), the isotherm remains smooth because the viscous force
begins to dominate the buoyant force.

Figure 7 illustrates the impact of the Rayleigh number on the fluid flow and tempera-
ture distribution for a fixed Ekman number (=0.03). Figure 7a,b presents the streamlines
and isotherms for R = 2Rcs. It is evident from the figure that the primary parallel rolls are
slightly inclined to the right, with maximum and minimum circulation strengths of 1.37693
and −1.37692, respectively. The isotherms exhibit wavy patterns, indicating that buoyant
forces are beginning to dominate over viscous forces, marking the onset of convective
heat transfer. Figure 7c,d depicts the streamlines and isotherms for R = 5Rcs. In this case,
the tilted primary cell has been altered by the emergence of two additional eddies with a
circulation strength of −0.823 near the upper left and lower right boundaries. Moreover,
two new vortices, referred to as A and A′, form within the primary cell, displaying abso-
lute maximum and minimum circulation strengths of 1.920 and −1.920, respectively. The
corresponding isotherm distribution is shown in Figure 7d, which illustrates the convective
mode of temperature distribution in the liquid layer. Notably, in Figure 7e,f the primary
streamline cell, with maximum and minimum values of 6.20542 and −6.20541, is observed
to have split into two counter-clockwise rotating cells, labeled B and B′. This change occurs
as the buoyant force becomes significantly stronger relative to the viscous force. Under
these conditions, convection-driven fluid motion is present between the two horizontal
plates, with most of the temperature being transferred from the bottom plate to the top
plate. As the Rayleigh number increases from 2Rcs to 8Rcs, the strength of fluid circulation
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increases significantly and the temperature gradient between two plates is steep, as can be
observed from the streamlines and temperature contours.
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Figure 6. The effect of E near Rcs and q = 0.01: streamlines are plotted for (a) E = 0.03 and (c) E = 0.07
and isotherms for (b) E = 0.03, Rcs = 5262.664915 and (d) E = 0.07, Rcs = 6755.126806.
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Figure 7. Cont.
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Figure 7. The effect of R = 2Rcs, 5Rcs, 8Rcs: streamlines (a,c,e) and isotherms (b,d,f) are plotted
for E = 0.03, Rcs = 5262.664915, and q = 0.01.

Figure 8 highlights the effects of viscous forces on streamlines and isotherms for fixed
parameters of R = 8Rcs and q = 0.01. The influence of the Ekman number (E) is illustrated
by a series of flow patterns, shown in Figures 7e,f and 8a–d for E values of 0.03, 0.05, and
0.07. In Figure 8a, the streamlines for E = 0.05 are depicted within the range of 0 ≤ Y ≤ 1.
The maximum and minimum circulation strengths are measured at 6.07826 and −6.07805,
respectively. This figure reveals two vortices, labeled B and B′, located near the upper left
and lower right boundaries, each exhibiting a circulation strength of 3.879. The primary cell
is also subdivided into two additional vortices, named A and A′. Figure 8c, representing
E = 0.07, shows absolute maximum and minimum circulation strengths of 5.95964 and
−5.95926, respectively. In the range of 0 ≤ Y ≤ 1, the flow pattern appears distorted due to
the presence of vortices B and B′, which are situated near the top and bottom boundaries
with a circulation strength of 3.778. Temperature distributions are shown in Figure 8b,d
through isotherms for E = 0.05 and 0.07, respectively. Overall, Figure 7e,f and Figure 8
indicate a decline in both the circulation strength of the primary cell and the intensity of
the temperature distribution as the Ekman number increases. It is noteworthy that the
dominance of the left counterclockwise rotating cell over the right clockwise rotating cell
becomes more pronounced as the Ekman number decreases. This phenomenon is attributed
to the increase in circulation strength of the right cell, which rises from 3.778 at E = 0.07 to
3.879 at E = 0.05. The enhanced circulation strength in the right cell suggests that reduced
viscous effects allow for more vigorous flow patterns, reinforcing the dominance of the left
cell as the Ekman number decreases.
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Figure 8. The effect of E = 0.05, Rcs = 5896.136279, and E = 0.07, Rcs = 6755.126806: streamlines (a,c)
and isotherms (b,d) are plotted for R = 8Rcs and q = 0.01.

