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Abstract: Accurate measurement of the pore size distribution (PSD) in coals is crucial for guiding
subsequent coalbed methane (CBM) engineering practice. Currently, mercury intrusion porosimetry
(MIP) measurement has been widely used as a PSD testing method due to its effectiveness and conve-
nience. Nevertheless, it is worth noting that the elevated pressure during the MIP experiments can
lead to matrix compressibility, potentially causing inaccurate estimations of PSD in coals. Therefore,
correction methods are used to modify the PSD in the high-pressure segment to improve the accuracy
of MIP data. This study proposed a novel method with higher accuracy and convenience for calculat-
ing the matrix compressibility coefficient compared to the traditional calculation methods. Firstly,
the matrix compressibility coefficients of six coal samples were calculated by using low-temperature
nitrogen adsorption (LTNA) data. Subsequently, by utilizing the mathematical correlation between
Kc (the compressibility coefficient of the coal matrix) and Ro,max (the maximum vitrinite reflectance)
from prior research, a novel statistical method was designed to determine the matrix compressibility
coefficient of the samples. Finally, the statistical matrix compressibility coefficient determination
method was used to examine the fractal characteristics of the actual PSD. The results indicate that
when the pressure exceeds 24 MPa, the volume obtained from mercury intrusion exceeds the pore
volume measurement. The Kc calculated using the traditional correction method is in the range of
0.876–1.184 × 10−10 m2/N, while the Kc values of our proposed statistical correction method range
from 0.898 × 10−10 to 1.233 × 10−10 m2/N, with a comparison error rate of ~0.11–5.25%. The MIP
data greater than 24 MPa were effectively corrected using the statistical correction method, thus
reducing the mercury intrusion volume error by 91.75–96.40%. Additionally, the corrected pore fractal
dimension (D2) values fall within the range of 2.792 to 2.975, which are closer to the actual values
than the pore fractal dimension range of 3.186 to 3.339.

Keywords: coal matrix compression effect; mercury intrusion method (MIP); pore size distribution
(PSD); fractal dimension; correction method

1. Introduction

The commercial production of coalbed methane (CBM) truly began after the 1970s. The
United States was one of the first countries to commercialize CBM production, experiencing
a progression from experimental stages to large-scale commercialization, with its CBM
production rapidly increasing, making it a global leader in bed methane development.
Other countries, such as Australia, China, and Canada, have also started large-scale devel-
opment of CBM resources. Currently, the global CBM industry has reached a particular
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scale, becoming an essential supplement to the natural gas supply [1]. During the extrac-
tion of CBM, the pore size distribution (PSD) of coal reservoirs and their variations are
vital for the permeation and retention of CBM [2–5]. Therefore, accurately characterizing
the PSD is crucial for improving energy development efficiency. Understanding the PSD
helps optimize extraction methods, improve gas recovery rates, and ensure the efficient
utilization of coalbed methane resources.

Existing methods for characterizing coal PSD include both direct and indirect ap-
proaches [6–11]. Low-temperature gas adsorption measurements are only suitable for
testing the PSD characteristics of smaller apertures [12–14]. Some image-testing techniques
(e.g., scanning electron microscope and transmission electron microscope) can visually
observe the exterior of pores through image processing, but the PSD data obtained are not
representative [15,16]. MIP is a physical, analytical technique employed for the assessment
of the pore structure within various materials. This technique measures parameters, such
as pore size and distribution, by applying high pressure to force mercury into the material’s
pores, and it is considered an important method for analyzing PSD [17–21].

Because of the coal matrix’s high compressibility [22–25], excessive pressure within
the pores can cause the coal matrix to deform or even fracture. This deformation may
lead to the mercury intrusion volume surpassing the actual pore volume. This inevitably
affects the accuracy of the fractal dimension calculation for the coal PSD. Therefore, when
using MIP and fractal dimensions to characterize PSD, it is imperative to comprehensively
account for the compressive effects of the coal matrix and implement suitable correction
measures to guarantee the precision and validity of the measurement results.

