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Abstract: This study investigates the inhibitory and hormetic effects of Myriophyllum spicatum extract
on Microcystis aeruginosa in a controlled, continuous culture environment. To address the global
challenge posed by harmful algal blooms, we used a range of extract concentrations to delineate
the growth response patterns. At very low concentrations (6.25 and 12.5 mg/L), the addition of
M. spicatum extract shows no discernible reduction in M. aeruginosa cell density or growth rate;
instead, a slight increase is observed during exposure, suggesting a hormetic effect. However, at
higher concentrations (75 and 100 mg/L), there is a drastic reduction of more than 50% in cell density
and growth rate at 75 mg/L, with complete inhibition at 100 mg/L, leading to pronounced oxidative
stress, damage to antioxidant defense systems, and increased cell mortality. Increased levels of
malondialdehyde, catalase, and superoxide dismutase activities indicate the involvement of these
enzymes in combating oxidative stress. Furthermore, intracellular and extracellular microcystins were
significantly decreased at higher extract concentrations (50, 75, and 100 mg/L) in a dose-dependent
manner. Our results indicate a dose-dependent response and provide insight into the potential
application of natural water treatment solutions. Implications for ecological management and future
research directions are discussed.

Keywords: cyanobacteria; macrophytes; hormetic effect; growth inhibition; oxidative stress; HAB
field control

1. Introduction

Over the past decades, harmful cyanobacterial blooms fueled by nutrient enrichment
have become a global concern, posing risks to ecological systems and human health [1–3].
These blooms, often dominated by Microcystis aeruginosa, are particularly prevalent in
arid areas like Morocco, where freshwater scarcity compounds the issue [4]. With over
75% of drinking water sourced from surface reservoirs, the control and prevention of
cyanobacterial blooms are imperative for water quality management [3].

Various methods, including physical, chemical, and biological approaches, have been
employed to mitigate harmful algal blooms [5–7]. Among the biological methods, the
utilization of seaweeds and plant-derived compounds, such as allelochemicals, has emerged
as a promising eco-friendly strategy [4,8–10]. Notably, recent research by [11] sheds light on
the dose–response relationship of submerged plant extracts on cyanobacteria growth. Their
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findings revealed that low dosages stimulated M. aeruginosa cell growth, while high dosages
inhibited growth, exemplified by a range of inhibition rates across different submerged
plants [11].

These observations align with prior studies showcasing the potential of allelochemicals
from aquatic plants to regulate cyanobacteria proliferation. For instance, compounds
isolated from Elodea nuttallii and Phragmites australis have demonstrated inhibitory effects
on cyanobacteria, including M. aeruginosa [12,13]. Moreover, the study underscores the
need for a nuanced understanding of dosage effects, suggesting that the concentration of
allelochemicals influences their efficacy in controlling cell growth [11].

While previous investigations have primarily relied on batch cultures, which may limit
the extrapolation of results to natural settings, this study’s continuous culture approach
offers a promising alternative. By mimicking natural conditions and enabling long-term
assessments, continuous culture techniques provide valuable insights into the dynam-
ics of macrophyte–cyanobacteria interactions and the potential for sustained microalgae
management strategies [11,14]. According to [15], this culture method and the permanent
confinement of the cells may have serious limits in the inference of allelopathic results
to the natural environment. These limits mainly concern the possible accumulation of
allelochemical compounds and other metabolites in the culture enclosure and the short
duration of the experiment resulting from the rapid decrease in algae growth during ex-
posure. To avoid the limits of batch culture and to imitate the natural mode of emission
of allelochemicals, the continuous culture technique needs to be tested. The controlled
continuous culture (chemostat mode) works in a growth steady state (cell density ± stable,
growth rate = dilution rate) controlled by a constant supply of a limiting nutrient [16].
This continuous system is much closer to the natural environment because the microalgae
benefit from a constant renewal of the nutrient medium, preventing the accumulation of
growth-inhibiting metabolites. It also offers the possibility of a long-term study of the
growth and physiological response of microalgae exposed to gradual dosages of macro-
phyte extract and allows for the study of the decontamination of a culture in a healthy
environment [14].

