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Abstract: This paper addresses a class of uncertain nonlinear systems with disturbances that are
challenging to model by proposing a novel model-free adaptive sliding mode control (MFASMC)
scheme based on a discrete-time extended state observer (DESO). Initially, leveraging the pseudo
partial derivative (PPD) concept in the model-free adaptive control (MFAC) framework, the discrete-
time nonlinear model is converted into a full-form dynamic linearization (FFDL) model. Secondly,
using the FFDL data model, a discrete sliding mode controller is designed. A discrete integral sliding
mode surface is chosen to mitigate chattering during the reaching phase, and a hyperbolic tangent
function with minimal slope variation is selected for smoother switching control. Furthermore, a
DESO is designed to estimate uncertainties in the discrete system, enabling real-time compensation for
the controller. Finally, a genetic optimization algorithm is employed for parameter tuning to minimize
the time cost associated with selecting control parameters. The design process of this scheme relies
solely on the data of the controlled system, without depending on a mathematical model. The
proposed DESO-MFASMC scheme is tested through simulations using a typical numerical equation
and the existing EFG-BC/320 electric heavy-duty forklift from the Quzhou Special Equipment
Inspection Center. Simulation results show that the proposed method is significantly superior to the
traditional MFAC and PID control methods in tracking accuracy and robustness when dealing with
nonlinear disturbance of the system. The DESO-MFASMC scheme proposed in this paper not only
shows its advantages in theory but also verifies its effectiveness and practicability in engineering
through practical application.

Keywords: sliding mode control (SMC); full-form dynamic linearization (FFDL); model-free adaptive
control (MFAC); genetic algorithm (GA); discrete-time extended state observer (DESO); electric
heavy-duty forklift

1. Introduction

In recent years, with the continuous advancement of automation across various indus-
tries, the demand for control precision in systems has been increasing. The control problem
of discrete-time nonlinear systems, which are difficult to model due to uncertainties and
disturbances, has gradually become a prominent and challenging topic in academic re-
search. SMC, a nonlinear robust control strategy, is known for its ease of implementation
and high robustness in the presence of disturbances [1]. It has been extensively studied
and successfully applied to many practical systems, such as robotic arm posture control
systems [2,3], train operation systems [4,5], and boiler water-level control systems [6,7].
Theoretically, equivalent SMC only exists in ideal continuous SMC, while for discrete sys-
tems, only quasi-sliding mode control is possible. Additionally, due to the presence of the
sampling period in digital control, directly applying continuous-time SMC algorithms to
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discrete-time systems can lead to several issues, such as significant chattering, discretization
errors, and even system instability [8,9]. Therefore, to achieve high-performance variable
structure control in sampled data systems, it is preferable to select discrete-time SMC
(DSMC) algorithms [10–12].

In DSMC, chattering between positive and negative outputs, as well as unmodeled
dynamics, have become bottlenecks limiting its development. To address the chattering
problem in DSMC, many researchers have combined DSMC with other control algorithms
to form new control systems that suppress or eliminate chattering disturbances. Refs. [13,14]
proposed a discrete terminal SMC (DTSMC) method, which can make the discrete sliding
mode system respond faster and converge within a finite time by adjusting the parameters
of the DTSMC. Studies have shown that DSMC with an integral sliding mode surface
can provide better control performance than the traditional sliding mode surface [15,16].
Refs. [17,18] introduced discrete integral terminal SMC (DITSMC), which uses fractional
power rules to achieve a nonlinear manifold. Once the sliding surface is reached, this
enables faster convergence of the system state and has been successfully applied to mi-
cro/nano positioning and piezoelectric-driven motion systems. Ref. [19] designed a fast
terminal sliding mode controller with output constraints; this could achieve the desired
state in a shorter time by adjusting parameters, eliminating the chattering of SMC, but did
not solve the singularity problem in terminal sliding mode. Ref. [20] first applied the least
squares method to identify the corresponding linear model, designed the train operation
target curve according to the train operation requirements and energy-saving optimiza-
tion theory, and finally, designed a sliding mode predictive controller. By using the pole
placement method, an asymptotically stable sliding mode surface was designed, effec-
tively overcoming the chattering phenomenon, although lacking theoretical proof. All the
aforementioned methods require a known mathematical model. However, the process of
establishing a reliable model for systems is very burdensome and challenging.