Previous studies have demonstrated that various factors influence the measured pore
volumes in coals during MIP experiments. At medium- to high-pressure stages, the pore-
filling mechanism and matrix-shrinkage effect directly controlled the determined PSD and
other pore parameters [26]. Some researchers have determined the relationship between
mercury intrusion pressure and coal deformation in a specific pressure range, using rele-
vant methods to calculate the matrix compression coefficient in coals [27,28]. It has been
recognized that the coal matrix compression effect becomes significant when the mercury
intrusion pressure exceeds 10 MPa [29]. Jin et al. [30] analyzed the changing pattern of
coal matrix pore characteristics with pressure based on coal matrix compressibility. After
that, the complexity of pore structures was concisely described by using fractal theory. Liu
et al. [31] considered the matrix-compression effect and analyzed its impact on pores of dif-
ferent size ranges. Han et al. [32] found that coal samples exhibit significant compressibility
during MIP tests and that the pore volume decreases with increasing pressure. Zheng
et al. [33] calculated the coal matrix compression coefficient and characterized its PSD by
correcting it with fractal theory.

The degree of coal metamorphism is a significant factor affecting the compressibility of
the coal matrix. The study by Guo et al. [34] indicates that when Ro,max (maximum vitrinite
reflectance) is between 0.65 and 0.99%, the compressibility of the coal matrix shows a rapid
decline. In contrast, when Ro,max is between 1.25 and 1.77%, the compressibility shows
an increasing trend. Similarly, Ettinger and Zhupakhina’s [35] research also observed
this trend and described it as a U-shaped relationship curve. Zheng et al. [33] found
that as the degree of metamorphism evolves from medium to high, the compressibility
of the coal matrix increases, and the vitrinite and inertinite groups have opposite effects
on the compressibility of the coal matrix. Lu’s [36] research indicates that the coal matrix
compressibility coefficient exhibits a three-stage change trend with the increase of Ro,max.

In summary, in previous studies on MIP data correction, traditional correction methods
require extensive preparation, involve substantial calculations, and rely heavily on test data
obtained through LTNA experiments. Without conducting LTNA experiments, MIP data
correction cannot be performed. When assessing the impact of coal matrix compressibility
on the permeability and porosity of coalbed methane reservoirs, such traditional correction
methods result in low MIP data correction efficiency, higher experimental costs, and
increased complexity. On the other hand, more studies have shown the relationship
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between the coal matrix compressibility coefficient (Kc) and the increase in Ro,max, but
they have yet to consider utilizing this trend to calculate the coal matrix compressibility
coefficient (Kc).

In response to the issues in previous MIP data correction studies, this research proposes
a new MIP data correction method (the statistical correction method). The method is
based on the coal matrix compressibility coefficient (Kc) and Ro,max values calculated in
previous studies [9,17,33,37–43], fitting their mathematical relationship to calculate the
matrix compressibility coefficient of coal samples and correcting the MIP data exceeding
24 MPa. This study further investigates the changes in pore fractal dimensions before and
after correction, indirectly validating the accuracy of the proposed method. This method
successfully depicts the three-stage variation trend of the matrix compressibility coefficient
of coal samples with different degrees of metal as the maximum vitrinite reflectance
increases, making it possible to determine the matrix compressibility coefficient based solely
on the maximum vitrinite reflectance of coal samples. Therefore, this method simplifies
the correction process during MIP data correction, eliminating the need for specialized
low-temperature nitrogen adsorption (LTNA) experiments. Compared with traditional
correction methods (based on LTNA data), this method significantly reduces experimental
preparation and the computational workload, facilitating a deeper understanding and
revealing the characteristics of coal pore size distribution, thus making it more practical.
Introducing this method helps optimize the complex process of CBM reservoir evaluation,
thereby enhancing its applicability.

2. Samples and Experiments

The Qinshui Basin, located in northern China, is rich in coal resources and contains
abundant natural gas and coalbed methane resources [44–50]. Significant progress has
been made in developing CBM in this region in recent years. This experiment collected
coal samples from six distinct mining areas (DD, QX, TL-2, TL-8, WK, and YY) within
the southern Qinshui Basin. Among them, the DD and QX mines are located in the
Zhengzhuang block, the TL-2 and TL-8 mines are in the Mabi block, and the WK and YY
mines are in the Fanzhuang block (Figure 1). Samples were extracted from the working
faces of underground mines to ensure freshness and integrity. The coal samples were
wrapped in absorbent paper, sealed with adhesive tape, and placed in sealed bags before
being promptly transported to the laboratory for MIP, LTNA, and maximum vitrinite
reflectance testing.
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The MIP measurements were performed using a Micromeritics Autopore 9510 instru-
ment of the standard SY/T5346-2005 [51]. The sample dimensions were approximated in
~2 mm length, width, and height (Figure 2).