Therefore, this study aims to build upon existing knowledge by evaluating the effect
of Myriophyllum spicatum ethyl acetate (MEA) extract on M. aeruginosa within a continuous
culture system. Through this approach, we seek to elucidate the allelopathic effects of
submerged plant extracts on cyanobacterial growth and physiology, offering valuable
insights for sustainable water quality management strategies.

2. Materials and Methods
2.1. Plant Materials

The macrophyte biomass was collected from a Mediterranean natural lake, Dayet
Aoua (33◦39′10′′ N, 5◦02′30′′ W, medium Atlas, Morocco) during the flowering period
(May 2017). This species was the most abundant in the natural lake. It has a long stem with
feathery leaves over 35 mm long, attached in groups of three to five. As the plant grows,
the lower leaves die and fall due to the shade created by the new shoots (natural pruning).
The hairless, branched stem spans 0.5 to 7 m in length. Flowering occurs when the plant
reaches the water’s surface. The flower spike (inflorescence) is terminal and located above
the water, before returning to the water after the fruit ripens. The upper part of the stem,
between five and twenty nodes long, is about twice as wide as the rest of the stem and is
very rigid and curved [17]. We identified the macrophytes as Myriophyllum spicatum L. and
deposited voucher specimens in the author’s personal herbarium under reference number
5. The macrophyte sample was placed in sterile plastic bags and transported on ice to the
laboratory, washed with distilled water to remove sediment and organic matter, and then
air-dried before the leaves were ground and powdered.

The leaf powder of M. spicatum was subjected to aqueous extractions and organic
fractionations according to the methods described by [18]. Briefly, 20 g of powder from
M. spicatum was mixed with 300 mL of distilled water, soaked, and extracted at room
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temperature (20–25 ◦C) for 48 h. Then, the solution was filtered with GF/C glass fiber
(47 mm, 1.2 µm). The filtrate was collected for further fractionations. The aqueous solution
was adjusted to pH 12 with 2 M NaOH, and the alkaline extract was centrifuged at 6000 rpm
for 10 min. The supernatant was transferred to a separating funnel and washed three times
with 200 mL of hexane. The aqueous fraction was acidified to pH 5 with 2 M HCl and then
extracted three times with 100 mL of ethyl acetate. Anhydrous sodium sulfate was added
to the macrophytes ethyl acetate (MEA) extracts to remove water and then filtered through
No. 2 filter paper. The fraction of the ethyl acetate extract was stored at 4 ◦C until used for
HPLC analysis and biological test in the N-limited chemostat system.

2.2. Microalgae Strain and Medium

The toxic unicellular non-axenic strain of M. aeruginosa originated from the Phycology,
Biotechnology, and Environmental Toxicology Research Unit collection, Faculty of Sciences
Semlalia, Cadi Ayyad University, Marrakech, Morocco [8]. Cultures were acclimated to
each test for 10–15 days in BG11 with several concentrations of nitrogen (200, 900, 1800,
and 17,000 µmoles/L of NO3

−) to choose the best concentration to limit the growth rate of
Microcystis aeruginosa.

2.3. Experimental Design of Continuous Culture in Chemostat Mode

Prior to inoculation into the continuous culture system, the unicellular M. aeruginosa
strain was maintained in monoclonal culture on the BG11 medium. Continuous culture
operated in chemostat mode with NO3

− (1177 µmoles/L) as a limiting factor (preliminary
batch culture experiments had indicated that the used NO3

− concentration ensured the
N limitation); the other nutrients were provided at the normal concentrations of the BG11
medium. The steady state of a continuous culture is characterized by a stable cell density
(lnN2/N1 = 0) and by a Napierian growth rate (µe) equal to the dilution rate (D) [19], hence
Equation (1):

µe = ln (N2/N1)/t2 − t1 + D (1)

where N2 and N1 represent the cell density (cell/mL) of the culture at times t2 and t1,
respectively.

This growth rate was expressed in the number of divisions per day by dividing
µe/ln 2 = µ2.

D, the dilution rate (expressed in d−1), is measured by dividing the daily flow rate of
the nutrient medium by the volume of the culture.