Fortunately, Ref. [21] proposed a non-parametric dynamic linearization method,
a model-free approach for discrete nonlinear system modeling based on the concept of PPD.
The acquisition of PPD relies solely on system input and output data, and the design of the
controller also depends solely on these data. This method offers a viable solution to the chal-
lenging problem of nonlinear system modeling. Ref. [22] introduced an MFASMC method
based on an exponential reaching law. However, this approach requires improvements in re-
sponse time and tracking accuracy. Building upon this work, Ref. [23] utilized a radial basis
function neural network estimator to comprehensively estimate system uncertainties and
proposed a network-adaptive SMC law based on precise data models, achieving enhanced
control performance. Ref. [24] developed an MFASMC for an exoskeleton robot. Ref. [25]
presented an enhanced MFAC method incorporating a disturbance observer. Expanding on
these approaches, Ref. [26] integrated the non-parametric dynamic linearization method
with observer concepts to achieve real-time dynamic linearization of systems with distur-
bances, thus extending the applicability of MFAC to a broader range of discrete systems.
Ref. [27] applied higher-order SMC concepts and introduced a second-order quasi-sliding
mode MFAC method for systems with disturbances. Addressing actuator faults in subway
trains, Ref. [28] proposed a fault-tolerant MFASMC, considering system I/O constraints to
enhance subway train operation safety. Finally, Ref. [29] introduced an improved partial
format MFASMC method, which integrates energy consumption considerations into control
force design, trading some control accuracy for reduced energy usage. Ref. [30] proposed a
model-free adaptive quasi-sliding mode control method based on dynamic linearization
and a predefined performance function. However, this approach does not consider the
impact of uncertainties, such as disturbances in actual systems. In [31], the authors applied
a data-driven sliding mode control to the attitude control of a robot and addressed the poor
disturbance rejection capability of traditional MFAC. However, this approach introduced
adverse effects such as chattering from the DSMC, which needs to be further addressed in
future studies. Refs. [32,33] combined the advantages of the MFAC and DSMC methods to
design a composite controller, where the MFAC method reduced the controller’s reliance
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on the system model information, while the DSMC method compensated for the effects
of unknown external disturbances and unmodeled dynamics. However, it is difficult to
guarantee the convergence of the composite controller. It is noteworthy that the dynamic
linearization method offers advantages to DSMC in that it does not depend on the model,
but it does not solve the problem that DSMC requires a large switching gain to handle
interference, and the switch action will produce chattering and other problems that affect
performance. To address these challenges, Ref. [34] designed a data-driven integral sliding
mode control method combined with an extended state observer (ESO) to compensate for
unknown terms, thereby achieving the control objectives of suppressing chattering and pro-
viding disturbance rejection. However, research results indicated that the introduction of
ESO in MFAC and data-driven sliding mode control methods, as shown in [35], restricts the
flexibility in selecting data models and requires stringent assumptions for the convergence
proof process.

Based on the above analysis, in this paper, a new MFASMC algorithm based on a DESO
is proposed for nonlinear discrete-time systems with disturbances. Firstly, the pseudo-
gradient concept in the MFAC framework is used to transform the discrete-time nonlinear
Model into an FFDL data model. Secondly, a discrete sliding mode controller is designed
using the FFDL data model, a discrete integral sliding mode surface is selected to eliminate
buffeting at the arrival stage of the sliding mode, and a hyperbolic tangent function with
small slope change is selected for switching control to make the switching smoother. A
DESO is further designed to estimate the uncertainties in the discrete system to achieve
real-time compensation of the controller. Finally, in order to reduce the time cost of control
parameter selection, a genetic optimization algorithm is used to adjust the parameters.
The design process of the scheme only needs to use the input and output data of the con-
trolled system, without relying on a mathematical model. The proposed DESO-MFASMC
method is simulated and tested on a forklift and compared with traditional methods.
The simulation results validate the effectiveness and superiority of the DESO-MFASMC.
The main contributions of this paper are as follows: (1) This paper aims at multi-input
multiple-output discrete-time systems, and the multi-input multiple-output control algo-
rithm increases the difficulty of selecting control parameters. Therefore, a genetic algorithm
is introduced to adjust the controller parameters by the principle of survival of the fittest
to reduce the time cost of parameter selection. (2) Compared with tight-format dynamic
linearization and partial-format dynamic linearization, the FFDL method used in this paper
fully utilized the relationship between input change and output change. The system has
more adjustable degrees of freedom and greater design flexibility. (3) Compared with [36],
this paper adopts integral sliding mode control on the basis of model-free adaptive sliding
mode control to reduce the buffeting problem caused by ordinary sliding mode surface,
improve the stability of the controller, and make the control accuracy higher. (4) Compared
with [37], the discrete extended state observer is introduced in the controller design for
real-time compensation to reduce the influence of external disturbances on the control
effect, which is more consistent with the real system operating environment. (5) Compared
with the MFAC method used in [22,23], this paper further introduces a discrete sliding
mode control algorithm to reduce the influence of measurement perturbations. In order to
prevent the output from being too large, a parameter estimation error is introduced as a
limiting term to improve the robustness of the system. (6) Compared with [3,4], the pro-
posed algorithm does not depend on the dynamic model of the system and is a data-driven
control algorithm.