The LTNA test was performed using an Autosorb iQ (Quantachrome, FL, USA). After
grinding, the coal powder was sieved with a 40–60 mesh sieve and dried in a vacuum oven
at a constant temperature for 24 h before testing.
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3. Results and Discussion
3.1. MIP Experimental Results

Various MIP experimental parameters offer insights into pore connectivity, develop-
ment, and coal matrix compressibility from multiple perspectives. By analyzing MIP data
from samples collected across different mining areas, mercury intrusion and extrusion
curves, along with the PSDs, were obtained. The MIP curves of coal samples from six dis-
tinct mining areas could be categorized into three types (Figure 3). Type I (Samples DD and
QX): the mercury intrusion and extrusion curves exhibit similar slopes with no significant
hysteresis loop, indicating predominantly semi-open pores with poor connectivity, which is
not conducive to gas flow. Type II (Samples TL-8, WK, and YY): the mercury intrusion and
extrusion curves have similar slopes at high pressures but demonstrate hysteresis at low
pressures, suggesting poor connectivity in the transitional pores segment and better con-
nectivity in the more significant pore segment. Type III (Sample TL-2): the curve indicates
that as the pressure increases, the mercury intrusion volume significantly rises at lower
pressures, with a wide curve opening and evident hysteresis, indicating predominantly
open pores with good connectivity, which is not favorable for gas storage. Notably, as the
mercury intrusion pressure increases, all selected samples in this article show a significant
increase trend in the cumulative mercury intrusion volume when the pressure exceeds
~10 MPa because of the coal matrix compressibility. Failure to account for this effect during
data analysis may result in overestimating the number of micropores.
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Figure 3. Mercury intrusion and extrusion curves of six selected coals. (Type I (Samples DD and QX):
the mercury intrusion and extrusion curves exhibit similar slopes with no significant hysteresis loop,
indicating predominantly semi-open pores with poor connectivity, which is not conducive to gas
flow. Type II (Samples TL-8, WK, and YY): the mercury intrusion and extrusion curves have similar
slopes at high pressures but demonstrate hysteresis at low pressures, suggesting poor connectivity in
the transitional pores segment and better connectivity in the more significant pore segment. Type
III (Sample TL-2): the curve indicates that as the pressure increases, the mercury intrusion volume
significantly rises at lower pressures, with a wide curve opening and evident hysteresis, indicating
predominantly open pores with good connectivity, which is not favorable for gas storage).

3.2. LTNA Experimental Results

LTNA curves are commonly used to characterize pore structures by analyzing the
hysteresis loops generated during adsorption and desorption. Examining different types of
adsorption–desorption curves allows for identifying various pore characteristics. Through
horizontal comparison of different coal experimental data with the IUPAC classification of
hysteresis loops, the experimental curves could be categorized into three types (Figure 4).

Type I curves (Samples No. DD, WK, and YY) exhibit significant adsorption–desorption
hysteresis loops within the P/P0 range of 0.4–1, characterized by a sharp drop, indicating
the existence of bottleneck breakthroughs and ink-bottle-shaped pores. Type II curves
(Sample No. QX) display nearly parallel adsorption and desorption curves with indistinct
hysteresis loops, signifying half-open, plate-like pores. Type III curves (Samples No. TL-2
and TL-8) resemble Type II curves but exhibit more distinct hysteresis loops in the P/P0
range of 0.7–1, which indicates the presence of open plate-like pores. Ink-well-bottle pores
and half-open, plate-shaped pores are conducive to the adsorption of coalbed methane.
However, they are unfavorable for its desorption, making it difficult for coalbed methane
to migrate to seepage channels and coalbed methane wells quickly. In contrast, due to their
simple pore structure, open plate-shaped pores are more favorable for the desorption and
migration of coalbed methane.
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Figure 4. Adsorption–desorption curves of six selected coals. (Type I curves (Samples No. DD, WK,
and YY) exhibit significant adsorption–desorption hysteresis loops within the P/P0 range of 0.4–1,
characterized by a sharp drop, indicating the existence of bottleneck breakthroughs and ink-bottle-
shaped pores. Type II curves (Sample No. QX) display nearly parallel adsorption and desorption
curves with indistinct hysteresis loops, signifying half-open, plate-like pores. Type III curves (Samples
No. TL-2 and TL-8) resemble Type II curves but exhibit more distinct hysteresis loops in the P/P0
range of 0.7–1, which indicates the presence of open plate-like pores).