As indicated in the studies of [20,21], a chemostat cultivation system was designed as
follows: The culture system was composed of a 10 L nutrient tank (in polycarbon), a growth
chamber (6L DURAN® Flat Bottom Flask Narrow Neck) containing 3 L of the BG11 culture
medium, and a harvest recipient (flask of 5 L) placed in the dark and at a temperature of 4 ◦C
(Figures 1 and 2). The flow rate of the BG11 nutrient medium is regulated via a peristaltic
pump (LEAD FLUID® Technology Co., Ltd., Baoding, China) through silicone tubing.
Aeration of the culture was performed by a sterile air supply (300 ± 10 mL.min−1) which
allows for the transfer of the culture to overflow to a harvesting recipient through silicone
tubing. The agitation and homogeneity of the culture were achieved by the revolution of a
magnetic bar at 100 rpm. The chemostat was exposed in a culture chamber to a saturated
luminous intensity of 230 µmol photon. m−2. s−1 from cool-white fluorescents and a
light/dark cycle of 15 h/9 h at 26 ± 2 ◦C. Continuous culture was carried out under axenic
conditions by autoclaving all recipients, glassware, tubing, and distilled water used to
prepare the nutrient medium.
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2.4. Determination of M. aeruginosa Growth, Oxidative Stress Parameters, and Toxicity

After inoculating the continuous culture system with the monoclonal unicellular
M. aeruginosa strain, it was first operated in batch mode for 5 days and then switched
to continuous mode by providing a continuous flow rate of the sterile N-limited BG11
medium. The culture was grown at two different flow rates (0.625 and 0.83 mL/min) which
correspond, respectively, to dilution rates of 0.3 and 0.4 day−1. Once the culture reached
steady-state growth (µe = D), i.e., when it has maintained a stable growth rate for more
than two successive generations (TG = ln2/µe), MEA extract was administrated to the
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BG11 nutrient medium on day 0. As the other growth conditions were strictly controlled,
this steady state represented the control situation against which changes in the growth and
physiological state of the cyanobacterium following extract exposure were compared.

To evaluate the effect of MEA extracts on the growth and investigate the physiological
response of M. aeruginosa, successive enrichment experiments of the nutrient medium
with the MEA extract were carried out at concentrations of 6.25, 12.5, 25, 50, 75, and
100 mg/L on the same culture during 70 days. Every day, 5 mL were sampled from the
growth chamber at a fixed time, 3 h after the beginning of the photoperiod, to measure
the pH and the cell growth (Figure 1). The cell count was performed 5 times on the
Mallassez hematimeter. To analyze the possible mechanism of the inhibitory effect, a
daily additional 50 mL in replicates (n = 3) was sampled from the harvested volume
(Figure 1). The total protein content was determined, in triplicate, according to [22]. The
lipid peroxidation was reflected by changes in malondialdehyde (MDA) content, which was
determined in triplicate, according to [23]. The activity of antioxidant enzymes, superoxide
dismutase (SOD) and catalase (CAT), was assayed in triplicate using [24]’s and [25]’s
methods, respectively.

To assess the effect of MEA extracts on toxin production, an ELISA test was performed.
To this end, 100 mL water samples were taken before and after treatment. Two aliquots
were taken from each sample: one to determine the concentration of dissolved extracellular
microcystins (from the GF/C disk filtrate) and the other to measure the total toxin concen-
tration after three freeze–thaw cycles. The intracellular toxin concentration was calculated
by subtracting the extracellular amount from the total microcystin concentration.

Two mL of each sample was filtered through membrane filters (0.22 mm, Millex-GV,
Millipore, Merck KGaA, Darmstadt, Germany) directly before analysis and then analyzed
with a commercially available microcystin/nodularin ELISA (ADDA) kit (Eurofins Abraxis,
Warminster, PA, USA) according to the manufacturer’s instructions by measuring the
absorbance at 450 nm (Microplate Reader, Optic Inymen system, model: 2100-C, Barcelona,
Spain). The limit of detection (LOD) was 0.15 µg/mL. The data are expressed as MC-LR
equivalents.

2.5. Identification and Quantification of Phenolic Compounds by HPLC

For the purposes of identifying the phenolic compounds in MEA extract, we used the
HPLC method described in our previous study [26] for other macrophytes.

2.6. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics version 23. One-way
analysis of variance (ANOVA) was conducted to determine differences in microcystin
concentrations among treatment groups. Post-hoc Tukey tests were employed to identify
specific pairwise differences between treatment means. Significance was set at p < 0.05.