Topology of Flow

Topological fluid mechanics focuses on finding the structural characteristics of a fluid
flow. This often begins with identifying crucial places in the flow where the vorticity
may be zero, then studying the structure of the flow in the vicinity of these spots. The
topology constraint of the flow relies on the Euler number, denoted by ζ ′. According to Jana
et al. [32], ζ ′ on the surface is calculated by summing the Poincare indices at ‘stagnation
points’ where the fluid is instantaneously at rest. The number of critical points are related
by Euler’s identity:

NE − (NH +
1
2

NP) = ζ ′, (67)

where NE refers to the count of elliptic points, NH signifies the count of hyperbolic points,
and NP denotes the count of parabolic points [33,34]. This is the most straightforward
outcome of a topological character for a flow, and it remains true throughout the fluid
flow. Figure 9 illustrates the vorticity contours for different values of R and fixed E = 0.03
and q = 0.01. The vorticity contours for R ≃ Rcs are illustrated in Figure 9a with NE = 2,
NH = 2 and NP = 0. Figure 8b represents the vorticity contours for R = 8Rcs with NE = 8,
NH = 8 and NP = 0. From Figure 9a,b, we can conclude that the topological relation
specified in Equation (67) is satisfied.
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Figure 9. Vorticity lines for E = 0.03, Rcs = 5262.664915, and q = 0.01: (a) R ≃ Rcs and (b) R = 8Rcs.

8. Heatfunction

The heatline concept is similar to a streamline, except that it visualizes net energy flow
in a convection or conduction heat transfer scenario. The visualization of heat transmission
through fluid flow was revolutionized by Kimura and Bejan [18] with the introduction of
the idea of heatlines. Building upon this breakthrough, Morega and Bejan [35] effectively
applied the concept of heatlines. Several researchers [36–43] have applied this concept to
various natural convection systems. The heat function (H∗) is defined as

∂H∗

∂Y
= wT − ∂T

∂Z
, (68)

−∂H∗

∂Z
= vT − ∂T

∂Y
, (69)

where T = Ts + θ and Ts = To − Z, with T0 as the reference temperature. Differentiating
Equations (68) and (69) with respect to Y and Z, respectively, then subtracting the two
results yields the following equation:

∂2H∗

∂Y2 +
∂2H∗

∂Z2 =
∂(wT)

∂Y
− ∂(vT)

∂Z
. (70)

The boundary conditions on H∗ can be deduced from the Equations (68) and (69),
which define the heat function [30]:

H∗(Y, 0) = H∗(0, 0) +
∫ Y

0

(
wT − ∂T

∂Z

)
dY, at Z = 0 and 0 ≤ Y ≤

√
2π/a, (71)

H∗(Y, 1) = H∗(0, 1) +
∫ Y

0

(
wT − ∂T

∂Z

)
dY, at Z = 1 and 0 ≤ Y ≤

√
2π/a, (72)

H∗(0, Z) = H∗(0, 0)−
∫ Z

0

(
vT − ∂T

∂Z

)
dZ, at Y = 0 and 0 ≤ Z ≤ 1, (73)

H∗(
√

2π/a, Z) = H∗(
√

2π/a, 0)−
∫ Z

0

(
vT − ∂T

∂Z

)
dZ, at Y =

√
2π/a and 0 ≤ Z ≤ 1. (74)
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Results and Discussion for Heatlines