3.3. Considering MIP Data Correction for Matrix Compression
3.3.1. Traditional Correction Method

An analysis of MIP experimental data from six coal samples from various mining
regions reveals that when mercury injection pressure surpasses 24 MPa, a strong linear
relationship exists between the cumulative mercury injection volume and the injection
pressure, with correlation coefficients exceeding 0.99 (Figure 5). This indicates a remarkable
compression effect on the coal matrix at pressures above 24 MPa. Assuming the mercury
compressibility and instrument are negligible, the coal matrix compression effect can be
described as follows [52]:

Kc =
dVc

VcdPc
(1)

where Kc represents the matrix compression coefficient, 10−10 m2/N; Vc represents the coal
matrix volume, and cm3/g; dVc represents the coal matrix volume increment at a pressure
of dPc, cm3/g.

Research indicates that when the mercury intrusion pressure exceeds 20 MPa, the
compression effect on the coal matrix becomes significant [53–56]. At this stage, the
variation in the mercury injection volume of the coal sample is attributed to the combined
effects of pore filling and matrix compression [52].

∆Vd = ∆Vp + ∆Vc (2)

where ∆Vd represents the mercury intrusion volume; ∆Vp denotes the pore-filling volume;
and ∆Vc is the change in the volume of matrix compression, all measured in cm3/g.

Combining MIP test data with LTNA test data, the appropriate correction range is
24 MPa–200 MPa (the corresponding pore size range is 3–25 nm). Before the correction, the
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volume and pressure of mercury intrusion within the correction range of the coal sample
exhibit a linear relationship. Therefore, ∆Vd/∆P is considered a constant C, resulting in
∆Vc/∆P [52]:

∆Vc

∆P
≈ C − ∑25nm

3nm ∆Vp

∆P
(3)

where ∆P represents the pressure increment in MPa and ∆Vp represents the pore volume
within the 3–25 nm range obtained from LTNA test data, in mL/g.

Because ∆Vc/∆P can be approximated as a constant, using ∆Vc/∆P instead of dVc/dPc,
the KC can be obtained by combining Equations (1) and (3).
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3.3.2. Statistical Correction Method

The traditional correction method corrects MIP data through LTNA data, but explicitly
testing LTNA data to achieve the purpose of correcting MIP data has the disadvantages of
high cost, a long time, and low efficiency, with certain limitations. In response, a statistical
correction method for MIP data correction is proposed. The specific method is as follows.
Based on the statistical analysis of KC data from 176 different coal samples, the samples are
divided into three groups according to their degrees of metamorphism: low metamorphism
(0.35% ≤ Ro,max < 0.65%), medium metamorphism (0.65% ≤ Ro,max ≤ 2.00%), and high
metamorphism (Ro,max > 2.00%). For each group, the KC data are averaged based on Ro,max
intervals of 0.05%, and this method is used to fit the relationship between KC and Ro,max
for coal samples of different metamorphic degrees. First, different coal samples’ matrix
compressibility coefficients (KC) are calculated using the fitting Equation (4). Then, based
on the obtained KC values, Equation (5) is applied to calculate the matrix compressibility
volume for each sample. Finally, Equation (6) is used to subtract the incremental mercury
intrusion volume from the original MIP data to obtain the corrected actual pore volume
increment, thus completing the correction of the MIP data. Figure 6 shows the trend of
KC increasing with Ro,max with a low metamorphism degree (0.35% ≤ Ro,max < 0.65%),
decreasing with a medium metamorphism degree (0.65% ≤ Ro,max ≤ 2.00%), and increasing
with a high metamorphism degree (Ro,max > 2.00%). The KC calculation formula is obtained
through a fitting analysis of the data with different metamorphism degrees:
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Kc =


91.509R3

o,max − 144.07R2
o,max + 77.029Ro,max − 10.791 (0.35% ≤ Ro, max < 0.65%)

−1.5392R3
o,max + 6.8265R2

o,max − 11.108Ro,max + 7.8239 (0.65% ≤ Ro, max ≤ 2.00%)
−2.3236R3

o,max + 17.964R2
o,max − 45.084Ro,max + 37.674 (Ro, max > 2.00%)

(4)
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The formula’s fitting degrees for different metamorphic grades are 0.9821, 0.9274,
and 0.984, respectively, demonstrating the formula’s strong capability to represent the KC
value accurately.

Using the traditional correction method, the KC1 value was calculated through MIP test
data and LTNA test data in conjunction with Formulas (1) and (3). Simultaneously, using the
proposed method, the KC2 value was calculated by combining the Ro,max values of different
collected samples with Formula (4). Figure 7 visually demonstrates the comparison of KC
values calculated using the two methods.