3. Results and Discussion
3.1. Effect of M. spicatum Extract on M. aeruginosa Growth

To assess the anti-cyanobacterial potential of M. spicatum ethyl acetate (MEA) extract,
a continuous culture of M. aeruginosa was established at a dilution rate of 0.3 d−1, subse-
quently adjusted to 0.4 d−1, and subjected to increasing concentrations of the extract (6.25,
12.5, 25, 50, 75, and 100 mg/L) in the nutrient medium over a period of 70 days. The results,
illustrated in Figure 2, depict the monitoring of cell density and growth rate throughout
the experiment.

At the initial chemostat steady state (µe = D = 0.3 d−1), characterized by an average
cell density of 15.19 ± 0.08 106 cells/mL, the addition of MEA extract at a very low
concentration (6.25 mg/L), equivalent to the previously determined minimum inhibitory
concentration (MIC) in batch culture [8], elicited no significant effect on either cell density
or growth rate. However, upon withdrawal of the treatment, a subsequent increase in cell
density and growth rate was observed.
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When moving to a new steady-state condition (µe = D = 0.4 d−1), the introduction of
the extract at 12.5 mg/L initially resulted in a slight enhancement of M. aeruginosa growth,
particularly notable in the first two days of exposure. Subsequent exposure to 25 mg/L led
to a more pronounced growth stimulation over five days, which aligns with the findings
for Ceratophyllum sp., M. spicatum, Spartina alterniflora, and Vallisneria natans extracts at their
respective low concentrations considered as the hormesis effect [11,27,28]. Conversely, a
subtle inhibition of growth was observed at 50 mg/L, with more substantial inhibition
(>50% reduction in cell density and growth rate) evident at 75 mg/L (Figure 2).

After the treatment at 75 mg/L (day 39), the cyanobacterial growth promptly recovered,
exhibiting a significant increase in cell division rate for the first three days before returning
to the initial steady state. In contrast, treatment with 100 mg/L of MEA extract resulted
in complete inhibition of M. aeruginosa growth, with a notable reduction in cell density
observed just two days post-exposure, followed by increased cell mortality. For instance,
the inhibition rates observed with MEA extract at high dosages align with or surpass
the inhibitory effects reported for other plant extracts. Notably, the inhibition rates for
MEA extract at concentrations exceeding 50 mg/L are consistent with or higher than
those observed for Ranunculus japonicus Thunb, Acorus calamus L., and Sagittaria sagittifolia
extracts at their respective high dosages [29–31].

Table 1 represents a comparative overview of the effect of aqueous and organic sol-
vent extracts from various macrophytes, such as Acorus gramineus, Acorus calamus, and
Ranunculus aquatilis, which have demonstrated significant inhibitory effects, with inhibition
rates reaching up to 100% in some cases. The mode of culture, concentration, and type of
extract used significantly influence the extent of inhibition. In semi-continuous systems, the
combination of plant extracts appears to sustain high inhibition rates over longer periods,
as seen with Cyperus alternifolius and Canna generalis extracts. The comparison presented in
Table 1 highlights the consistency and relevance of our results with those of recent studies,
reinforcing the potential of plant extracts as effective inhibitors of Microcystis aeruginosa and
contributing to the development of sustainable strategies for the management of harmful
cyanobacterial blooms.

Table 1. Comparative table of the inhibitory effects of different plant materials and their extracts on
the growth of M. aeruginosa under different culture conditions.

Plant Material Type of Extracts Target
Organism Mode of Culture Tested

Concentration
Inhibitory
Percentage References

Acorus calamus hexane extract of
rhizome M. aeruginosa Batch 20 mg/L %IR = 100 [33]

R. aquatilis and N. officinale aqueous extract M. aeruginosa Batch 75% of AE %IR = 100
%IR = 95 [4]

Spartina alterniflora aqueous extract M. aeruginosa Batch 150 mg/L %IR = 99.4 [28]

Cyperus alternifolius and
Canna generalis

extracts of culture
solutions M. aeruginosa Semi-continuous

co-culture system 2.34 mg/L %IR = 99.6 [34]

P. cristatus, P. maackianus,
P. lucens, V. spinulosa, C.
demersum, and H.
verticillata

volatile
compounds M. aeruginosa Batch 50 mg/L %IR = 30.2–41.7 [35]

M. spicatum ethyl acetate
extract M. aeruginosa Continuous

system
75 mg/L
100 mg/L

%IR = 50
%IR = 100 In this study

Our current study contributes to this growing body of research by evaluating the ethyl
acetate extract of M. spicatum in a continuous culture system. The findings reveal a strong
inhibitory effect on M. aeruginosa, with a 50% inhibition observed at 75 mg/L and complete
inhibition at 100 mg/L, suggesting that this extract could be a promising candidate for
managing harmful cyanobacterial blooms in aquatic environments.