2. Dynamic Linearization Method and DESO
2.1. Dynamic Linearization

Considering the inherent uncertainties of complex controlled systems and the various
interferences encountered in operational environments, establishing precise mathematical
models for such systems is challenging. To monitor the operational status of the system,
data acquisition devices are typically integrated within the system. Taking an electric
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counterbalanced forklift as an example, its chassis is equipped with components such
as speed sensors, position sensors, and transponders. During operation, these sensors
collect comprehensive I/O data. In summary, a general nonlinear non-affine system can be
represented as the following data set:

v(s+1)= f (v(s), . . . , v(s − pv), u(s), . . . , u(s − pu), d(s), . . . , d(s − pd)) (1)

where v(s) = [v1(s), · · · , vi(s), · · · , vn(s)]T and u(s) = [u1(s), · · · , ui(s), · · · , un(s)]T are
the total output and total input of the system, respectively; s is the sampling time of the
discrete system; d(s)= [d1(s), · · · , di(s), · · · , dn(s)]

T represents the disturbance experienced
by the controlled system during operation; and pv, pu, and pd are unknown positive integers
related to the output, input, and disturbance terms, respectively.

Define H(s) ∈ RLv+Lu as

H(s) = [vT(s), · · · , vT(s − Lv + 1), uT(s), · · · , uT(s − Lu + 1)]T (2)

where Lv(0 ≤ Lv ≤ nv) is called the linearization length constant of the discrete system
output and Lu(0 ≤ Lu ≤ nu) is called the linearization length constant of the discrete
system input.

Remark 1. Owing to the uncertainty in d(s) experienced by the controlled system during opera-
tion d(s), to avoid significant parameter variations and increase computational complexity when
linearizing model (1), the disturbance term is not included in the variable H(s) selection, but is
considered separately.

Assumption 1. f (·) is continuously differentiable with respect to all variables in system (1).

Assumption 2. The system satisfies the generalized Lipschitz condition, that is, for s1 ̸= s2 and
s1, s2 ≥ 0, there exist:

∥v(s1 + 1)− v(s2 + 1)∥ ≤ b0∥H(s1)− H(s2)∥ (3)

where v(sj + 1) = f (v(sj), · · · , v(sj − Ly), u(sj), · · · , u(sj − Lu), d(sj), · · · , d(sj − Ld)); and
b0 > 0 is a constant.

Theorem 1. For a nonlinear system (1), there exists a time-varying matrix Φ(s) ∈ RLv+Lu ,
with 0 ≤ Lv ≤ nv and 1 ≤ Lu ≤ nu, such that

∆v(s + 1) = ΦT(s)∆H(s) (4)

where Φ(s) = [Φ1(s), · · · , ΦLv(s), · · · , ΦLv+Lu(s)]
T ∈ Rn×(nLv+nLu) and Φl(s) ∈ Rn×n is the

corresponding submatrix.

Proof. See Appendix A for details.

The following assumption is made for the parameter matrix Φ(s) to ensure the strict-
ness of the control system design.

Assumption 3. ΦLv+1(s) is a diagonal-dominant matrix, i.e., it satisfies
∣∣∣ϕijl(s)

∣∣∣ ≤ b1,
b2 ≤ |ϕiil(s)| ≤ αb2, α ≥ 1, and b2 > b1(2α + 1)(n − 1), the signs of all elements remain
unchanged at all times.

