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Abstract: While organic semiconductors hold significant promise for the development of flexible,
lightweight electronic devices such as organic thin-film transistors (OTFTs), photodetectors, and gas
sensors, their widespread application is often limited by intrinsic challenges. In this article, we first
review these challenges in organic electronics, including low charge carrier mobility, susceptibility
to environmental degradation, difficulties in achieving uniform film morphology and crystallinity,
as well as issues related to poor interface quality, scalability, and reproducibility that further hinder
their commercial viability. Next, we focus on reviewing the hybrid system comprising an organic
semiconductor and polystyrene (PS) to address these challenges. By examining the interactions of
PS as a polymer additive with several benchmark semiconductors such as pentacene, rubrene, 6,13-
bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), 2,8-difluoro-5,11-bis(triethylsilylethynyl) an-
thradithiophene (diF-TES-ADT), and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT),
we showcase the versatility of PS in enhancing the crystallization, thin film morphology, phase
segregation, and electrical performance of organic semiconductor devices. This review aims to
highlight the potential of an organic semiconductor/PS hybrid system to overcome key challenges in
organic electronics, thereby paving the way for the broader adoption of organic semiconductors in
next-generation electronic devices.

Keywords: hybrid system; polystyrene; organic semiconductor; organic thin film transistors;
organic electronics

1. Introduction

The field of organic semiconductors has witnessed remarkable advancements in recent
years, particularly in enhancing charge carrier mobility, which is a factor that critically
governs the performance of a wide array of electronic devices [1–12]. This progress has
been driven by innovations in material design, molecular engineering, and processing
techniques, each contributing to the development of organic semiconductors with increas-
ingly competitive performance characteristics [13–17]. The ability to fine-tune molecular
structures to promote efficient charge transport, coupled with precise control over the
crystallization and morphology of thin films, has brought organic semiconductors closer
to their inorganic counterparts in terms of mobility and device efficiency [18–20]. These
advancements have not only broadened the application potential of organic semiconduc-
tors in devices such as organic thin-film transistors (OTFTs) [21–23], but also elucidated
the underlying mechanisms and the innovative techniques that have made these achieve-
ments possible, paving the way for their integration into commercial technologies that
would require both scalability and high performance [24–32]. In this section, we will
focus on reviewing the research advances made in enhancing the charge carrier mobility,
developing controlled crystallization techniques, and exploring the applications in organic
electronic devices.
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1.1. Advances in Charge Carrier Mobility

The research efforts in recent years have switched to enhancing the charge carrier
mobility of organic semiconductors, focusing on innovations in material design, molecu-
lar engineering, and processing techniques. Material design has focused on developing
new organic semiconductors with optimized molecular structures that promote efficient
charge transport [33–41]. This includes designing molecules with extended conjugation,
which facilitates better π-π stacking interactions between adjacent molecules, leading to
improved charge carrier mobility [42–46]. Additionally, the incorporation of side chains
that enhance solubility and self-assembly has been reported as crucial in achieving uniform
thin-film morphologies [47–56]. Material design also involves the strategic selection of
functional groups that can enhance intermolecular interactions, thereby improving the
overall electronic properties of the semiconductors [57–63].

Molecular engineering further refines these designs by tailoring the electronic prop-
erties of the organic semiconductors at the molecular level. This approach often involves
modifying the molecular backbone [64–66] or side chains [52,67–75] to control the energy
levels, molecular packing, and crystallinity of the semiconductors. For example, introduc-
ing electron-donating or electron-withdrawing groups can tune the energy levels of the
semiconductor, optimizing it for specific applications such as p-type or n-type conduction
in OTFTs [76–88]. Molecular engineering also enables the design of semiconductors with
improved environmental stability by incorporating elements that protect against oxidation
or photodegradation, thereby extending the operational lifespan of the organic electronic
devices [89–91].

Processing techniques play a critical role in transforming these molecular designs
into high-performance devices. Advances in solution-based processing methods, such as
spin coating [92,93], inkjet printing [94–99], and spray coating [100–102], have enabled the
production of thin films with precise control over thickness, crystallinity, and morphology.
These techniques allow for the deposition of organic semiconductors in a manner that
promotes optimal molecular alignment and crystallization, which are key to achieving
both optimized thin film morphology and high charge carrier mobility. Additionally,
post-deposition treatments, such as thermal annealing [103–107] or solvent vapor anneal-
ing [108,109], are employed to further enhance the crystallinity and reduce defects within
the films, leading to more consistent and higher-performing organic semiconductor de-
vices. These processing innovations are essential for scaling up the production of organic
electronics while maintaining the high performance required for commercial applications.

1.2. Advances in Controlled Crystallization Techniques

The performance of organic semiconductors is critically dependent on the crystallinity,
molecular alignment, and morphology of the thin films formed during device fabrica-
tion [110–115]. Controlled crystallization techniques by virtue of external forces have
therefore become a focal point in advancing organic semiconductor technology, as they
enable the precise manipulation of these parameters to optimize charge transport and
device efficiency. Many external force-based methods have been developed to achieve
controlled crystallization, each offering unique advantages in directing crystal growth,
improving thin-film morphology, and enhancing charge transport properties. These meth-
ods can be mainly categorized into capillary force alignment-based techniques, solution
shearing-based techniques, temperature gradient-based techniques, zone casting-based
techniques, surface energy patterning-based techniques, and so on.

Capillary force alignment is a technique that utilizes the capillary forces generated
by a meniscus of liquid to align organic semiconductor molecules during the drying pro-
cess [116–119]. As the solvent evaporates, capillary forces guide the molecules into an
ordered arrangement, promoting uniform crystallization. This method is particularly
effective in creating highly aligned thin films with long-range order, which is essential
for reducing crystal anisotropy and nonuniformity. The capillary forces help to min-
imize defects and grain boundaries, leading to smoother films with enhanced charge



Processes 2024, 12, 1944 3 of 31

transport properties. For example, Bi et al. apply the capillary force-based controlled
evaporative self-assembly (CESA) technique alongside a binary solvent system to direct
crystal growth of 2,5-di-(2-ethylhexyl)-3,6-bis(500-n-hexyl-2,20,50,200]terthiophen-5-yl)-
pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH) [120]. As shown in the polarized optical image
of Figure 1a, implementation of this highly effective CESA method and optimization
of the solvent ratios produced well-aligned SMDPPEH crystals with greatly enhanced
area coverage.

Solution shearing involves dragging a meniscus of organic semiconductor solution
across a substrate using a blade or other shearing tool [121–124]. This technique applies
a directional shear force that aligns the molecules in the direction of the shearing motion,
encouraging the formation of large, well-ordered crystals. Solution shearing is advanta-
geous for producing uniform thin films over large areas, with controlled crystallization
leading to high-performance devices. The alignment of the crystals in the shearing direction
results in more uniform charge transport, which can be beneficial for specific devices that
require high consistency of electrical performance. Kim et al. utilized the shearing method
to align the misoriented of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene),
which induced a uniform alignment of the organic semiconductor [125]. As shown in
the device optical image of Figure 1b, well-aligned TIPS pentacene were formed using an
inorganic polymer allylhybridpolycarbosilane (AHPCS) as the shearing blade, showcasing
the applicability of solution shearing to printed flexible electronics.

Temperature gradient methods involve the application of a controlled temperature
gradient across the substrate during the crystallization process [126–128]. This gradient
induces directional crystal growth, with the organic semiconductor molecules aligning
along the temperature gradient. Temperature gradient techniques allow for precise control
over crystal size and morphology, leading to films with high crystallinity and uniform
orientations. These methods are particularly effective in producing large, single-crystal do-
mains, which are ideal for maximizing charge carrier mobility. For instance, Asaree Yeboah
et al. reported an effort to reduce the crystal misorientation of TIPS pentacene/poly(α-
methyl styrene) (PαMS) blends by applying the temperature gradient [129]. As displayed
in the optical image of Figure 1c, the crystal alignment appears to be relatively uniform,
with the crystalline structures extending in parallel lines across the image. The more even
spacing and consistent directionality of the crystals imply a high degree of crystallinity and
structural integrity in this region of the material.

Zone casting is a technique where a solution of organic semiconductor is cast onto a
moving substrate, and a heating element selectively melts and recrystallizes the material
in a controlled manner [130–133]. The movement of the substrate and the controlled
heating zone promote the growth of well-aligned crystals along the casting direction.
Zone casting is highly effective for producing continuous, large-area films with controlled
crystallization and minimal grain boundaries. This method is particularly useful for
applications requiring high charge transport efficiency. Mas-Torrent et al. reported the
creation of extensive, well-aligned films of dithiophene-tetrathiafulvalene (DT-TTF) using
the zone casting method [134]. As shown in the optical image of Figure 1d, the black
arrow shows the direction of casting, while the white arrows highlight certain areas on the
substrate that remain uncovered by the organic layer. It can be inferred that the DT-TTF
films were highly aligned through zone casting on a Si/SiO2 substrate.

Surface energy patterning involves the modification of the substrate surface to cre-
ate regions with different surface energies, which guide the crystallization of the organic
semiconductor [135–138]. By patterning the surface energy, the nucleation and growth of
crystals can be controlled, leading to films with desired crystal orientations and morpholo-
gies. Surface energy patterning is a powerful tool for directing the self-assembly of organic
molecules, enabling the fabrication of highly ordered thin films with tailored electronic
properties. This method is particularly advantageous for creating complex device architec-
tures with precise control over the active layer’s morphology and alignment. Harper et al.
introduced a surface energy patterning-based technique for contact deposition and pattern-
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ing and created fully printed OTFTs on paper [139]. Their approach involves depositing
contacts via aerosol spray and patterning them using a digitally printed mask produced by
a standard office laser printer, all conducted at room temperature and pressure.
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Figure 1. Optical images showing: (a) SMDPPEH crystals aligned by using the capillary force-
based CESA method; (b) TIPS pentacene crystals aligned by using the solution-shearing method
based on an inorganic polymer blade; (c) TIPS pentacene crystals aligned by using the temperature
gradient method; (d) DT-TTF films well-aligned by using the zone-casting method. Reproduced from
reference [120,125,129,134], with permission from Elsevier, American Institute of Physics, and Wiley.