The observed variations in cell density and growth rate highlight the differential
responses of M. aeruginosa to varying concentrations of MEA extract in the continuous
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culture system. Notably, the continuous culture setup mitigates the confounding factors
present in batch cultures, such as the accumulation of allelochemical compounds and
metabolites, leading to a higher MIC (approximately tenfold) in the continuous culture
system [8]. Consistent with this, the inhibitory effects of MEA extract were only evident at
concentrations exceeding 50 mg/L in the chemostat system.

In a related study, Hua et al. (2018) [32] demonstrated a direct relationship between
the reduction in M. aeruginosa growth and the activity of the cell antioxidant system in
a semi-continuous culture system. Their findings underscored the role of allelochemical
compounds, such as those found in rice straw extract, in limiting the activity of antioxidant
enzymes, thereby inducing growth suspension and cell death in cyanobacteria.

The daily pH measurements in the culture have not shown any significant change
after treatment by MEA extract (Figure 3).
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3.2. Effect of M. spicatum Extract on M. aeruginosa Physiological Responses

To investigate the effects of MEA extracts on M. aeruginosa, protein content and malon-
dialdehyde (MDA) levels were measured as shown in Figures 4 and 5. Low extract con-
centrations increased protein content, while higher concentrations (50, 75, and 100 mg/L)
decreased it. Proteins, as sensitive targets of allelochemicals [36], are essential for cells.
Inhibition of their synthesis disrupts cyanobacterial metabolism [36]. Furthermore, allelo-
chemicals from several macrophytes have shown similar dose-dependent effects [37–39].
For example, pyrogallic acid extracted from M. spicatum inhibited protein synthesis and
increased MDA levels, indicators of cellular health [40–42]. Lipid peroxidation, which
correlates with membrane damage, often occurs when the concentration of allelochemi-
cals exceeds the cellular defense capacity, compromising cellular integrity [43–45]. Cell
membrane integrity, a critical indicator, is compromised by high concentrations of MEA
extract and correlates with increased MDA levels, while MDA levels remained stable at
lower concentrations [26,36,41,46,47].
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Figures 6 and 7 present the outcomes of assessing the activities of superoxide dismu-
tase (SOD) and catalase (CAT) to ascertain the activation status of the cellular oxidative
defense mechanism. The SOD and CAT activities in M. aeruginosa cells exhibited a sig-
nificant concentration-dependent increase upon exposure to MEA extract. Nonetheless,
the activities of SOD and CAT remained relatively steady during the steady-state phase.
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The generation of reactive oxygen species (ROS) in M. aeruginosa cells prompted various
antioxidant reactions, including heightened activity of the antioxidant enzymes SOD and
CAT [28,48–50]. Generally, SOD acts as the primary defense line against cellular oxida-
tive stress induced by ROS, converting superoxide O2− into oxygen and H2O2, which
is subsequently neutralized by CAT [32,48,51]. Meanwhile, CAT plays a crucial role in
the natural conversion of H2O2 to oxygen and water [48,52]. The observed elevation in
SOD and CAT activity in our investigation implies their involvement in counteracting
oxidative stress within cells. This finding is noteworthy for potential strategies to manage
toxic cyanobacterial blooms, suggesting that applying aqueous extracts at concentrations
designed to inhibit M. aeruginosa growth could be effective.
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MEA = end of exposure. Numbers in parentheses indicate the concentration of MEA extract. Error
bars represent standard errors of the means of triplicate counts.
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3.3. Microcystin Analysis

The results of intra- and extracellular microcystin (MC) analysis are presented in
Table 2. These results showed that the 6.25, 12.5, and 25 mg/L treatments of MEA extract
significantly reduced the production of extracellular MCs with 8.51%, 36.31%, and 46.75%,
respectively. On the other hand, the concentrations of intracellular MCs increased following
the growth rate of M. aeruginosa. The 50 mg/L, 75 mg/L, and 100 mg/L treatments
significantly reduced both forms of MCs (intracellular and extracellular) with a dose-
dependent response. The 100 mg/L concentration of the extract totally reduced both MCs
in only two days of treatment to a value below the LOD.