For the unknown PPJM in the dynamic linearized data model (4), the following PPJM
matrix estimation function is considered:

J(Φ(s)) =
∥∥∥∆v(s)− ΦT(s)∆H(s − 1)

∥∥∥2
+µ
∥∥Φ(s)− Φ̂(s − 1)

∥∥2 (5)
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where µ is a constant and Φ̂(s) represents the estimated value of Φ(s).
Taking the extremum of Φ(s) in Equation (5), we obtain the estimation algorithm:

Φ̂(s) = Φ̂(s − 1) +
η∆v(s)∆HT(s − 1)

µ + ∥∆H(s − 1)∥2 − ηΦ̂(s − 1)∆H(s − 1)∆HT(s − 1)

µ + ∥∆H(s − 1)∥2 (6)

where η ∈ (0, 2]; Φ̂(s) = [Φ̂1(s), · · · , Φ̂Lv(s), · · · , Φ̂Lv+Lu(s)]
T ∈ Rn×(nLv+nLu), and

Φ̂l(s) ∈ Rn×n is the estimated value of the corresponding submatrix.
The algorithm reset mechanism (7) and (8) is introduced.

ϕ̂ii(Lv+1)(s)=ϕ̂ii(Lv+1)(1)

if
∣∣∣ϕ̂ii(Lv+1)(s)

∣∣∣ < b2 or
∣∣∣ϕ̂ii(Lv+1)(s)

∣∣∣ > αb2

orsign(ϕ̂ii(Lv+1)(s)) ̸= sign(ϕ̂ii(Lv+1)(1)), i = 1, · · · , n
(7)

ϕ̂ij(Lv+1)(s)=ϕ̂ij(Lv+1)(1)

if
∣∣∣ϕ̂ij(Lv+1)(s)

∣∣∣ > b1 or
sign(ϕ̂ij(Lv+1)(s)) ̸= sign(ϕ̂ij(Lv+1)(1)),i ̸= j

(8)

where ϕ̂ii(Lv+1)(s) is the diagonal element in Φ̂Lv+1; ϕ̂ii(Lv+1)(1) is the initial value of
ϕ̂ii(Lv+1)(s); and ϕ̂ij(Lv+1)(s) is an off-diagonal element in Φ̂Lv+1.

2.2. DESO Design

Due to the nonlinear terms in Φ(s) and potential unknown disturbances during system
operation, Φ̂(s) experiences significant fluctuations, rendering it unsuitable for predict the
true value of Φ(s). Consequently, define J(s) = Φ̃T(s)∆H(s), where Φ̃(s) = Φ(s)− Φ̂(s)
represents the estimation error of the time-varying PPJM.

By using the characteristics of DESO that can observe and compensate the states
and unknown disturbances of the system, J(s) is extended to a state variable, and J(s) is
approximated by a linear function to reduce the influence of the integration term on the
control effect. Therefore, Equation (4) can be written as

∆v(s + 1) = Φ̂T(s)∆H(s) + J(s) (9)

DESO is a tool used in control systems to estimate system states and disturbances,
often in adaptive control and robust control fields. By extending the state space of the
system to estimate both the state variables and the unknown disturbance, it improves the
control performance and anti-interference ability of the system. The core idea is to treat
the unknown disturbance of the system as part of the extended state, and to estimate the
state and disturbance of the system simultaneously by designing an observer. Based on
the dynamic linearized data model, the extended state observer is used to observe and
compensate each state of the system and the unknown disturbance. The unknown term
is extended to a state variable, and the linear function alignment is used to approximate,
which reduces the influence of the integrated unknown term control effect. DESO can be
represented in the following form:{

vm(s + 1) = vm(s)+Φ̂T(s)∆H(s) + Ĵ(s)+l1(v(s)− vm(s))
Ĵ(s) = Ĵ(s − 1) + l2(v(s)− vm(s))

(10)

where vm(s) = [vm1(s), · · · , vmn(s)]T; Ĵ(s) = [ Ĵ1(s), · · · , Ĵn(s)]; and l1 and l2 denote the
observer gain.
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To ensure the boundedness of the DESO compensation range, Ĵ(s) must satisfy a
saturation function:

Ĵi(s) =


J0 Ĵi(s) > J0

Ĵ(s)− J0 < Ĵi(s) < J0
−J0 Ĵi(s) < −J0

(11)

where J0 > 0 is the constant of the saturation function.

3. DESO-MFASMC Design
3.1. Sliding Mode Surface Design

The error e(s) of the controlled system at time instant s is defined as:

e(s) = vd(s)− v(s) (12)

where e(s) = [e1(s), · · · , en(s)] and vd(s) = [vd1(s), · · · , vdn(s)] is the bounded expected output.
To improve the stability of sliding mode motion, the following function is designed:

Ψ(s + 1) = e(s+1) + h
s+1

∑
i=1

Te(s) (13)

where Ψ(s) = [Ψ1(s), · · · , Ψn(s)]; T denotes the sampling time; and h is a constant.