Each of these controlled crystallization techniques, as mentioned above, plays a crucial
role in advancing the performance of organic semiconductor devices. By enabling the pre-
cise manipulation of crystal growth, thin-film morphology, and molecular alignment, these
methods contribute to the development of organic electronics with enhanced charge trans-
port properties, improved device stability, and greater scalability. As the field continues to
evolve, the refinement and combination of these techniques will be essential for pushing
the boundaries of what organic semiconductors can achieve in commercial applications.

1.3. Advances in Organic Electronic Applications

These advancements in charge-carrier mobilities and controlled crystallization tech-
niques have brought organic semiconductors closer to their inorganic counterparts, making
them more competitive for a wider range of applications, including OTFTs, photodetectors,
gas sensors, and inverters, each of which leverages the unique properties of these materials
for specific functionalities. In OTFTs, organic semiconductors function as the active channel
material, where they modulate the flow of charge carriers (electrons or holes) between
the source and drain electrodes under the influence of a gate voltage [140–142]. The per-
formance of OTFTs is highly dependent on the mobility of these charge carriers, which
is influenced by the molecular packing and crystallinity of the organic semiconductor. In
photodetectors, organic semiconductors act as the light-absorbing material that converts
incoming photons into electrical signals [143–151]. When light is absorbed, excitons are
generated and separated into free carriers, creating a photocurrent that is proportional
to the intensity of the incident light. The sensitivity and speed of photodetectors are in-
fluenced by the absorption spectrum and charge mobility of the organic semiconductor,
which further highlights the research efforts to enhance the charge carrier mobilities. Gas
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sensors utilize organic semiconductors for their sensitivity to chemical interactions with gas
molecules [152–158]. When exposed to specific gases, the organic semiconductor’s electrical
properties, such as conductivity or mobility, can change due to interactions between the
gas molecules and the semiconductor’s surface or bulk. These changes can be detected and
correlated with gas concentration, making organic semiconductors ideal for detecting trace
amounts of gases. In inverters, organic semiconductors are employed in complementary
circuits where p-type and n-type materials are used to switch between different states
(i.e., on/off) based on the input voltage [159–164]. The operation of inverters relies on the
effective charge transport and stability of the organic semiconductor materials, as they need
to rapidly switch states without significant energy loss. The performance and efficiency of
these devices depend heavily on the quality of the organic semiconductor, including its
crystallinity, molecular alignment, and interaction with other materials in the device.

2. Challenges in Organic Electronics

Despite organic semiconductors having shown great potential for use in flexible
and lightweight electronic devices, their implementation is often hindered by several
intrinsic challenges, including low charge-carrier mobility, susceptibility to environmental
degradation, difficulty in achieving uniform thin-film morphology and crystallinity, poor
interface quality, and issues with scalability and reproducibility. Insulating polymers, when
employed as additives, can form a hybrid system with the organic semiconductor and
crucially enhance the performance of organic electronics by optimizing charge transport,
increasing stability, refining film structure, improving interface interactions, and ensuring
consistent manufacturing quality. While conjugated and semicrystalline polymers play
important roles in organic electronics, our emphasis in this review is on insulating polymers
due to their proven effectiveness in enhancing charge transport and improving device
performance. Therefore, throughout the manuscript, all references to polymer additives
pertain specifically to insulating polymers. This section discusses the key challenges faced
by organic semiconductors, their root causes, and how polymer additives can, in general,
mitigate these issues to enhance device performance. It is important to note that while
polymers can also be applied to other categories of organic semiconductors [165,166],
the examples reviewed in this paper predominantly highlight their effectiveness in small
molecular systems. This distinction highlights the tailored role of insulating polymers in
optimizing small molecular semiconductors.

2.1. Charge Carrier Mobility and Trap States

The charge carrier mobility in organic semiconductors is often lower compared to
that in inorganic semiconductors [167–169]. Since the interface between the semiconductor
and dielectric layers plays a pivotal role in determining the efficiency of charge transport,
the presence of trap states at the semiconductor interface, caused by surface roughness,
impurities, or disordered molecular packing, can capture charge carriers, hinder their free
movement, and further reduce the overall electrical performance of organic semiconduc-
tors [170–173]. Reduced charge carrier mobility directly affects the efficiency and speed of
organic electronic devices. In OTFTs, for example, low mobility leads to slower switching
speeds and reduced current output, limiting the application of these devices in high-speed
electronics. Insulating polymer additives can be utilized to create smoother interfaces that
reduce the density of trap states; by introducing polymer additives during fabrication, the
morphology of the interface can be modified to reduce surface roughness and minimize the
density of trap states [174]. This smoother, more uniform interface mitigates the formation
of localized energy states that trap charge carriers, thereby improving charge mobility,
lowering threshold voltages, and enhancing operational stability. This demonstrates the
crucial role of polymer additives in optimizing interfacial properties to achieve superior
functionality in organic electronic devices. In addition to their role in improving thin-film
morphology and reducing charge trapping in devices like OTFTs, certain insulating poly-
mers, such as PαMS, can also serve as electrets with charge storage capabilities, which
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are critical for organic memory applications. For example, Baeg et al. demonstrated the
electret nature of polymers in organic non-volatile memory devices, where the polymeric
gate electret serves as a charge-trapping site and modulates the field-effect behavior of
the device [175]. This highlights the dual functionality of insulating polymers, not only
for enhancing mobility in organic semiconductors but also for enabling charge storage in
memory devices. By distinguishing between these applications, we clarify the broader
utility of insulating polymers in organic electronics.

2.2. Stability and Degradation

Organic semiconductors are highly vulnerable to environmental factors, including
exposure to oxygen, moisture, and UV light, which can induce chemical degradation. This
degradation is a significant concern as it often leads to the formation of new trap states
within the semiconductor material, along with alterations in the molecular structure. Over
time, these degradative processes can cause substantial drops in performance of the organic
electronic devices, which directly correlates with a shortened operational lifespan and
decreased reliability. This is particularly problematic for commercial applications where
devices are expected to maintain consistent performance over extended periods [176–178].
To address these challenges, polymers can be strategically employed to enhance the stability
of organic semiconductors [179]. One approach involves using polymers as protective layers
that physically shield the semiconductor from harmful environmental impacts [180]. These
protective coatings can effectively prevent oxygen, moisture, and UV light from penetrating
the semiconductor, thereby mitigating the onset of chemical degradation. Another approach
involves incorporating polymers directly into the semiconductor matrix [181], where they
can improve the material’s intrinsic stability by reinforcing the molecular structure and
reducing the likelihood of trap state formation. This incorporation can also help to maintain
the electrical properties of the semiconductor over time, ensuring more stable device
performance. Thus, by using polymers as protective layers or as components within
the semiconductor matrix, the stability and longevity of organic semiconductors can be
significantly improved, ensuring that they meet the demands of commercial applications
where long-term stability is essential.

2.3. Morphological Control and Crystallinity

The performance of organic semiconductors is highly dependent on their thin-film
morphology and crystallinity. Achieving uniform and well-ordered crystalline films is
challenging due to the flexible nature of organic molecules and the sensitivity of their
crystallization process to processing conditions. Organic crystals have been reported to
form misoriented crystals with poor alignment in long range. For example, TIPS pen-
tacene [182–189] have a tendency to grow into dendritic crystals with random orientation
and poor substrate coverage. Additionally, organic crystals also exhibit considerable
amounts of grain boundaries when drop-casted and crystallized in solution [190,191].
Grain boundaries are known to be located with defects and charge trap centers and are
therefore detrimental to the electrical charge transport of organic semiconductors [192–197].
Furthermore, non-uniform film morphology and poor crystallinity lead to inconsistent
charge transport properties, increased trap densities, and overall reduced device perfor-
mance. This is particularly problematic in large-area devices where uniformity is critical
for consistent functionality across the entire device [198,199]. Polymers can be used to
control the crystallization and morphology of organic semiconductor films. In particular,
the addition of polymers helps eliminate de-wetting issues [200–202] and leads to the
formation of a more uniform and crystalline film, which enhances charge-carrier mobility.
Additionally, polymer additives, when mixed with organic semiconductors in solution,
can induce phase segregation that promotes the growth of larger, more ordered crystalline
domains, thereby improving the overall film quality and device performance [203–205].
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2.4. Interface Engineering

The interfaces between organic semiconductors and other device components, such
as dielectric layers or electrodes, play a crucial role in determining charge injection and
transport properties [206–211]. Poor interface quality can lead to increased energy barri-
ers, charge recombination, and higher trap densities [212,213]. Inefficient charge injection
and transport across interfaces can significantly reduce the efficiency of organic electronic
devices, leading to higher power consumption, lower on/off ratios, and reduced device
performance [214–218]. Polymers can either be mixed with the organic semiconductor as
an additive or deposited as a polymer layer before the deposition of the organic semicon-
ductor to effectively modify and improve the interfaces in organic electronic devices. One
approach to achieving such improved interfaces is to mix the organic semiconductors with
polymer additives, which allows the formation of a hybrid system [219–225]. This semicon-
ductor/polymer hybrid system may further become vertically phase-segregated and/or
laterally phase-segregated, which offers additional merits to control the morphologies and
charge transport [226–231]. Another approach is to deposit a polymer additive layer (i.e.,
on top of the hydrophilic silicon dioxide film) prior to the deposition of the organic semicon-
ductor as the active layer [179]. This relocates the charge transport pathway at the polymer
interface from the silicon dioxide interface, which successfully passivates the silanol groups
on silicon dioxide in these cases [232,233], and can be especially beneficial for the charge
transport in n-type organic semiconductors such as PDIF-CN2 molecules [234–237].