Table 1 presents the Ro,max for six selected coals from six mining regions alongside
the KC1 values determined through the traditional correction method and the KC2 values
calculated using the statistical correction method, which are consistent with previous
research results of 0.67 × 10−10 m2/N–3.06 × 10−10 m2/N [57,58], proving the rationality
of Formula (4). It can be seen that the error rate range between KC1 and KC2 is 0.11–5.25%,
indicating that the KC values calculated using the statistical correction method have good
accuracy and reliability. From this, it can be seen that the statistical correction method
proposed in this study has the following advantages over traditional correction methods:
when calculating the coal matrix compression coefficient KC, only the maximum vitrinite
reflectance parameter is needed. This significantly reduces experimental preparation
and the computational workload, simplifies the MIP data correction process, and avoids
the traditional method’s over-reliance on LTNA test data for correcting MIP data. It is
particularly noted that within the high metamorphism range (Ro,max > 2.00%), the KC1
value calculated using this method has minimal error compared to the value calculated
using traditional methods, and it is very close to the actual value (KC2). In the preliminary
evaluation stage of the compressibility of coal in coalbed methane reservoirs, using the
method proposed in this study dramatically improves the evaluation efficiency (it only
requires substituting the maximum vitrinite reflectance into Formula (4) for evaluation),
and it can directly serve as a reference.
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Table 1. Ro,max values and coal matrix compression coefficients for different coal samples.

Sample No. Ro,max/%
Kc/(10−10 m2/N)

Error Rate
Kc1 Kc2

QX 1.83 0.876 0.925 5.25%
DD 1.59 1.184 1.233 3.97%
YY 2.47 0.897 0.898 0.11%
WK 2.54 0.984 0.980 0.35%
TL-2 1.82 0.911 0.940 3.12%
TL-8 1.64 1.137 1.178 3.50%

3.4. Analysis of Calibration Results

Research indicates that during the mercury intrusion process, when the compressibility
coefficient of the coal matrix is considered a constant, the volume of the coal sample can be
corrected using Formula (5) [52]:

Vc(Pi)
= Vc −

dVc

dPc
(Pi − P0) (5)

where Vc(Pi) represents the volume of the coal matrix under pressure Pi, measured in cm3/g;
r denotes the serial number of the pressure collection point; and P0 is set to 24 MPa.

The pore-filling volume of the coal sample under pressure Pi can be calculated using
Equation (6) [52]:

∆Vpi = ∆Vd − KcVc(Pi)
(Pi − P0) (6)

where ∆Vpi represents the volume change of the coal matrix at the mercury intrusion
pressure Pi, cm3/g; ∆Vd represents the mercury intrusion volumes at the pressures Pi and
P0, respectively, in cm3/g; and KC is the KC2 calculated using the statistical correction
method (see Table 1), 10−10 m2/N.

By integrating Equations (5) and (6), this study calculated the coal’s cumulative
mercury intrusion volumes before and after correction. As shown in Figure 8, the data
reveal a significant discrepancy in cumulative mercury intrusion volumes before and
after correction. The theoretical analysis results suggested that the corrected MIP data
show substantial improvement, thus facilitating a more accurate characterization of the coal



Processes 2024, 12, 1928 10 of 16

samples’ pore structure. The PSD of the coals determines their pore structure characteristics.
According to Hodot’s (1966) pore-classification methodology, pores are categorized into
micropores (<10 nm), transitional pores (10–100 nm), mesopores (100–1000 nm), and
macropores (>1000 nm).
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Figure 9 presents the PSD and the volume proportions of various pores in the corrected
coal samples. The pore structure of the coal samples predominantly comprises macropores,
followed by mesopores and transitional pores, with micropores constituting the most minor
proportion. Compared to the mercury intrusion volumes before correction, the 3–25 nm
pore radius range decreases the mercury intrusion volume by 91.75–96.40% after correction,
indicating a successful correction effect. This implies that the coal matrix’s compressibility
significantly impacts the PSD measurement in MIP experiments.
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Figure 9. The correction results of PSD and the aperture ratio. (The pore structure of the coal samples
predominantly comprises macropores, followed by mesopores and transitional pores, with microp-
ores constituting the most minor proportion. Compared to the mercury intrusion volumes before
correction, the 3–25 nm pore radius range decreases the mercury intrusion volume by 91.75–96.40%
after correction).