3.2. DESO-MFASMC Law Design

The control law design for DESO-MFASMC consists of two components. ueq represents
the equivalent control part and usw denotes the switching control part, an additional
discontinuous term introduced to enhance the robustness of the controller and mitigate
chattering in the system.

u(s) = u(s − 1) + ueq(s) + usw(s) (14)

The equivalent control input ueq for the DESO-MFASMC is obtained using Equation (15).

Ψ(k + 1)− Ψ(k) = 0 (15)

Inserting Equation (13) into Equation (15), we obtain:

∆Ψ(s + 1) = (1 + hT)e(s+1)− e(s) (16)

Setting Equation (16) to zero and substituting Equations (6) and (10), we obtain the
equivalent control law ueq.

ueq(s) =
ρ1Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
vd(s + 1)− v(s)− Ĵ(s)

)
− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
Lv
∑

i=1
ρi+1Φ̂T

i (s)∆v(s − i + 1))

− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
Lv+Lu

∑
j=Lv+2

ρjΦ̂
T
j (s)∆u(s − Lv − j + 1))− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

× e(s)
1+hT

(17)

where σ denotes a constant introduced to prevent the denominator from becoming zero.
In terms of switching control laws, the hyperbolic tangent function exhibits superior

performance in suppressing chattering compared to conventional sign functions, resulting
in the switched control law as expressed in Equation (18).

usw(s) = ws × tanh(Ψ(s)) (18)

where ws is a positive constant, with larger parameter values enhancing the system’s
interference rejection capability. However, in practical control, excessively high gain can
lead to increased system oscillations, typically proportional to ws.
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The overall control, u(s), can be expressed as:

u(s) = u(s − 1) + ρ1Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
vd(s + 1)− v(s)− Ĵ(s)

)
− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
Lv
∑

i=1
ρj+1Φ̂T

i (s)∆v(s − i + 1))

− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

(
Lv+Lu

∑
j=Lv+2

ρjΦ̂
T
j (s)∆u(s − Lv − i + 1))

− Φ̂Lv+1(s)

∥Φ̂Lv+1(s)∥2
+σ

( e(s)
1+hT − ws tanh(Ψ(s)))

(19)

The nonlinear system’s MFASMC structure using DESO is illustrated for Lv = 1 and
Lu = 1, with the control input and output configuration being similar, in Figure 1.

Figure 1. DESO-MFASMC block diagram.

In the figure, MFAC employs real-time updates of pseudo-gradient parameters using
nonlinear system I/O data, while DESO utilizes a linearized model to compensate for
unknown disturbances during the nonlinear system’s operation. This compensation ulti-
mately feeds into the MFASMC controller, which generates control inputs for the nonlinear
system, enabling the achievement of the desired objectives.

Remark 2. The process of this paper is as follows: for discrete general time nonlinear systems,
based on the new concept of a pseudo partial derivative, a new equivalent dynamic linearization
method for control system design is proposed. Using this method, the discrete-time nonlinear
system can be equivalently converted into a dynamic linearization data model based on input/output
increment form and FFDL data model. Based on the data model, the designed sliding mode surface
and sliding mode function are introduced, and the MFASMC law is obtained. Then, in order to
realize real-time compensation of unknown terms in the system, a DESO is obtained based on the
dynamic linearized data model and parameter estimation algorithm. For the unknown term of the
system, the extended state observer is used to observe and compensate each state of the system and
the unknown disturbance, the unknown term is extended to a state variable, and the linear function
alignment is used to approximate, which reduces the influence of the integrated unknown term
control effect.
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3.3. Convergence Analysis

Using the DESO-MFASMC control algorithm, there is a constant λmin > 0, such that
when λ > λmin, there is:

(1) The estimation error of the discrete-time extended observer is bounded.
(2) The estimation error of the unknown PPJM is bounded.
(3) Under the control law, the system ultimately settles into a convergent quasi-sliding mode.
(4) The system output tracking error converges monotonically.

Proof. Firstly, it is proved that the observation error of the DESO is bounded.
Define the state variable w(s) = J(s + 1)− J(s), which can be rewritten in the form of

Equation (20). {
v(s + 1) = v(s)+Φ̂T(s)∆H(s) + J(s)
J(s + 1) = J(s) + w(s)

(20)

Define X(s) = [v(s), J(s)]T and X̂(s) = [vm(s), Ĵ(s)]T, and then combine Equations (20)
and (10) to obtain:

X̃(s + 1) = D0X̃(s) + D1w(s) (21)

where X̃(s) = [v(s)− vm(s), J(s)− Ĵ(s)]T, D0 =

[
W1 I
W2 I

]
, and D1 =

[
0
I

]
;

W1 = (1 − l1)diag([1, 2, · · · , n]); W2 = −l2diag([1, 2, · · · , n]).
According to the disk theorem, the spectral radius of D0 is less than 1. By circular disc

theorem, there exists a matrix norm such that ∥D0∥v < c1 < 1 with c1 ∈ (0, 1). Since J is
bounded, w is also bounded.