2.5. Scalability and Reproducibility

Scaling up the production of organic semiconductor devices while maintaining con-
sistent quality is challenging due to the sensitivity of organic materials to processing
conditions. Variations in film thickness, crystallinity, and molecular alignment can lead to
significant batch-to-batch variability, resulting in inconsistent device performance across
large-area production runs, which limits the commercial viability of organic electron-
ics [129,238,239]. Poor reproducibility can lead to higher manufacturing costs and lower
yield rates, posing major obstacles for large-scale applications. Incorporating additional
polymers can improve the reproducibility and scalability of organic semiconductor device
fabrication by offering more precise control over key parameters such as film morphology,
crystallinity, and interface quality. Polymers can be used to regulate film thickness during
the deposition process, ensuring uniform coverage across large substrates [240,241]. By
incorporating a polymer with appropriate viscosity and solubility properties, the coating
process can achieve a more consistent film thickness, reducing the likelihood of defects that
arise from uneven layers [242–244]. Furthermore, polymers can influence the crystallinity of
organic semiconductors by acting as nucleating agents or by modulating the crystallization
kinetics [245–249]. This control over crystallization helps produce films with uniform crystal
sizes and orientations, which is crucial for achieving consistent electronic properties across
different batches. Additionally, polymers can aid in the alignment of molecular chains
within the semiconductor layer, promoting a uniform molecular orientation that enhances
charge transport and reduces variability in device performance [250–254]. By improving
the reproducibility of film thickness, crystallinity, and molecular alignment, polymers play
a vital role in scaling up the production of organic semiconductor devices, making the
fabrication process more reliable and economically viable for large-scale applications.

3. Hybrid System of PS and Organic Semiconductors

Building on the discussion of the challenges faced by organic semiconductors and the
utilization of polymers to address these issues, this section reviews the specific strategies
for overcoming these obstacles through the integration of PS with various organic semi-
conductors. PS serves as a representative example of how an insulating polymer can be
effectively employed to modify and improve the properties of organic semiconductors
such as pentacene [255–257], TIPS pentacene [90,258–260], rubrene [87,261,262], and oth-
ers [200,263–265] (Table 1). The incorporation of PS into these organic semiconductors
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has emerged as a versatile strategy to enhance the performance of OTFTs: PS can be used
in various roles, such as a surface treatment material, a polymer additive, or as part of a
composite with organic semiconductors. The interaction between PS and these semicon-
ductors has been shown to influence critical factors such as film morphology, crystallinity,
molecular alignment, and interface quality, all of which are pivotal in determining the
electrical performance of the devices. By modifying these parameters, PS can help reduce
charge-trapping sites, improve charge-carrier mobility, and stabilize device performance
over time. This section will review several studies that demonstrate the effectiveness of PS
in enhancing the properties of various organic semiconductors, highlighting its role in im-
proving crystallinity, reducing electronic defects, and optimizing the overall functionality of
OTFTs through different mechanisms and processing techniques. Figure 2 shows the molec-
ular structures of (a) PS polymer additive, (b) pentacene, (c) rubrene, (d) TIPS pentacene,
(e) diF-TESADT, and (f) C8-BTBT, which are discussed as the benchmark semiconductors
in this section.
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3.1. PS Mixing with Pentacene

Pentacene is a widely studied organic semiconductor composed of five benzene rings
fused in a linear arrangement [266–270]. Pentacene is frequently utilized in OTFTs due to
its good field-effect mobility and efficient π-π stacking, which promote effective charge
carrier movement. Myny et al. reported the solution deposition of PS (Mw 700 K) polymer
as a surface treatment material for pentacene-based thin-film transistors [271]. In this work,
self-assembled monolayers (SAMs) of 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-
1-decanethiols were deposited onto the gold contact electrodes. PS was spin coated onto
the gate dielectric layer in toluene and then baked for drying out at 120 ◦C. A control
device comprising an octadecyltrichlorosilane (OTS) treatment was fabricated. Atomic
force microscopy (AFM) imaging results revealed a large grain of pentacene on the PS layer
but a relatively much smaller grain on the SAM-treated gold contacts. Electrical character-
ization showed that while the control device had an onset voltage of 3.7 V, the PS-based
thin-film transistor exhibited an onset voltage of 0.3 V, indicating a negligible number of
electrons were trapped at the charge transport interface between the organic semiconductor
pentacene and PS polymer layer. As compared to a lower mobility of 0.294 cm2/Vs from
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the control device, the PS-based thin-film transistor exhibited an enhanced hole mobility
of 0.44 cm2/Vs, which was attributed to the reduced electronic defects at the smooth
polymeric interface.

Wang et al. studied the impact of the phenyl ring orientation of PS (Mw 280 K) on
the charge transport of pentacene-based thin-film transistors [255]. The tilting angle of
untreated PS film and of PS film treated at an elevated temperature of 80 ◦C and 120 ◦C
exhibited a tilting angle of 27◦, 39◦, and 62◦, respectively. A larger tilting angle indicates a
flatter orientation of the phenyl ring at the surface, indicating that the rings are oriented
more towards the substrate surface. Accordingly, the optimized surface energy of PS
becomes a good match with that of pentacene. X-ray diffraction (XRD) results indicated that
the peak intensities increase with annealing temperature, pointing to enhanced crystallinity
of pentacene. The pentacene thin-film transistor-based on the PS film treated at 120 ◦C
demonstrated a hole mobility of 4 cm2/Vs as well as a high on/off current ratio of 107~108.
The enhanced charge-carrier mobility of pentacene was attributed to a combined effect of
higher crystallinity, larger grain size, and enhanced interconnection.

Jung et al. utilized the PS polymer additive (Mw 48 K) along with a “scanning corona-
discharge coating (SCDC)” method to grow ultrathin TIPS pentacene crystals [256]. In this
work, a voltage was applied to a sharp tip adjacent to the substrate, which induced corona
discharge that interacted with the anode and shifted towards the electrode. The momentum
transfer from the ionized gases to the surrounding gases caused a directional flow of
ionized gas molecules, known as an electric wind [272,273]. As the wetting condition of
the TIPS pentacene solution was enhanced due to the directional electric wind, its driving
force allowed the preferential growth of uniform thin crystals with a thickness between
50 nm and 200 nm. The crystals were aligned in a parallel orientation with the scanning
direction of the SCDC. As compared with the pristine semiconductor, the incorporation of
PS as a polymer additive was observed to greatly reduce the film roughness. Additionally,
the different solubility between TIPS pentacene and PS caused a phase segregation in the
vertical profile, resulting in a top semiconductor and bottom polymer bilayer structure.
Thin-film transistors were fabricated comprising different weight ratios of the PS additive.
The highest mobility of 0.23 cm2/Vs was obtained with 10% loading of PS, whereas an
elevated content of PS caused a larger PS thickness in contact with the contact electrodes,
increased the contact resistance, and thereby reduced the mobility.

Huang et al. reported the effect of UV ozone treatment on the dielectric property of PS
polymer (Mw 280 K) for application in pentacene-based thin-film transistor fabrication [257].
Different UV ozone treatment time was tested on the PS polymer surface which ranged
from 0 s to 240 s. The UV ozone treatment can clean the dielectric surface of PS and reduce
the amount of trap sites of charge carriers. The AFM imaging indicated a flat surface for
these PS dielectric layers around 270 pm. For all treatment time, similar capacitance value
of 4.5 nF/cm2 was measured at 100 kHz, and low leakage current between 10−10~10−9

A was obtained, implying that the UV ozone treatment does not damage the capacitance
and insulation property of the PS dielectric layer. The pentacene organic semiconductor
deposited on the PS dielectric layer showed different thin-film morphologies, dependent
on the different UV ozone treatment times. In particular, for a short treatment time of less
than 60 s, no significant change in the pentacene morphology was observed. For a long
treatment time of more than 120 s, the pentacene morphology begins to change drastically.
A mobility of up to 0.52 cm2/Vs was demonstrated from the pentacene-based thin-film
transistors with UV ozone-treated PS dielectric layers for 5 s.

3.2. PS Mixing with Rubrene

Rubrene, derived from tetracene, is known for its notable photophysical properties
and excellent charge-carrier mobility [274–278]. Its molecular structure features four fused
benzene rings with attached phenyl groups, leading to robust light absorption and emission.
Jo et al. reported the addition of the PS (Mw 100 K) polymer additive, along with poly(4-
vinylpyridine) (P4VP) (Mw 60 K), in order to tune the phase segregation and charge
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transport of an organic semiconductor rubrene [261]. Each polymer was mixed with
rubrene at a ratio of 1:4 by weight in 1,2-dichlorobenzene (o-DCB). The phase segregation of
rubrene with PS and subsequent crystal growth can be illustrated by the schematic shown
in Figure 3a. Study of the radii of interaction (Ra) between solvent and solute based on the
Hansen solubility parameters (HSPs) indicated a more miscible system with addition of
PS. Therefore, more residual solvent is expected to remain in the spin-coated rubrene/PS
mixture. As the solvent evaporates, it facilitates mobility of the solute rubrene, which
migrates towards the interface between the active layer and air. As a result, a vertically
phase-segregated film with a top rubrene layer and a bottom PS layer is formed, as shown
in Figure 3b. On the other hand, a similar vertical phase segregation was observed in the
rubrene/P4VP mixture, as shown in Figure 3c, which can be attributed to the preferential
interaction of the hydrophilic P4VP polymer with the hydrophilic substrate surface. Thin-
film transistors were fabricated with the rubrene/polymer mixture as active layer (transistor
device shown in Figure 3d,e). The addition of PS and P4VP yielded an average mobility
of 0.4 cm2/Vs and 0.09 cm2/Vs, respectively. This work indicated that the solubility and
miscibility as well as surface energy played a vital role in controlling the phase segregation,
crystalline microstructure, and charge transport of the organic semiconductor.
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Figure 3. (a) A schematic showing the vertical phase-segregation mechanism between rubrene and
PS. The red sticks refer to rubrene and the blue dots represent the solvent; (b,c) shows the cross-
sectional SEM image of the vertically phase segregated rubrene film with PS and with P4VP polymer
additive, respectively. (d) Optical microscopic image and (e) cross-polarized microscopic image
of the as-fabricated thin-film transistor with the rubrene/PS mixture as the active layer and gold
(Au) as source and drain contact electrodes. Reproduced from reference [261], with permission from
American Chemical Society.