Figure 10a–d depicts the net energy flow through convection and conduction at
various Rayleigh numbers (R) while keeping the Ekman number constant at (E = 0.03).
For R < Rcs, conduction primarily governs the heat transfer across the layer. In Figure 10a,
we observe the heat transfer when R ≃ Rcs, with absolute maximum and minimum
values of the heatlines recorded at 6.32101 and −0.07152, respectively, within the range
of 0 ≤ Y ≤ 5. This indicates that nonlinear heat transfer begins to take place at R ≃ Rcs,
marking a transition from conduction to convection. At this point, the heat transfer across
the horizontal layer remains low due to weak buoyancy forces. Figure 10b shows the results
for R = 1.05Rcs, where the absolute maximum and minimum values of the heatlines are
6.34066 and −0.2862, respectively. The influence of increased convection is more evident in
the heatlines. As R increases from Rcs to 1.05Rcs, the previously curved heatlines transform
into closed loops, as illustrated in Figure 10b. With a further increase in the Rayleigh
number to R = 1.15Rcs, the absolute maximum and minimum heatline values are 6.36755
and −0.50782, respectively, as shown in Figure 10c. The maximum value of 6.36755 signifies
a further enhancement in heat transfer at R = 1.15Rcs. Finally, Figure 10d presents data for
R = 1.15Rcs, displaying absolute maximum and minimum values of 6.38648 and −0.60663,
respectively. Here, convection intensifies and becomes the dominant mechanism for heat
transfer. A significant number of heatlines appear near the hot wall, signifying a high
heat flux toward the cold wall as R increases. This clearly illustrates the critical role that
convection plays in the heat transfer process as the Rayleigh number continues to rise.
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Figure 10. The effect of R ≃ Rcs, R = 1.05Rcs, 1.15Rcs, and 1.25Rcs: heatlines (a–d) are plotted for
E = 0.03 and Rcs = 5262.664915, T0 = 1, and q = 0.01, respectively.
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Figures 10d and 11a,b demonstrate the impact of the Ekman number E on the heat
transfer for a fixed ratio R = 1.25Rcs. In Figure 11a, with E = 0.05, the heatlines exhibit
absolute maximum and minimum values of 5.92779 and −0.66694, respectively. Conversely,
Figure 11b for E = 0.07 shows maximum and minimum values of 4.3253 and −0.65158,
respectively, indicating that both the magnitude and number of closed loops in the heatlines
decrease within the range of 0 ≤ Y ≤ 5 as E increases. Increasing E correlates with a reduc-
tion in both the magnitude and number of closed loops in the heatlines. This suggests that
higher Ekman numbers, which are associated with more significant viscous forces, diminish
the effectiveness of convective heat transfer. Moreover, analysis of Figures 10d and 11a,b
indicates that the highest heatline values observed in the corner region increase as E de-
creases. This further reinforces the idea that lower Ekman numbers are linked to improved
heat flow, highlighting the critical role of viscous effects in influencing the efficiency of
convective heat transfer in the studied system. This can be attributed to the lower viscosity
of the fluid at smaller Ekman numbers, which enhances the convective flow and facilitates
more effective heat transfer.
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Figure 11. The effect of E = 0.05, Rcs = 5896.136279, E = 0.07, and Rcs = 6755.126806: heatlines (a,b)
are plotted for R = 1.25Rcs, T0 = 1, and q = 0.01.

9. Total Entropy Generation

It is essential to grasp how to use energy resources efficiently while minimizing energy
degradation, particularly in terms of reducing entropy generation during heat transfer.
This study connects entropy generation to the irreversible aspects of heat transfer and
the viscous effects that occur within the fluid and at the interfaces between the fluid and
solid surfaces. The total nondimensional entropy generation rate, denoted as (Sgen), is
determined by summing the contributions from heat transfer irreversibility (SHTI) and
fluid friction irreversibility (SFFI). This methodology draws upon the approaches out-
lined in references [44–48]. The total entropy generation can be expressed mathematically
as follows:

Sgen = SHTI + SFFI , (75)

SHTI =

(
∂T
∂Y

)2
+

(
∂T
∂Z

)2
, (76)

SFFI = χ

[
2
(

∂v
∂Y

)2
+ 2
(

∂w
∂Z

)2
+

(
∂v
∂Z

+
∂w
∂Y

)2
]

. (77)

In this study, the nondimensional velocity and temperature functions, referred to as v,
w, and T, are discussed in Section 2, with the magnetic permeability parameter χ (magnetic
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permeability) fixed as 10−4. The viscous dissipation model proposed by Baytas [49] serves
as the foundation for deriving Equation (75). A parametric investigation has been carried
out to assess how the Rayleigh number (R) and Ekmann number (E) influence local entropy
generation. Figure 12a–d illustrates the local entropy generation related to heat transfer and
fluid friction for various values of R. It can be observed that at lower R values, the maximum
entropy generation remains relatively low due to limited heat transfer and fluid motion.
This phenomenon occurs because the weak buoyancy forces at low R lead to a regime in
which heat transfer is primarily conductive. In contrast, Figure 12b–d reveals that as R
increases, the total entropy generation associated with heat transfer also rises, particularly
in the vicinity of the hot plate. This observation indicates that enhanced buoyancy forces
improve the convective heat transfer mechanism. Additionally, Figure 13a,b demonstrates
that as the Ekman number E increases there is a corresponding increase in total entropy
generation due to fluid friction, highlighting the relationship between viscous effects and
entropy generation within the system. This increase can be attributed to the fact that
entropy generation due to fluid friction is dependent on the velocity gradient, which in
turn is influenced by the magnetic permeability of the fluid.
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Figure 12. Total entropy generation due to heat transfer and fluid flow for E = 0.03. Rcs = 5262.664915,
and q = 0.01: (a)R ≃ Rcs, (b) R = 2Rcs, (c) 5Rcs, and (d) 8Rcs.
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Figure 13. Total entropy generation due to heat transfer and fluid flow for R = 8Rcs and q = 0.01:
(a) E = 0.05, Rcs = 5896.136279 and (b) E = 0.07, Rcs = 6755.126806.