Taking the norm of both sides of Equation (21), we obtain:∥∥X̃(s + 1)
∥∥ =

∥∥D0X̃(s) + D1w(s)
∥∥ ≤ ∥D0∥

∥∥X̃(s)
∥∥+ ∥w(s)∥

≤ cs+1
1

∥∥X̃(0)
∥∥+ 2c1 J0(1−cs

1)
1−c1

(22)

Thus, the boundedness of the observation error of the DESO can be obtained.
Next, it is shown that the estimation error of PPJM is bounded, denoted by

Φ̃(s) = Φ̂(s)− Φ(s), representing the estimation error of Φ(s). Subtracting Equation (6)
from Φ(s) yields:

Φ̃(s) = Φ̂(s)− Φ(s) + Φ(s − 1)− Φ(s − 1)

=

(
I − η∆H(s−1)∆HT(s−1)

µ+∥∆H(s−1)∥2

)
Φ̃(s − 1)+Φ(s − 1)− Φ(s)

(23)

From Assumption 2, it follows that ∥Φ(s)∥ ≤ b0, which implies ∥Φ(s − 1)− Φ(s)∥.
By taking the norm of both sides of Equation (23) and scaling, we obtain Equation (24).

∥∥Φ̃(s)
∥∥ ≤

∥∥∥∥∥
(

I − η∆H(s − 1)∆HT(s − 1)

µ + ∥∆H(s − 1)∥2

)
Φ̃(s − 1)

∥∥∥∥∥+ 2b0 (24)

By squaring the first term of (24), we can obtain:∥∥∥∥(I − η∆H(s−1)∆HT(s−1)
µ+∥∆H(s−1)∥2

)
Φ̃(s − 1)

∥∥∥∥2

=
∥∥Φ̃(s − 1)

∥∥2
+

(
−2 + η∥∆H(s−1)∥2

µ+∥∆H(s−1)∥2

)
× η∥HT(s−1)Φ̃(s−1)∥2

µ+∥∆H(s−1)∥2

(25)
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where 0 < η < 2 and µ > 0, which implies −2 + η∥∆H(s − 1)∥2/(µ + ∥∆ H(s − 1)∥2) < 0.
Then, we can obtain:∥∥∥∥∥

(
I − η∆H(s − 1)∆HT(s − 1)

µ + ∥∆H(s − 1)∥2

)
Φ̃(s − 1)

∥∥∥∥∥
2

<
∥∥Φ̃(s − 1)

∥∥2 (26)

There must be a constant 0 < d1 < 1 such that (27) holds.∥∥∥∥∥Φ̃(s − 1)− ηΦ̃(s − 1)∆H(s − 1)∆HT(s − 1)

µ + ∥∆H(s − 1)∥2

∥∥∥∥∥ ≤ d1
∥∥Φ̃(s − 1)

∥∥ (27)

Substituting Equation (27) into Equation (24), we obtain Equation (28).∥∥Φ̃(s)
∥∥ ≤ d1

∥∥Φ̃(s − 1)
∥∥+2b0 ≤ d2

1

∥∥Φ̃(s − 2)
∥∥+ 2(1 + d1)b0

≤ · · · ≤ ds
1

∥∥Φ̃(0)
∥∥+ 2b0(1−ds

1)
(1−d1)

(28)

From Equation (28), it follows that Φ̃(s) is bounded, and from the Assumption 2, Φ(s)
is bounded, that is, ∥Φ(s)∥ ≤ b0, then

∥∥Φ̂(s)
∥∥ is bounded.