Stingelin-Stutzmann et al. reported the solution-processed rubrene-based thin-film
transistor by using a mixing approach [262]. In this work, the mixture system is comprised
of four different components, including the organic semiconductor rubrene, a volatile
solvent 5,12-diphenylanthracene, a polymer additive PS with high molecular weight, and a
“glass-inducing” species. The polymer additive provides good film formation properties
and also helps enhance the mechanical properties, whereas the “glass-inducing” species
serves as a diluent for the organic semiconductor, hampering crystallization from solu-
tion. The thin-film transistor with the four-component mixture demonstrated a saturation
mobility of up to 0.7 cm2/Vs, a subthreshold slope of 0.5–0.7 V per decade, and an in-
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significant hysteresis curve between applying forward and backward voltage scans. These
electrical characterization results indicated a very low density of trap sites at the charge
transport interface.

Park et al. reported the use of PS as an interfacial layer to modify the topography
and charge transport of rubrene [87]. Without the incorporation of a PS interfacial layer,
rubrene deposited on the bare silicon dioxide layer exhibited isolated islands with a large
thickness variation. In contrast, the film deposited on the PS layer showed smaller islands
with a much more uniform thickness. Electrical characterization showed a mobility of
6.8 × 10−5 cm2/Vs and 9.9 × 10−3 cm2/Vs from the rubrene thin-film transistor without
and with the inclusion of a PS interfacial layer. Additionally, the hole mobility was found to
be independent of the rubrene layer thickness after 50 nm percolation of the rubrene islands.
Apart from the hole transport, electron transport with a mobility of 7.9 × 10−5 cm2/Vs was
also observed from the rubrene thin-film transistor due to the low density of trap sites on
the PS interfacial layer, implying ambipolar performance of the devices.

3.3. PS Mixing with Ph-BTBT-Based Semiconductors

Ph-BTBT-based semiconductors, notable for their exceptional charge transport properties
and structural stability, share a common core structure of benzothieno[3,2-b]benzothiophene
(BTBT) with phenyl groups and alkyl chains that enhance molecular packing and solu-
bility [279–282]. The combination of phenyl and decyl substituents promotes strong π-π
stacking interactions, leading to high charge carrier mobility in OTFTs. These semicon-
ductors are particularly valued for their ability to maintain stable performance under
various environmental conditions, making them suitable for a range of organic electronic
applications. Park et al. reported the addition of PS brush (Mw 19.5 K) in order to improve
the electrical performance of two organic semiconductor blends, composed of a p-type
2-decyl-7-phenylbenzo[b]benzo [4,5]thieno [2,3-d]thiophene and an n-type N,N′-di-n-octyl-
3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C8) [88]. PS brush was first coated onto
the substrate followed by the formation of the organic semiconductor layer. Two types
of device configurations were studied in this work, including a bilayer structure and a
bulk-heterojunction (BHJ) structure. The bilayer-structured device based on the thermal
evaporation of the semiconductor layers showed low mobility, which was attributed to
the poor interface contact between these two layers. In contrast, the BHJ device based on
a solution-shearing deposited semiconductor layer demonstrated an enhanced hole and
electron mobility of 0.22 cm2/Vs and 0.038 cm2/Vs, respectively, which was one order of
magnitude higher than the mobility from the bilayer device. The superior device perfor-
mance of the BHJ device was also attributed to the enlarged grain size as compared to
the bilayer structured counterpart. Complementary inverters based on the BHJ-structured
OTFTs demonstrated a high voltage gain of 96.

Li et al. reported the fabrication of thin films of the organic semiconductor 7-decyl-
2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) and its blends with three
different binding polymers: PS, poly(pentafluorostyrene) (PFS), and poly(methyl methacry-
late) (PMMA) [283]. The thin films were characterized using AFM, as shown in Figure 4.
The type of binding polymer used results in distinct morphologies for the thin films.
For PFS-based films, more incomplete molecular layers are present, leading to a greater
number of terraces. Additionally, the crystalline domains in the PMMA blend films are
notably smaller compared to those in the other blends. Steps of around 2.9 ± 0.2 nm and
5.9 ± 0.3 nm in height are observed across all samples, corresponding to extended molecu-
lar monolayers and bilayers, respectively. This indicates that the organic semiconductor
is crystallizing on the upper surface of the films, consistent with previous observations.
In particular, films based on PS demonstrated the best performance, featuring the high-
est mobility, a threshold voltage (Vth) near zero, minimal interfacial traps, and excellent
bias stress stability. In contrast, the PMMA blends performed the worst, primarily due
to a higher concentration of interfacial hole traps (i.e., majority carriers). Regarding UV
photo-response, a different trend was observed; pristine films and PFS blends exhibited
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the highest response. This was attributed to the greater density of electron traps (i.e.,
minority carriers), which enhanced the measured hole current following exciton generation
and dissociation.

Figure 4. AFM topography photos of Ph-BTBT-10 thin films with and without the various polymer
binders, including PS, PFS, and PMMA. The inset shows the height profiles along the blue and
green lines marked in the images. These lines represent molecular bilayer and monolayer structures,
respectively. The scale bar indicates a length of 2 mm. Reproduced from reference [283], with
permission from The Royal Society of Chemistry.

Tamayo et al. reported a solution shearing technique for growing the organic semi-
conductor Ph-BTBT-10 with the PS additive (Mw 280 K) [263]. When prepared using two
deposition speeds of 1 mm/s (low) and 10 mm/s (high), the organic semiconductor consis-
tently crystallized in the bulk phase, adopting a 2D herringbone structure. As shown in
the optical images of Figure 5a,b, the Ph-BTBT-10 films prepared at a high shearing speed
of 10 mm/s exhibit more uniform coverage without a clear preferential orientation. In
contrast, the Ph-BTBT-10/PS mixture film shows slightly larger domain size. The nanoscale
morphology of the thin-film surfaces was characterized using AFM, as shown in Figure 5c,d.
All films displayed smooth mesoscopic areas with similar nanostructures. Additionally,
at a low coating speed, films grew with the a-axis aligned to the coating direction, while
films coated at high speed did not show alignment in the ab plane, resulting in isotropic
charge transport mobilities. As a result, the Ph-BTBT-10/PS blended films exhibited high
mobilities of 1.46 cm2/Vs.

Suzuki et al. reported using high-speed blade-coating at a rate of 140 mm/s to grow
uniform liquid crystalline 2-decyl-7-phenyl[1]benzothieno[3,2-b][1] benzothiophene films
incorporating the PS polymer additive [264]. These semiconductor films were produced at
temperatures exceeding 50 ◦C, the liquid crystal phase temperature, without encountering
issues of uneven recrystallization despite the rapid blade-coating process. Microscopic ob-
servations and XRD analysis demonstrated that producing thin films at liquid crystal phase
temperatures can result in uniform films without recrystallization, even at high speeds
exceeding 100 mm/s. Transistors with the semiconductor/PS polycrystalline thin films, fab-
ricated at these temperatures, displayed uniformity and high mobility of 4.8 ± 0.35 cm2/Vs.
The mobility and grain size were found to be isotropic, irrespective of the coating direction.
PS with a low trap density phase separated and coated the surface of the gate insulator,
resulting in a threshold voltage close to 0 V and enabling low-voltage operation.
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Figure 5. The non-polarized (left) and polarized (right) microscopy images of (a) pristine Ph-BTBT-
10 and (b) Ph-BTBT-10/PS mixed thin films, prepared from PhCl solutions on interdigitated gold
electrodes. The scale bar in (a,b) represents 100 µm, and the white arrow shows the shearing direction.
AFM topography images of (c) pristine Ph-BTBT-10 and (d) Ph-BTBT-10/PS mixed thin films. The
scale bar in (c,d) is 2 µm, with insets displaying the height profiles along the black lines marked in
the images. The solution shearing coating speed is at 10 mm/s. Reproduced from reference [263],
with permission from The Royal Society of Chemistry.

He et al. reported the addition of PS into a binary small-molecular semiconductor
blends composed of 2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT) and 2-
(4-dodecylphenyl) [1]benzothieno[3,2-b]benzothiophene (C12-Ph-BTBT) [284]. Both the
optical images and AFM images indicated that while the pristine Ph-BTBT semiconductor
has an inhomogeneous and discontinuous film, the uniformity of the blend was signifi-
cantly enhanced as a result of the excellent film formation property from the C12-Ph-BTBT
component. Moreover, the blend film showed enlarged grain sizes with reduced grain
boundaries, which can be favorable for charge transport in the blend film. The polymer
PS was further mixed with the Ph-BTBT/C12-Ph-BTBT blend at a ratio of 1:3.06 in order
to enhance the charge transport. The addition of PS was found to reduce interfacial trap
and defects as well as enhance the inter-grain connectivity. As a result, a highest mobil-
ity of 1.5 cm2/Vs and 2.25 cm2/Vs was demonstrated from the Ph-BTBT/C12-Ph-BTBT
blend-based OTFTs without and with PS polymeric additive, respectively.