Table 2. Effect of MEA extract on microcystin production.

Treatment TIME (day) Intracellular (µg/L) Extracellular (µg/L) Reduction Rate for
Intra-MCs in %

Reduction Rate for
Extra-MCs in %

false positive -- 0.72 ± 0.14 -- --

continuous mode without
plants 5 30.47 ± 0.60 28.84 ± 0.57 -- --

with 6.5 mg/L 8 30.21 ± 0.47 15.4 ± 0.74
No reduction 28.5113 30.84 ± 0.61 11.01 ± 0.22 *

with 12.5 mg/L 24 8.85 ± 0.17 5.31 ± 0.10
No reduction 36.3129 30.71 ± 0.30 * 8.93 ± 0.08 *

with 25 mg/L 34 21.71 ± 0.21 8.45 ± 0.08
No reduction 46.7539 42.208 ± 0.42 * 4.5 ± 0.04 *

with 50 mg/L 45 10.199 ± 0.10 6.38 ± 0.06
18.37 54.7050 8.26 ± 0.08 * 2.89 ± 0.02 *

with 75 mg/L 53 9.5 ± 0.32 3.52 ± 0.05
52.63 94.0358 4.5 ± 0.2 * 0.21 ± 0.12 *

with 100 mg/L 64 6.199 ± 0.06 0.38 ± 0.003
~100 ~10066 <0.1 * <0.1 *

batch mode 70 <0.1 <0.1 -- --

The data represent the mean ± SD of 3 replicates, * p < 0.05 indicates significant differences compared between,
before starting, and at the end of each treatment.

Although there are many known plants producing allelochemicals that can control
cyanobacterial biomass, very few studies have addressed their effect on cyanotoxin produc-
tion, which is the major health problem associated with harmful cyanobacterial blooms. In
an experiment to test two natural allelopathic compounds from some bacteria on various
parameters of M. aeruginosa FACHB 905, [9,30] observed a significant increase in MC-LR/L
in the treated groups until day 5, followed by a significant decrease at day 8, consistent with
a decrease in Microcystis sp. density. Likewise, [53] observed a more significant increase in
the extracellular MC content in the M. aeruginosa culture under the exposure of pyrogallol
allelochemical. However, [54] observed a concentration-dependent decrease in total MC
levels in M. aeruginosa with increasing concentrations of the extract, fractions, and isolated
flavonoids of Tridax procumbens, which correlated to the decrease in growth. In our
previous study [9], microcystin analysis revealed that the aqueous extract of R. aquatilis also
negatively affected the concentration of microcystins with a percentage of 84.5%, which
is consistent with the decrease in cell density. On the other hand, MAEs also exerted
allelopathic effects on the two CYN-producing cyanobacteria (Raphidiopsis raciborskii and
Chrysosporum ovalisporum), causing a decrease in cell number. However, the effects on the
toxin were very different, since the concentration of CYN was only 2.3-fold lower. However,
the effects on Planktothrix rubescens were different. MAE only slightly reduced cell growth,
while the final concentration of MCs increased compared to the negative control. These
contrasting results warrant further investigation of macrophytes’ allelochemical effects on
cyanotoxin production.
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3.4. Phenolic Compounds of M. spicatum Extract

The qualitative and quantitative analysis of phenolic compounds in the ethyl-acetate
extract of M. spicatum was conducted using HPLC. Table 3 and Figure 8 present the con-
centration, expressed in µg/g of dry weight, and retention time of the main individual
components. The analysis revealed that the MEA extract contained a total of 2.02 mg/g DW
of phenolics, comprising ten identified compounds: ascorbic acid (3.50 min), gallic acid
(3.90 min), fumaric acid (5.40 min), tyrosol (8.00 min), catechin (11.80 min), chlorogenic acid
(12.10 min), tannic acid (12.30 min), caffeic acid (17.80 min), p-coumaric acid (44.50 min),
and quercetin (44.70 min). Despite this, some phenolic components present could not be
identified. Gallic acid was found to be the predominant compound, with a content of 362.56
µg/g DW.