4. Fractal Dimension Characteristics before and after Calibration

The MIP pore structure exhibits fractal characteristics, which can be used to illustrate
the influence of pre- and post-correction of MIP data on the fractal properties of the pores
using fractal geometry concepts, thereby characterizing the pore morphology of coal. The
Menger sponge model, a universal fractal calculation curve with a topological dimension
of 1 [59], has been extensively applied to porous media. After repeated verification by
scholars, it has ultimately been simplified into a general model:

D2 = 4 + lg
(

dV
dP

)
/ lgP (7)

where P represents the pressure during the mercury intrusion process, measured in MPa; V
represents the incremental volume of mercury intrusion in the interval, measured in mL/g;
and D2 denotes the pore fractal dimension, which is dimensionless.
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Figure 10 compares the fractal dimension D2, calculated from MIP data within the
pressure range of 24 MPa to 200 MPa, before and after correction. The corrected fractal
dimension D2 shows a substantial improvement over the uncorrected values. Figure 11
shows that before correction, the D2 values range from 3.186 to 3.339, indicating fractal
dimensions between 3 and 4, which suggests suboptimal fractal characteristics of the
overall pore structure. At this stage, the filling effect coexists with the matrix compression
effect, with the latter predominating. This predominance results in significant measurement
deviations, hindering an accurate reflection of the true pore structure.
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Figure 11. The correlation between pressure and dV/dP before MIP data adjustment. (The D2 values
range from 3.186 to 3.339, indicating fractal dimensions between 3 and 4).

Figure 12 illustrates the relationship between pressure and dV/dP for the six groups
of corrected coal samples. The figure shows that the adjusted fractal dimension D2 ranges
from 2.792 to 2.975 within the expected range of 2 to 3, demonstrating robust fractal char-
acteristics. This indicates that the correction process is highly effective, providing a more
accurate and reliable depiction of the pore structure. The corrected fractal dimension values
show that the pore sizes of the six coal samples collected in this study are well-developed
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at all stages. Compared to mesopores and macropores, the surfaces of micropores and
transitional pores are rougher. The pore size distribution is complex, with irregular shapes
and firm heterogeneity, making it easier to store free gas.
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Figure 12. The correlation between pressure and dV/dP after MIP data correction. (The adjusted
fractal dimension D2 ranges from 2.792 to 2.975 within the expected range of 2 to 3).

5. Research and Prospects

This study innovatively proposes a method for calculating the coal matrix compress-
ibility coefficient based on maximum vitrinite reflectance. However, a specific deviation
exists between the empirical formula derived from data statistics and the actual calculated
values. On the other hand, as the coal samples used in this study do not belong to the low
metamorphic degree (0.35% ≤ Ro,max < 0.65%), no error comparison was conducted for KC
value calculation at a low metamorphic degree. Therefore, with the enrichment of research
data on KC and Ro, max in the industry, future studies using this method should incorporate
the calculation of the compressibility coefficient for a low-metamorphic-degree coal matrix
and further refine the accuracy of the empirical formula to reduce calculation errors. In the
practice of coalbed methane work, the compressibility coefficient of the coal matrix in the
reservoir is calculated to evaluate certain parameters, such as permeability and porosity,
thereby guiding coalbed methane development.

6. Conclusions

(1) The analysis of MIP data reveals significant differences in the pore structure and
the connectivity of coal samples from different mining areas. Type I coal samples
predominantly exhibit semi-open pores with poor connectivity. Type II coal samples
show poor connectivity in the transitional pores segment but good connectivity in
the large pore segment. In contrast, Type III coal samples mainly feature open pores
with good connectivity. Furthermore, data from LTNA experiments indicate notable
pore morphology variations among coal samples. Ink-bottle, semi-open, and open
plate-shaped pores primarily characterize these morphologies.

(2) Considering the matrix compression effect of coal, a novel statistical correction method
was devised based on statistical analysis. Compared to KC values calculated using the
traditional correction method, the statistical correction methods have high practical
applicability. This statistical correction method was applied to correct MIP data under
pressures ranging from 24 to 200 MPa, resulting in a decrease in the corrected mercury
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intrusion volume by 91.75% to 96.40%. The correction effect was significant, enabling
a more precise characterization of the PSD.

(3) The D2 of MIP-measured initial uncorrected data values ranged from 3.186 to 3.339,
with fractal dimensions between 3 and 4, indicating the suboptimal fractal characteris-
tics of the overall pore structure. After PSD correction, D2 values ranged from 2.792 to
2.975 within the 2 to 3 range, reflecting improved fractal characteristics. Correcting the
MIP data significantly enhances the fractal representation of the coal’s pore structure,
aligning the fractal dimensions more closely with their true values and thus offering a
more accurate depiction.
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