3.4. PS Mixing with TIPS Pentacene

TIPS pentacene [285–287] is a soluble derivative of pentacene designed to merge
pentacene’s high mobility with improved processability. The incorporation of triisopropy-
lsilylethynyl groups increases solubility, enabling solution-based processing techniques
while preserving the vital π-π interactions necessary for effective charge transport in OTFTs.
Lin et al. studied the thin-film morphology and charge transport of TIPS pentacene organic
semiconductor deposited by using a slot-die coating technique [258]. In this work, different
polymers, including PS (Mw 35 K), PMMA (Mw 15 K), and PVP (Mw 25 K), were first
deposited as a gate dielectric layer. AFM measurements on the polymer dielectric layer
indicated a surface root mean square (RMS) roughness of 0.32 nm, 0.39 nm, 0.62 nm, and
0.65 nm for the bare substrate, PS, PMMA, and PVP polymer dielectric layer, respectively.
Accordingly, the capacitance was measured to be 2.2 nF/cm2, 6.8 nF/cm2, and 9.5 nF/cm2,
for the PS, PMMA, and PVP polymer dielectric layers, respectively. The formation of TIPS
pentacene organic crystals was based on a mixture of double solvents, which comprised
a poor solvent, anisole, and a good solvent, toluene. The resultant thin-film morphol-
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ogy of TIPS pentacene organic crystals based on the bare substrate, PS, PMMA, and PVP
polymer dielectric layer was shown in the Figure 6a–c. Excellent crystal alignment has
been demonstrated for all types of substrates, and, in particular, the crystals based on
the PS polymer dielectric showed an enlarged crystal size, indicating lower amounts of
charge carrier traps. The out-of-plane XRD patterns for the TIPS pentacene crystalline film
deposited on the different polymer dielectrics was shown in Figure 6e. The strongest (00l)
intensity was observed for the TIPS pentacene film based on the PS dielectric surface. TIPS
pentacene-based thin-film transistors show an average mobility of 4.2 cm2/Vs, 2.4 cm2/Vs,
and 1.28 cm2/Vs based on PS, PMMA, and PVP polymer dielectric, respectively, as well as
and a mobility of 6.5 cm2/Vs based on the PS dielectric (Figure 6f). Figure 6g shows the
charge-carrier mobility of a TIPS pentacene thin-film transistor based on the PS dielectric,
as a function of different coating speeds.
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Feng et al. reported the mixing of TIPS pentacene with PS for fabricating all inkjet-
printed low-voltage thin-film transistors on flexible substrates [259]. The flexible transistor
device is comprised of a cross-linkable PVP polymer layer as the gate dielectric, the TIPS
pentacene/PS mixture as the active layer, and a CYTOP layer as the encapsulation layer.
The organic semiconductor and polymer mixture was believed to induce a vertical phase
segregation, which further resulted in better semiconductor crystallization and a reduced
interface trap density (NSS). The device exhibited a hole mobility of 0.26 cm2/Vs, a low
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threshold voltage of −0.17 V, and a NSS value of 3.7 × 1011 eV−1cm−2. The low-voltage
operation of the thin-film transistor was attributed to the enlarged dielectric capacitance
and reduced NSS.

Lada et al. reported the mixing of PS (Mw 350 K) with TIPS pentacene in order to
enhance the crystal morphology and tune the mobility of the organic semiconductor [260].
Additionally, a double-solvent scheme was employed in this work to tune the crystallization.
Hansen solubility parameters of the solute and solvent were considered in order to choose
the compatible solvents for TIPS pentacene. In particular, anisole is considered a compatible
solvent for PS but a poor solvent for TIPS pentacene, whereas mesitylene is a compatible
solvent for TIPS pentacene. Without the double solvent, TIPS pentacene dissolved in a
single solvent of mesitylene grew into a small crystalline size as a result of relatively small
mobility of the PS polymer chain in the solvent that restricts the semiconductor migration
during crystallization. At a 1:1 mixing ratio of TIPS pentacene and PS in the double solvent
of anisole and mesitylene, a saturation mobility of 1.16 cm2/Vs was obtained, which was
attributed to the enlarged crystallite size due to the addition of anisole. In addition, at a 3:1
mixing ratio of TIPS pentacene and PS, a larger saturation mobility of 1.82 cm2/Vs was
demonstrated as a result of reduced surface roughness as well as enlarged crystal domains.

Bharti et al. reported the mixing of PS (Mw 280 K) with TIPS pentacene for fabricating
thin-film transistors with enhanced electrical stability [90]. The resultant mixture film is
comprised of a tri-layer structure with a TIPS pentacene film in the top, a PS film in the
middle, and, again, a TIPS pentacene film in the bottom. For thin-film transistors without
incorporating the PS additive, the devices suffered from a monotonic 80% decrease in
the saturation current measured under a constant bias stress, which was caused by the
charge trapping sites on the hydrophobic silicon dioxide gate dielectric. In comparison,
the counterparts based on the TIPS pentacene/PS mixture exhibited a much lower 30%
decay of saturation current due to the passivation effect of the hydroxyl group’s free PS
layer on the silicon dioxide surface. Accordingly, a hole mobility of up to 0.2 cm2/Vs and
2.6 cm2/Vs were obtained from the TIPS pentacene thin-film transistors without and with
the PS polymer additive, respectively.

3.5. PS Mixing with diF-TES-ADT

DiF-TES-ADT is a high-performance organic semiconductor recognized for its sta-
bility and substantial field-effect mobility [288,289]. The addition of fluorine atoms and
triethylsilylethynyl groups enhances the crystallinity and charge transport properties of
the anthradithiophene core, making it an excellent choice for OTFTs and other organic
electronic devices. Salzillo et al. reported solution-sheared organic thin-film transistors
made from diF-TES-ADT blended with four distinct polymer binders (PS with Mw of 10 K
and 100 K, and PMMA with Mw 25 K and 120 K) [290]. Blends incorporating PMMA result
in films with a rougher texture and smaller crystalline domains compared to those made
with PS blends. Electrically, the best performances were observed in the PS blends, which
exhibited improved mobility exceeding 1 cm2/Vs and reduced hysteresis. This is attributed
to the less polar nature of PS, which minimizes charge trapping. Regarding molecular
weight, while minor differences were noted in the PMMA films, a significant increase in
mobility was seen in the lower molecular weight PS films. Therefore, the differences in
electrical performance are likely due to morphological factors, such as film smoothness, ho-
mogeneity, and crystalline domain sizes, influenced by the interactions between the organic
semiconductor and the polymer as well as the interfaces during the crystallization process.
The results from this work shed light on how the type of polymer binder and its molecular
weight affect the morphology of the thin films and the performance of the devices.

Naden et al. reported the nucleation and growth mechanisms that result in four dis-
tinct structural regimes of the diF-TES-ADT semiconductor film [288]. These regimes are
formed due to the ‘natural length scales’ of growth determined by five key kinetic parame-
ters: the heterogeneous nucleation rate on electrodes, the crystal growth rate, the solvent
evaporation rate, the diffusion rate of organic semiconductors (OSC) in the solvent, and the
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homonucleation rate. In this work, the active layer was formed by spin-casting a mixture of
diF-TES-ADT and an insulating, amorphous PS-based polymer binder. Figure 7a presents
a magnified, polarized optical micrograph taken from the center of the channel in a typical
diF-TES-ADT transistor device. Figures 7b, 7c and 7d display the AFM topography, the
scanning Kelvin probe microscopy (KPM) surface potential, and the gradient of the surface
potential, respectively. A comparison between the polarized optical and AFM images easily
identifies the boundaries separating the domains, with some domain ends adorned with
needle-shaped crystallites. The contour map of the KPM surface potential in Figure 7c
illustrates a connection between the topography and electrical performance, revealing a
gradual potential drop across the channel influenced by the domain boundaries. Figure 7d
depicts the gradient of the surface potential derived from the KPM data, which emphasizes
all the domain boundaries, especially in regions with needle-like protrusions shown in
Figure 7b. As a result, devices achieving a peak saturation mobility of 1.5 cm2/Vs and a
maximum current modulation ratio (Ion/Ioff) of 1.20 × 105 are examined through atomic
force microscopy, revealing excellent domain connectivity and aligned crystallography
across the channel. Conversely, underperforming devices often exhibit a phase change in
semiconductor crystallinity at the channel center.
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Figure 7. (a) Displays a polarized optical micrograph of a typical diF-TES-ADT transistor device’s
channel. (b) AFM topography within the yellow box from (a), highlighting the domain boundaries
and needle-like crystallites. (c) Contour map of the surface electrical potential measured via KPM.
(d) Depicts the potential gradient calculated from (c) along the fast-axis scan direction and perpen-
dicular to the electrodes. Reproduced from reference [288], with permission from The Royal Society
of Chemistry.

Niazi et al. introduced an approach of utilizing blade-coating of a blend of conjugated
small molecule diF-TES-ADT and amorphous insulating polymers (PS and PαMS) for
achieving mobilities comparable to single crystals [291]. The resultant bilayer structure
consists of an ultrathin, approximately 10 nm thick single-crystal-like diF-TES-ADT layer
on top, with the polymer beneath. The PS polymer in the diF-TES-ADT blend acts as a
binder, improving the organic semiconductor’s long-range lamellar order, phase separation,
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and overall device performance by reducing the interfacial trap density. They consistently
demonstrate high carrier mobility of 6.7 cm2/Vs over a broad range of processing condi-
tions, with exceptional merits such as an on–off ratio exceeding 106, a low threshold voltage
of 0.1 V, and a low subthreshold swing of 0.3 V/decade. The exceptional mobility is evident
when analyzing and contrasting polarized optical and AFM images of the pure film of diF-
TES-ADT with those of the low-Mw (2.2 K) and high-Mw (900 K) blends. The micrographs
show significantly larger domains forming in the high-Mw blend compared to the neat
diF-TES-ADT or low-Mw blends. The optimal films display a smoother topography, are
free of cracks, and exhibit well-defined domains and grain boundaries, as highlighted by
the AFM analysis.