10. Conclusions

In this research, we have analytically examined the Rayleigh–Bénard system involving
an electrically conducting fluid that rotates around a vertical axis while exposed to a
uniform horizontal magnetic field. Our detailed analysis focused on fluid flow patterns,
temperature distribution, and heat transfer mechanisms, utilizing streamlines, isotherms,
and heatlines for visualization. This approach enhances our understanding of heat flow
dynamics in the Earth’s liquid core, particularly when the flow rolls align with the magnetic
field. We found that when the Rayleigh number (R) surpasses the critical threshold R > Rcs,
convection becomes the dominant heat transfer mode, driven by substantial heat flow from
the bottom of the layer. Below, we highlight some significant outcomes of our study:

• Linear stability analysis revealed that as the Ekman number (E) decreases, the crit-
ical Rayleigh number (Rcs) also decreases, indicating that lower E values stabilize
the system.

• The nonlinear partial differential equations were solved using the perturbation method
up to O(ϵ8) yielding approximate solutions for the system.

• Analysis of the local Nusselt number indicated that its maximum value increases with
rising Rayleigh number (R).

• As E decreases, the number of peaks in the local Nusselt number (NL) increases.
• From the results of the Nusselt number, it is observed that heat flux increases as E decreases.
• A decrease in E corresponds to an increase in the total energy of the system.
• Based on the trajectories of heatlines, streamlines, and isotherms, it was determined

that decreasing E leads to greater deformation of the flow field and enhanced heat
transfer with increased rotation.

• At higher Rayleigh numbers, the primary source of entropy generation is attributed to
irreversible heat transfer; conversely, at high Ekman numbers, irreversibility arises
from fluid friction.

To further expand on these findings, we recommend the following avenues for
future research:

• Three-Dimensional Nonlinear Analysis: Future studies should explore three-dimensional
nonlinear analyses of the system. While our current analysis is based on two-dimensional
models, three-dimensional effects can significantly influence flow patterns, stability, and
heat transfer. Investigating the interplay between axial and radial components of the
flow may yield richer dynamics and insights into the complexities of the thermal system.

• Oscillatory Convection: Incorporating oscillatory convection into the study will pro-
vide a deeper understanding of how time-dependent flow can affect heat transfer
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mechanisms. Oscillatory convection can occur due to various external influences, such
as periodic heating or fluid motion, and examining its impact could reveal important
behaviors in fluid dynamics and thermal transport, particularly in systems subjected
to fluctuating thermal gradients.
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Nomenclature
The following abbreviations are used in this manuscript:

A Amplitude
B⃗ Magnetic field
B⃗s Static magnetic field
B0 Characteristic field strength
a Wavenumber
p Pressure
E Ekman number
−→
1Z Unit vector along Z-axis
−→
1Y Unit vector along Y-axis
q Ratio of thermal and magnetic diffusivities
d Convective zone depth
g⃗ Gravitational field
H* Heatfunction
Nu Average Nusselt number
R Rayleigh number
Rcs Critical Rayleigh number for stationary convection
T Temperature
Ts Static temperature
−→
Vs Static velocity
T0 Reference temperature
∆T Temperature difference between top and bottom layers
t Time
V⃗ Velocity vector
u, v, w Velocity components
X, Y, Z Cartesian coordinates
RBC Rayleigh-Bénard Convection
Greek symbol
Λ Elsasser number
β Adverse temperature gradient
θ Perturbed temperature
η Magnetic diffusivity
ρ Density
ρ0 Reference density
κ Thermal diffusivity
ν Kinematic viscosity
α Thermal expansion coefficient
µ Dynamic viscosity
µm Magnetic permeability
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Ω Angular velocity
λ Growth rate
Superscript
′ Dimensional form
* Perturbed quantities
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