Substituting Equations (10) and (19) into Equation (16), we have:

∆Ψi(s + 1) = −(1 + hT)ws tanh(Ψi(s)) + ∆Ji (29)

When Ψi(s) > 0:

Ψi(s + 1)− Ψi(s) = −(1 + hT)ws + ∆Ji < 0 (30)

When Ψi(s) < 0:

Ψi(s + 1)− Ψi(s) = (1 + hT)ws + ∆Ji > 0 (31)

Combining Equations (30) and (31) yields:

|Ψi(s + 1)− Ψi(s)| = (1 + hT)ws + ∆Ji (32)

|Ψi(s + 1)| < |Ψi(s)|s > s0 (33){
[Ψi(s + 1)− Ψi(s)]sgn(Ψi(s)) < 0
[Ψi(s + 1) + Ψi(s)]sgn(Ψi(s)) > 0

(34)

Equation (33) is equivalent to Equation (34). Consequently, if Equation (34) holds, this
implies that Ψi(s) is monotonically decreasing and converges to the sliding surface in finite
time s0.

Next, it is proved that the tracking error of the controller is bounded and converges to
a constant value.

By substituting Equation (4) in Equation (19), we have:

e(s+1)=vd(s + 1)− v(s + 1)
= vd(s + 1)− v(s)− Φ̂T(s)∆H(s)− J(s)
= vd(s + 1)− v(s)− ρ1Φ̂1(s)∆v(s)− · · ·
− ρLv Φ̂Lv(s)∆v(s − Lv)− ρLv+1Φ̂Lv+1(s)∆u(s)− · · ·
− ρLv+Lu Φ̂Lv+Lu(s)∆u(s − Lu)− Ĵ(s)
= 1

1+hT e(s)− ws · tanh(Ψ(s))− Ĵ(s)

(35)

Further Equation (35) is written as:

ei(s) =
1

1 + hT
ei(s)− ws · tanh(Ψi(s))− Ĵi(s) (36)
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It can be deduced that ws tanh(Ψi(s)) ∈ [−ws, ws] is a bounded constant. Let κ be
another constant, with κ ≥ |ws|. Then, there exists a positive scalar b4 such that:

0 <
1

1 + hT
<b4 < 1 (37)

Thus,

ei(s + 1) ≤ b4ei(s) + κ + J0 ≤ b2
4ei(s − 1) + (1 + b4)(κ + J0)

≤ · · · ≤ bs
4ei(1) +

1−bs
4

1−b4
(κ + J0)

(38)

Equation (38) demonstrates the bounded convergence of the tracking error. Proof
completed.

4. Optimization and Tuning of Controller Parameters Based on GA

Controller design is the most important part of the controlled system operation process,
and its parameter selection is a direct factor affecting the effect of the same controller control.
The parameters of the MFASMC are numerous, including ρ, σ, µ, η, etc. To avoid the
subjectivity of manual system debugging and reduce the time cost of manually adjusting
parameters, this paper introduces a neural network algorithm for controller parameter
optimization and tuning. The cumulative mean square error of system output error is
selected as the loss function as shown in Equation (39).

f it(x) =
S

∑
s=1

[v(s)− vd(s)]
T[v(s)− vd(s)] (39)

where x is the setting parameter, x = [η, µ, ρ, σ, b2, α, b1, h, ws, l1, l2, Φ(1)]T. The require-
ments of each parameter are 0 < η ≤ 2, µ > 0, 0 < ρ ≤ 1, σ > 0, α > 1, b2 > b1(2α + 1)
(n − 1), h > 0, ws > 0, l1 > 0, l2 > 0,

∣∣∣Φ(Lu+1)ij(1)
∣∣∣ ≤ b1, b2 ≤

∣∣∣Φ(Lu+1)ii(1)
∣∣∣ ≤ αb2.

To meet the parameter requirements, adding a penalty factor transforms the parameter-
tuning problem of the model-free adaptive sliding mode controller into the unconstrained
optimization problem shown in Equation (40).

min f it(x) =
S
∑

s=1
[v(s)− vd(s)]

T[v(s)− vd(s)] + K1

(
g(µ + σ + b1 + h + ws + l1 + l2) + g(2 − η)
+g(1 − ρ)

)
+K2

(
g(b1 − Φ(Lv+1)ij(1)) + g(Φ(Lv+1)ii(1)− b2)

g(αb2 − Φ(Lv+1)ii(1))

) (40)

where K1 and K2 are penalty factors and g(x) =
{

1, x ≤ 0
0, x > 0

.

With the fitness function given by Equation (40), the parameters of the DESO-MFASMC
are tuned.

As shown in Figure 2, firstly, the objective function is determined as Equation (40),
and the population is initialized. The initial parameters are selected and input into the
fitness function to calculate the corresponding fitness values, and then if the stop condition
is met is checked. Elite individuals are replicated, while the remaining individuals undergo
crossover and, finally, mutate to obtain new parameter values. The calculation is carried
out and if the conditions are met is determined. The evolution process is repeated until the
desired parameter values are obtained.
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Figure 2. Genetic algorithm flowchart.