3.6. PS Mixing with C8-BTBT

C8-BTBT is an organic semiconductor praised for its outstanding charge transport
capabilities and significant thermal stability [292–294]. The BTBT core, paired with octyl
side chains, encourages strong π-π stacking and improved solubility, resulting in high
mobility within OTFTs. Shen et al. reported the addition of PS (Mw 3.5 K) into C8-BTBT in
order to tune the phase segregation, modify the charge transport interface, and improve
mobilities [200]. PS was mixed with C8-BTBT at different weight ratios, including 10:1,
5:1, and 2:1. As shown in the polarized optical images of Figure 8a and AFM images
of Figure 8c, the addition of PS successfully eliminated the issue of C8-BTBT de-wetting
and the formation of pin holes. In particular, at 5:1 loading, the blend film exhibited a
smooth thin-film morphology with an enlarged domain size. In contrast, the blend film
showed a rough 10:1 surface ratio and increased grain boundaries at 2:1 loading. Highest
peak intensity was observed from the blend film at a 5:1 ratio, according to the XRD
spectra (Figure 8b), indicating enhanced film crystallinity. XPS was employed to investigate
the film composition of the C8-BTBT/PS blends, which revealed a vertically segregated
bilayer structure with a top C8-BTBT film and a bottom PS layer. Additionally, the spin-
coating speed was demonstrated as a critical parameter that can significantly impact the
film structure and charge transport. In particular, a high spin-coating speed of between
3 Krpm and 6 Krpm can attribute to greater than one order of magnitude enhancement
in the mobilities as compared to a low speed of below 3 Krpm. The maximum mobility
of 6.8 cm2/Vs and an on/off current ratio greater than 107 were demonstrated from the
C8-BTBT/PS blend-based OTFTs with a 5:1 loading ratio, which was attributed to the
enlarged domain size, reduced grain boundary, and smooth phase-separated interface.

Shen et al. reported the use of a pre-deposited PS layer (Mw 3.5 K) and PMMA layer
(Mw 996 K) in order to tune the crystallization and charge transport of the C8-BTBT organic
semiconductor [265]. In this work, the C8-BTBT/PMMA mixture was deposited onto a pre-
deposited polymer layer including PMMA and PS. The organic semiconductor/polymer
mixture deposited on both the pristine silicon dioxide layer and the re-deposited PMMA
layer exhibited wide grain boundaries, whereas the counterpart deposited on the PS pre-
deposited polymer layer showed more uniform grains without visible boundaries. C8-BTBT-
based thin-film transistors were fabricated, and a highest hole mobility above 7 cm2/Vs was
demonstrated from the devices with the pre-deposited PS layer. The enhanced electrical
performance of thin-film transistors was attributed to the improved crystallization of the C8-
BTBT organic semiconductor and also to the modification of the charge transport interface
with reduced crystalline defects and trap centers.

Huang et al. studied how the PS additive improved the film topography and charge
transport of spin-coated C8-BTBT crystalline film [295]. Two different spin-coating config-
urations were employed in this work, including center spin coating and off-center spin
coating, as illustrated in Figure 9g,h. Two different spin speeds of 3 Krpm and 5 Krpm were
used for center spin coating. For the off-center spin coating, different spin profiles were
used, as shown in Figure 9i. In particular, the ramping up speed gradually increases for
the spin profiles A, B, C, and D. The resultant film topography corresponding to each spin-
coating condition is shown in Figure 9a–f. The incorporation of PS into C8-BTBT yielded
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continuous large crystalline film based on off-center spin coating, and the lowest RMS of
3.65 nm was obtained from Figure 9d, corresponding to speed B. XPS results indicated a
vertical phase segregation between C8-BTBT and PS, and PS moved towards the substrate
and formed a smooth interface with reduced trap sites of charge carriers. An enhanced
mobility of 3.56 cm2/Vs was demonstrated from the C8-BTBT/PS thin-film transistors
based on the spin-coating profile B.
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Figure 9. AFM images of C8-BTBT/PS crystalline films based on (a,b) center spin coating at 3 Krpm
and 5 Krpm, respectively; (c–f) off-center spin coating with different spinning speeds corresponding
to the curves indicated in (i); (g,h) show the schematic of center spin coating and off-center spin
coating, respectively. Reproduced from reference [295], with permission from Elsevier.
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Table 1. Summary of the different works reviewed in this section, including the author, the different
benchmark organic semiconductors, molecular weight of the PS polymer additive, experiments and
results, as well as the charge-carrier mobility.

Author Material PS Mw Result Mobility

Myny et al. [271] Pentacene 700 K
PS was coated as a surface treatment on the gate
dielectric to form a smooth polymeric interface with
reduced electron defects

Enhanced hole mobility of 0.44 cm2/Vs

Wang et al. [255] Pentacene 280 K
Thermal annealing of PS changes the phenyl ring
orientation, morphology, and charge transport
of pentacene

4 cm2/Vs at 120 ◦C annealing of PS

Jung et al. [256] Pentacene 24 K PS mixed with TiO2-PS to tune the permittivity of the
gate dielectric layer 1.3 ± 0.4 cm2/Vs with 100% TiO2-PS

Huang et al. [257] Pentacene 280 K Effect of UV ozone-treated PS on morphology and
charge transport was studied 0.52 cm2/Vs with 5 s UV ozone treatment

Jo et al. [261] Rubrene 100 K PS with mixture with rubrene to control the vertical
phase segregation, microstructure, and mobility

Average mobility of 0.4 cm2/Vs with the
PS additive

Stingelin-Stutzmann
et al. [262] Rubrene Not reported PS provides good film formation properties and also

helps enhance the mechanical properties Up to 0.7 cm2/Vs

Park et al. [87] Rubrene Not reported PS served as an interfacial layer to modify the
topography and charge transport of rubrene Hole mobility up to 9.9 × 10−3 cm2/Vs

Park et al. [88] Ph-BTBT based
semiconductors 19.5 K The p-type and n-type blends based on the PS brush and

a BHJ structure showed enlarged grain size
Hole and electron mobility of 0.22 cm2/Vs
and 0.038 cm2/Vs

Li et al. [283] Ph-BTBT based
semiconductors Not reported

PS results in the highest mobility, near-zero threshold
voltage, minimal interfacial traps, and excellent bias
stress stability.

Not reported

Tamayo et al. [263] Ph-BTBT based
semiconductors 280 K

PS blending and coating speed significantly influence
the crystallinity, morphology, and electrical properties of
Ph-BTBT-10

1.46 cm2/Vs

Suzuki et al. [264] Ph-BTBT based
semiconductors Not reported

PS with a low trap density phase separated and coated
the surface of the gate insulator, enabling
low-voltage operation.

4.8 cm2/Vs

He et al. [284] Ph-BTBT based
semiconductors Not reported PS additive reduced interfacial traps and enhanced the

inter-grain connectivity
Up to 2.25 cm2/Vs from
Ph-BTBT/C12-Ph-BTBT OTFTs

Lin et al. [258] TIPS pentacene 35 K PS was mixed with TIPS pentacene to align crystal
growth with a slot-die coating technique An average mobility of 4.2 cm2/Vs

Feng et al. [259] TIPS pentacene Not reported
PS was blended with TIPS pentacene to induce phase
segregation and better crystallization with reduced
interface traps

0.26 cm2/Vs

Lada et al. [260] TIPS pentacene 350 K PS was mixed with TIPS pentacene in double solvents to
tune crystal morphology and mobility 1.82 cm2/Vs at 3:1 mixing ratio

Bharti et al. [90] TIPS pentacene 280 K
The vertically phase-segregated PS polymer passivated
the charge trapping sites on the silicon dioxide gate
surface, contributing to enhanced electrical stability

2.6 cm2/Vs with the PS polymer additive

Salzillo et al. [290] diF-TES-ADT 10 K, 100 K
PS with different Mw led to varying film smoothness,
homogeneity, and crystalline domain sizes
during crystallization

Above 1 cm2/Vs

Naden et al. [288] diF-TES-ADT Not reported
PS was mixed as polymer binder to study the growth
mechanisms of diF-TES-ADT and resulted in four
distinct structural regimes.

1.5 cm2/Vs

Niazi et al. [291] diF-TES-ADT 2.2 K, 900 K PS acts as a binder, improves the long-range lamellar
order, and reduces the interfacial trap density 6.7 cm2/Vs

Shen et al. [200] C8-BTBT 3.5 K PS was pre-deposited to modify the crystallization and
charge transport of C8-BTBT Above 7 cm2/Vs

Shen et al. [265] C8-BTBT 3.5 K Vertically segregated bilayer structure with a top
C8-BTBT and a bottom PS layer

Up to 6.80 cm2/Vs from C8-BTBT/PS
blend based OTFTs

Huang et al. [295] C8-BTBT Not reported PS was mixed with C8-BTBT to improve spin-coated
film topography 4.56 cm2/Vs

4. Conclusions and Outlook

In this review, we have discussed the major challenges faced by organic semicon-
ductors, such as low charge-carrier mobility, environmental degradation, difficulties in
achieving uniform thin-film morphology and crystallinity, poor interface quality, and scala-
bility and reproducibility issues. The integration of PS into these systems has proven to
be an effective strategy for addressing these challenges. PS has been shown to enhance
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film morphology, improve crystallinity, and optimize molecular alignment, which leads to
improved performance, stability, and scalability in OTFTs and other semiconductor devices.
These improvements reduce charge trapping, mitigate environmental degradation, and
ensure more consistent device fabrication, thereby overcoming key barriers to large-scale
production. By focusing on various benchmark semiconductors such as pentacene, rubrene,
TIPS pentacene, diF-TES-ADT, and C8-BTBT, we have demonstrated the versatility of PS
in enhancing the overall material properties and device performance. These results high-
light the significant impact of PS as a polymer additive in advancing the field of organic
electronics, paving the way for the broader implementation of organic semiconductors in
next-generation electronic devices.