Table 3. Concentrations of the main phenolic compounds identified in the M. spicatum ethyl acetate
crude extract.

Compounds Retention Time
[min]

Area
[mAU.s]

Concentration
[µg/g DW]

Ascorbic acid 3.50 1622.20 185.19
Gallic acid 3.90 6056.40 362.56
Fumaric acid 5.40 161.90 126.78
Tyrosol 8.00 488.01 139.82
Catechin 11.80 238.77 129.85
Chlorogenic acid 12.10 89.45 123.88
Tannic acid 12.30 247.80 130.21
Caffeic acid 17.80 522.24 141.19
Unknown 27.40 137.30 125.79
Unknown 33.60 369.43 135.08
Unknown 44.20 658.72 146.65
p-coumaric acid 44.50 411.31 136.75
Quercetin 44.70 490.69 139.93
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The allelopathic compounds produced by macrophytes exhibit inhibitory effects on
various microalgae and play a significant role in the interaction between aquatic plants and
phytoplankton species in aquatic ecosystems. Our findings suggest that certain identified



Processes 2024, 12, 1883 12 of 15

allelopathic compounds may significantly affect M. aeruginosa. Phenolic compounds in
M. spicatum extract can induce oxidative stress in M. aeruginosa by promoting the produc-
tion of reactive oxygen species (ROS), which damage cellular lipids, proteins, and DNA,
thus disrupting essential photosynthetic and membrane processes [6,7,55,56]: for example,
gallic acid, pyrogallic acid, and didactic chemicals from M. spicatum promoting peroxida-
tion of membrane lipids and increasing cell permeability and vulnerability [57–60], as well
as hexadecenoic acid, stearic acid, linolenic acid, and α-asarone isolated from Potamogeton
cordata, Alternanthera philoxeroides, Acorus calamus, and Typha latifolia [61].

Our research results show that the extract of M. spicatum has a significant inhibitory
effect on the growth and physiological response of M. aeruginosa in a nitrogen-limited
chemostat. This was inhibited during the continuous action of MEA extracts. In addition,
the presence of phenolic compounds in ethyl acetate extracts of large plants is sufficient to
limit cell growth and cause cell damage, as evidenced by the decrease in protein content
and the increase in membrane lipid peroxidation. Enzymatic antioxidants (SOD and
CAT) increase in response to excess ROS, showing a similar growth trend to antioxidants.
The characterization of organic extracts revealed some important compounds, which are
believed to inhibit the growth and oxidative damage of M. aeruginosa. These results indicate
that macrophytes are potential producers of allelochemicals and can be suggested as natural
alternatives to control cyanoHAB.

Our findings have ecological consequences, especially for managing harmful algal
blooms (HABs) like M. aeruginosa. Phenolic chemicals from plants may inhibit cyanobacte-
ria development. This strategy is environmentally benign and fits with green management
practices. This method improves water quality and aquatic ecosystem biodiversity by
lowering chemical algicide use. To make the proposed cure practicable and environmen-
tally beneficial, further studies should optimize the usage of these compounds in varied
ecosystems and analyze their long-term impacts on non-target creatures.

4. Conclusions

This study is the first attempt to investigate the allelochemical effect of macrophytes on
the growth, physiological response, and cyanotoxins of the toxic unicellular M. aeruginosa
strain using an N-limited continuous chemostat culture. This culture method allowed
us to test the gradual dosage of the plant extract on the cyanobacterium maintained in
prolonged growth (~70 days) to determine the minimum inhibitory concentration and
sublethal and lethal dose. Exposure to a low dose of the macrophyte extract, close to the
minimum inhibitory concentration (MIC = 6.25 mg) in batch culture, was not effective
in the continuous system but induced a hormetic effect. The inhibition of M. aeruginosa
by MEA extract was observed only from the dosage of 50 mg/L. Treatment with the
highest concentrations (50 mg/L, 75 mg/L, and 100 mg/L) significantly reduced both
forms of microcystins (intracellular and extracellular) with a dose-dependent response.
Since the continuous culture system is often considered an open medium, it can simulate
the continuous supply of allelochemicals, which is the main mode of allelopathic inhibition
of macrophytes in the field. It could also provide a fairly accurate idea of the dosage of
macrophyte extract to be applied for bloom control in the natural environment.
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