Further research is needed to explore the full potential of PS and other polymers in
organic electronics, particularly in the context of emerging materials and device architec-
tures. As the field continues to evolve, the development of new polymer-based strategies
to enhance the performance and reliability of organic semiconductors will be crucial. By
continuing to refine these approaches, the broader adoption of organic electronic devices
in commercial applications, such as flexible displays, wearable technologies, and energy
harvesting systems, is likely to become increasingly feasible. The insights gained from this
work provide a solid foundation for future advancements in the design and manufacture
of high-performance, stable organic semiconductor devices.
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249. Lemanowicz, M.; Mielańczyk, A.; Walica, T.; Kotek, M.; Gierczycki, A. Application of Polymers as a Tool in Crystallization—A
Review. Polymers 2021, 13, 2695. [CrossRef]

250. Geary, J.M.; Goodby, J.W.; Kmetz, A.R.; Patel, J.S. The mechanism of polymer alignment of liquid-crystal materials. J. Appl. Phys.
1987, 62, 4100–4108. [CrossRef]

https://doi.org/10.1002/advs.201700290
https://doi.org/10.1016/j.jsamd.2020.05.004
https://doi.org/10.1063/1.2966350
https://doi.org/10.1007/s10854-020-02999-3
https://doi.org/10.1002/adma.201100784
https://www.ncbi.nlm.nih.gov/pubmed/21681983
https://doi.org/10.1016/j.jsamd.2019.02.004
https://doi.org/10.1021/ja804013n
https://doi.org/10.1038/nature03376
https://doi.org/10.1007/s11051-021-05151-2
https://doi.org/10.1016/j.bbagen.2012.11.025
https://www.ncbi.nlm.nih.gov/pubmed/23220699
https://doi.org/10.1021/acsami.6b01254
https://www.ncbi.nlm.nih.gov/pubmed/27022976
https://doi.org/10.1038/nmat3383
https://www.ncbi.nlm.nih.gov/pubmed/22820687
https://doi.org/10.1016/j.orgel.2018.03.019
https://doi.org/10.1002/adfm.201002656
https://doi.org/10.1016/j.synthmet.2020.116337
https://doi.org/10.1002/admi.201901605
https://doi.org/10.1039/D1TC01860D
https://doi.org/10.1016/j.jconrel.2007.09.012
https://doi.org/10.1016/S0079-6700(03)00045-5
https://doi.org/10.1016/B978-0-12-802447-8.00007-8
https://doi.org/10.1038/nmat3655
https://www.ncbi.nlm.nih.gov/pubmed/23727949
https://doi.org/10.1002/admt.201900104
https://doi.org/10.1002/cnma.202100345
https://doi.org/10.1002/aelm.202201107
https://doi.org/10.3390/polym13162695
https://doi.org/10.1063/1.339124


Processes 2024, 12, 1944 30 of 31

251. Qin, H.; Li, F.; Wang, D.; Lin, H.; Jin, J. Organized Molecular Interface-Induced Noncrystallizable Polymer Ultrathin Nanosheets
with Ordered Chain Alignment. ACS Nano 2016, 10, 948–956. [CrossRef]

252. Kubo, Y.; Kitada, Y.; Wakabayashi, R.; Kishida, T.; Ayabe, M.; Kaneko, K.; Takeuchi, M.; Shinkai, S. A Supramolecular Bundling
Approach toward the Alignment of Conjugated Polymers. Angew. Chem. Int. Ed. 2006, 45, 1548–1553. [CrossRef]

253. Huang, Q. When Polymer Chains Are Highly Aligned: A Perspective on Extensional Rheology. Macromolecules 2022, 55, 715–727.
[CrossRef]

254. Schwartz, B.J. Conjugated Polymers as Molecular Materials: How Chain Conformation and Film Morphology Influence Energy
Transfer and Interchain Interactions. Annu. Rev. Phys. Chem. 2003, 54, 141–172. [CrossRef] [PubMed]

255. Wang, Y.; Acton, O.; Ting, G.; Weidner, T.; Shamberge, P.J.; Ma, H.; Ohuchi, F.S.; Castner, D.G.; Jen, A.K.Y. Effect of the phenyl
ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Org. Electron. 2010, 11,
1066–1073. [CrossRef]

256. Jung, H.J.; Shin, Y.J.; Park, Y.J.; Yoon, S.C.; Choi, D.H.; Park, C. Ultrathin, Organic, Semiconductor/Polymer Blends by Scanning
Corona-Discharge Coating for High-Performance Organic Thin-Film Transistors. Adv. Funct. Mater. 2010, 20, 2903–2910.
[CrossRef]

257. Huang, W.; Fan, H.; Zhuang, X.; Yu, J. Effect of UV/ozone treatment on polystyrene dielectric and its application on organic
field-effect transistors. Nanoscale Res. Lett. 2014, 9, 479. [CrossRef]

258. Lin, Z.; Guo, X.; Zhou, L.; Zhang, C.; Chang, J.; Wu, J.; Zhang, J. Solution-processed high performance organic thin film transistors
enabled by roll-to-roll slot die coating technique. Org. Electron. 2018, 54, 80–88. [CrossRef]

259. Feng, L.; Jiang, C.; Ma, H.; Guo, X.; Nathan, A. All ink-jet printed low-voltage organic field-effect transistors on flexible substrate.
Org. Electron. 2016, 38, 186–192. [CrossRef]

260. Lada, M.; Starink, M.J.; Carrasco, M.; Chen, L.C.; Miskiewicz, P.; Brookes, P.; Obarowska, M.; Smith, D.C. Morphology control
via dual solvent crystallization for high-mobility functionalized pentacene-blend thin film transistors. J. Mater. Chem. 2011, 21,
11232–11238. [CrossRef]

261. Jo, P.S.; Duong, D.T.; Park, J.; Sinclair, R.; Salleo, A. Control of Rubrene Polymorphs via Polymer Binders: Applications in Organic
Field-Effect Transistors. Chem. Mater. 2015, 27, 3979–3987. [CrossRef]

262. Stingelin-Stutzmann, N.; Smits, E.; Wondergem, H.; Tanase, C.; Blom, P.; Smith, P.; De Leeuw, D. Organic thin-film electronics
from vitreous solution-processed rubrene hypereutectics. Nat. Mater. 2005, 4, 601–606. [CrossRef]

263. Tamayo, A.; Hofer, S.; Salzillo, T.; Ruzié, C.; Schweicher, G.; Resel, R.; Mas-Torrent, M. Mobility anisotropy in the herringbone
structure of asymmetric Ph-BTBT-10 in solution sheared thin film transistors. J. Mater. Chem. C 2021, 9, 7186–7193. [CrossRef]

264. Suzuki, I.; Hanna, J.-I.; Iino, H. High-speed blade-coating using liquid crystalline organic semiconductor Ph-BTBT-10. Appl. Phys.
Express 2024, 17, 051007. [CrossRef]

265. Shen, T.; Zhou, H.; Liu, X.; Fan, Y.; Mishra, D.D.; Fan, Q.; Yang, Z.; Wang, X.; Zhang, M.; Li, J. Wettability Control of Interfaces
for High-Performance Organic Thin-Film Transistors by Soluble Insulating Polymer Films. ACS Omega 2020, 5, 10891–10899.
[CrossRef]

266. Gundlach, D.J.; Lin, Y.Y.; Jackson, T.N.; Nelson, S.F.; Schlom, D.G. Pentacene organic thin-film transistors—Molecular ordering
and mobility. IEEE Electron Device Lett. 1997, 18, 87–89. [CrossRef]

267. Brown, A.R.; Jarrett, C.P.; deLeeuw, D.M.; Matters, M. Field-effect transistors made from solution-processed organic semiconduc-
tors. Synth. Met. 1997, 88, 37–55. [CrossRef]

268. Lin, Y.Y.; Gundlach, D.J.; Nelson, S.F.; Jackson, T.N. Stacked pentacene layer organic thin-film transistors with improved
characteristics. IEEE Electron Device Lett. 1997, 18, 606–608. [CrossRef]

269. Gundlach, D.J.; Jackson, T.N.; Schlom, D.G.; Nelson, S.F. Solvent-induced phase transition in thermally evaporated pentacene
films. Appl. Phys. Lett. 1999, 74, 3302–3304. [CrossRef]

270. Heringdorf, F.; Reuter, M.C.; Tromp, R.M. Growth dynamics of pentacene thin films. Nature 2001, 412, 517–520. [CrossRef]
[PubMed]

271. Myny, K.; De Vusser, S.; Steudel, S.; Janssen, D.; Müller, R.; De Jonge, S.; Verlaak, S.; Genoe, J.; Heremans, P. Self-aligned surface
treatment for thin-film organic transistors. Appl. Phys. Lett. 2006, 88, 222103. [CrossRef]

272. Qu, J.; Zeng, M.; Zhang, D.; Yang, D.; Wu, X.; Ren, Q.; Zhang, J. A review on recent advances and challenges of ionic wind
produced by corona discharges with practical applications. J. Phys. D Appl. Phys. 2022, 55, 153002. [CrossRef]

273. Park, S.; Cvelbar, U.; Choe, W.; Moon, S.Y. The creation of electric wind due to the electrohydrodynamic force. Nat. Comm. 2018,
9, 371. [CrossRef]

274. Podzorov, V.; Menard, E.; Borissov, A.; Kiryukhin, V.; Rogers, J.A.; Gershenson, M.E. Intrinsic charge transport on the surface of
organic semiconductors. Phys. Rev. Lett. 2004, 93, 086602. [CrossRef] [PubMed]

275. Kafer, D.; Ruppel, L.; Witte, G.; Woll, C. Role of molecular conformations in rubrene thin film growth. Phys. Rev. Lett. 2005,
95, 166602. [CrossRef] [PubMed]

276. Zeis, R.; Besnard, C.; Siegrist, T.; Schlockermann, C.; Chi, X.L.; Kloc, C. Field effect studies on rubrene and impurities of rubrene.
Chem. Mater. 2006, 18, 244–248. [CrossRef]

277. Briseno, A.L.; Tseng, R.J.; Ling, M.M.; Falcao, E.H.L.; Yang, Y.; Wudl, F.; Bao, Z.N. High-performance organic single-crystal
transistors on flexible substrates. Adv. Mater. 2006, 18, 2320–2324. [CrossRef]

https://doi.org/10.1021/acsnano.5b06149
https://doi.org/10.1002/anie.200503128
https://doi.org/10.1021/acs.macromol.1c02262
https://doi.org/10.1146/annurev.physchem.54.011002.103811
https://www.ncbi.nlm.nih.gov/pubmed/12524429
https://doi.org/10.1016/j.orgel.2010.03.006
https://doi.org/10.1002/adfm.201000032
https://doi.org/10.1186/1556-276X-9-479
https://doi.org/10.1016/j.orgel.2017.12.030
https://doi.org/10.1016/j.orgel.2016.08.019
https://doi.org/10.1039/c1jm11119a
https://doi.org/10.1021/acs.chemmater.5b00884
https://doi.org/10.1038/nmat1426
https://doi.org/10.1039/D1TC01288F
https://doi.org/10.35848/1882-0786/ad48d2
https://doi.org/10.1021/acsomega.0c00548
https://doi.org/10.1109/55.556089
https://doi.org/10.1016/S0379-6779(97)80881-8
https://doi.org/10.1109/55.644085
https://doi.org/10.1063/1.123325
https://doi.org/10.1038/35087532
https://www.ncbi.nlm.nih.gov/pubmed/11484047
https://doi.org/10.1063/1.2207846
https://doi.org/10.1088/1361-6463/ac3e2c
https://doi.org/10.1038/s41467-017-02766-9
https://doi.org/10.1103/PhysRevLett.93.086602
https://www.ncbi.nlm.nih.gov/pubmed/15447211
https://doi.org/10.1103/PhysRevLett.95.166602
https://www.ncbi.nlm.nih.gov/pubmed/16241826
https://doi.org/10.1021/cm0502626
https://doi.org/10.1002/adma.200600634


Processes 2024, 12, 1944 31 of 31

278. Du, C.; Wang, W.C.; Li, L.Q.; Fuchs, H.; Chi, L.F. Growth of rubrene crystalline thin films using thermal annealing on DPPC LB
monolayer. Org. Electron. 2013, 14, 2534–2539. [CrossRef]

279. Guo, S.; He, Y.; Murtaza, I.; Tan, J.; Pan, J.; Guo, Y.; Zhu, Y.; He, Y.; Meng, H. Alkoxy substituted [1]benzothieno[3,2-
b][1]benzothiophene derivative with improved performance in organic thin film transistors. Org. Electron. 2018, 56, 68–75.
[CrossRef]

280. He, Y.; Xu, W.; Murtaza, I.; Yao, C.; Zhu, Y.; Li, A.; He, C.; Meng, H. A chrysene-based liquid crystalline semiconductor for organic
thin-film transistors. J. Mater. Chem. C 2018, 6, 3683–3689. [CrossRef]

281. He, Y.; Sezen, M.; Zhang, D.; Li, A.; Yan, L.; Yu, H.; He, C.; Goto, O.; Loo, Y.-L.; Meng, H. High Performance OTFTs Fabricated
Using a Calamitic Liquid Crystalline Material of 2-(4-Dodecyl phenyl)[1]benzothieno[3,2-b][1]benzothiophene. Adv. Electron.
Mater. 2016, 2, 1600179. [CrossRef]

282. He, Y.; Xu, W.; Murtaza, I.; Zhang, D.; He, C.; Zhu, Y.; Meng, H. Molecular phase engineering of organic semiconductors based on
a [1]benzothieno[3,2-b][1]benzothiophene core. RSC Adv. 2016, 6, 95149–95155. [CrossRef]

283. Li, J.; Tamayo, A.; Quintana, A.; Riera-Galindo, S.; Pfattner, R.; Gong, Y.; Mas-Torrent, M. Binder polymer influence on the
electrical and UV response of organic field-effect transistors. J. Mater. Chem. C 2023, 11, 8178–8185. [CrossRef]

284. He, C.; He, Y.; Liu, X.; Li, A.; Chen, J.; Meng, H. Enhancing the performance of solution-processed organic thin-film transistors by
blending binary compatible small molecule semiconductors. Org. Electron. 2019, 64, 104–109. [CrossRef]

285. Kim, Y.-H.; Lee, Y.U.; Han, J.-I.; Han, S.-M.; Han, M.-K. Influence of Solvent on the Film Morphology, Crystallinity and Electrical
Characteristics of Triisopropylsilyl Pentacene OTFTs. J. Electrochem. Soc. 2007, 154, H995–H998. [CrossRef]

286. Park, S.K.; Jackson, T.N.; Anthony, J.E.; Mourey, D.A. High mobility solution processed 6,13-bis(triisopropyl-silylethynyl)
pentacene organic thin film transistors. Appl. Phys. Lett. 2007, 91, 063514. [CrossRef]

287. Gupta, D.; Jeon, N.; Yoo, S. Modeling the electrical characteristics of TIPS-pentacene thin-film transistors: Effect of contact barrier,
field-dependent mobility, and traps. Org. Electron. 2008, 9, 1026–1031. [CrossRef]

288. Naden, A.B.; Loos, J.; MacLaren, D.A. Structure–function relations in diF-TES-ADT blend organic field effect transistors studied
by scanning probe microscopy. J. Mater. Chem. C 2014, 2, 245–255. [CrossRef]

289. Kim, C.-H. Bias-stress effects in diF-TES-ADT field-effect transistors. Solid State Electron. 2019, 153, 23–26. [CrossRef]
290. Salzillo, T.; D’Amico, F.; Montes, N.; Pfattner, R.; Mas-Torrent, M. Influence of polymer binder on the performance of diF-TES-ADT

based organic field effect transistor. CrystEngComm 2021, 23, 1043–1051. [CrossRef]
291. Niazi, M.R.; Li, R.P.; Li, E.Q.; Kirmani, A.R.; Abdelsamie, M.; Wang, Q.X.; Pan, W.Y.; Payne, M.M.; Anthony, J.E.; Smilgies, D.M.;

et al. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals. Nat. Commun.
2015, 6, 8598. [CrossRef]

292. Shaposhnik, P.A.; Trul, A.A.; Poimanova, E.Y.; Sorokina, E.A.; Borshchev, O.V.; Agina, E.V.; Ponomarenko, S.A. BTBT-based
organic semiconducting materials for EGOFETs with prolonged shelf-life stability. Org. Electron. 2024, 129, 107047. [CrossRef]

293. Dong, A.; Deng, W.; Wang, Y.; Shi, X.; Sheng, F.; Yin, Y.; Ren, X.; Jie, J.; Zhang, X. Anion Bulk Doping of Organic Single-Crystalline
Thin Films for Performance Enhancement of Organic Field-Effect Transistors. Adv. Funct. Mater. 2024, 2404558. [CrossRef]

294. Park, J.; Hong, S. High-Photosensitivity WSe2 Phototransistor with Electrically Self-Isolated C8-BTBT as a Light Absorption
Layer. ACS Photonics 2024, 11, 1517–1523. [CrossRef]

295. Huang, Y.; Sun, J.; Zhang, J.; Wang, S.; Huang, H.; Zhang, J.; Yan, D.; Gao, Y.; Yang, J. Controllable thin-film morphology and
structure for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8BTBT) based organic field-effect transistors. Org. Electron.
2016, 36, 73–81. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.orgel.2013.06.006
https://doi.org/10.1016/j.orgel.2018.02.003
https://doi.org/10.1039/C7TC05063A
https://doi.org/10.1002/aelm.201600179
https://doi.org/10.1039/C6RA22999A
https://doi.org/10.1039/D2TC05066H
https://doi.org/10.1016/j.orgel.2018.10.009
https://doi.org/10.1149/1.2783765
https://doi.org/10.1063/1.2768934
https://doi.org/10.1016/j.orgel.2008.08.005
https://doi.org/10.1039/C3TC31783H
https://doi.org/10.1016/j.sse.2018.12.014
https://doi.org/10.1039/D0CE01467B
https://doi.org/10.1038/ncomms9598
https://doi.org/10.1016/j.orgel.2024.107047
https://doi.org/10.1002/adfm.202404558
https://doi.org/10.1021/acsphotonics.3c01660
https://doi.org/10.1016/j.orgel.2016.05.019

	Introduction 
	Advances in Charge Carrier Mobility 
	Advances in Controlled Crystallization Techniques 
	Advances in Organic Electronic Applications 

	Challenges in Organic Electronics 
	Charge Carrier Mobility and Trap States 
	Stability and Degradation 
	Morphological Control and Crystallinity 
	Interface Engineering 
	Scalability and Reproducibility 

	Hybrid System of PS and Organic Semiconductors 
	PS Mixing with Pentacene 
	PS Mixing with Rubrene 
	PS Mixing with Ph-BTBT-Based Semiconductors 
	PS Mixing with TIPS Pentacene 
	PS Mixing with diF-TES-ADT 
	PS Mixing with C8-BTBT 

	Conclusions and Outlook 
	References