5. Simulation and Experiment

This section consists of two sections: numerical simulation and semi-physical sim-
ulation. Firstly, through typical MIMO numerical experiments, the effectiveness of the
proposed algorithm (DESO-MFASMC) is compared with MFAC. The next set of experi-
ments incorporates external disturbances and implements the approach proposed in this
study for controlling electric heavy-duty forklifts, while also comparing MFAC with tradi-
tional PID control. Additionally, the experiments explore the robustness and adaptability
of the algorithm in practical applications, further demonstrating its potential in engineer-
ing contexts.

5.1. Experiment 1: Numerical Simulation

To enhance the applicability of the proposed method, we extended DESO-MFASMC
to a MIMO system and verified its effectiveness by simulating a typical controlled object.
We compared and simulated the DESO-MFASMC and FFDL-MFAC algorithms using time-
varying signals. The first group of simulation objects consisted of a system with three
inputs and three outputs, as follows:

v1(s + 1) = 1.5 × v1(s) + 0.12 × v1
2(s − 1) + 0.7 × u1(s)

+0.3 × u2(s) + 0.3 × u3(s) + d1(s)
v2(s + 1) = 1.6 × v2(s) + 0.14 × v2

2(s − 1) + 0.4 × u1(s)
+0.6 × u2(s) + 0.3 × u3(s) + d2(s)

v3(s + 1) = 1.6 × v3(s) + 0.15 × v2
3(s − 1) + 0.1 × u1(s)

+0.7 × u2(s) + 0.6 × u3(s) + d3(s)

(41)

where di(s) represents a zero-mean, zero-variance noise signal with a standard deviation
of 0.025.

The sampling period is set to 1 s and the number of sampling samples is 1000.
When comparing various control methods, the same data are used for the controller
design. A genetic algorithm is used for parameter tuning, with a maximum genetic
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generation of 500, a population size of 100, a mutation probability of 0.2, a crossover
probability of 0.7, and penalty factors all set to 100. The genetic algorithm achieves the
target function requirement after 238 evolutions. The controller parameters are set as:
η = 0.1202, µ = 0.6668, ρ1 = 0.9691, ρ2 = 0.9919, σ = 6.0335 × 10−6, b2 = 0.037,
α = 19.7351, b1 = 0.0029, h = 0.2637, ws = 0.5635, l1 = 0.2297, l2 = 5.4816 × 10−5,
and Φ̂(1) = Φ̂(2) = diag{0.55, 0.6, 0.55}.

Figure 3 displays the output curve of the MIMO system (41) under the DESO-MFASMC
and MFAC methods, while Figure 4 shows the error curves of these two methods. Zooming
in on the details in Figure 3, it is evident that at the 100th and 200th seconds, due to phase
delay and poor anti-interference ability, MFAC fails to timely feedback the output signal,
resulting in significant tracking delays and oscillations, thereby weakening its fast response
characteristics. In contrast, the enhanced DESO-MFASMC method promptly provides
feedback on the output signal, effectively eliminating interference while maintaining the fast
response characteristics of the MFAC algorithm. By the 200th second, even with changes in
the reference signal, DESO-MFASMC maintains a stable convergence state, demonstrating
the further adaptability of the algorithm. Table 1 lists the corresponding performance
metrics of these two methods. It is noteworthy that when employing the DESO-MFASMC
method, the MAE and MSE are approximately twice and six times higher, respectively, than
those of the MFAC method. Particularly with complex reference signals, DESO-MFASMC
exhibits significantly improved tracking performance. The proposed algorithm adopts a
model-free design, utilizing FFDL data models to design a DESO, selecting an integral
sliding mode surface to eliminate chattering during the switching phase, and achieving
smooth transitions through the use of a hyperbolic tangent function with small slope
changes. Furthermore, the DESO method effectively estimates uncertainties in discrete
systems, thereby enhancing system robustness and tracking control performance.

Figure 5 illustrates the control input diagrams for each control scheme. Throughout
all stages, the inputs of the DESO-MFASMC scheme change smoothly. During predeter-
mined signal changes, the inputs also adjust at a low rate, reducing system oscillations.
Conversely, the MFAC scheme shows significant input changes, leading to more severe
system oscillations.

(1) MAE

MAE =
1

nS

n

∑
i=1

S

∑
s=1

|vi(s)− vd(s)| (42)

(2) MSE

MSE =
1

nS

n

∑
i=1

S

∑
s=1

|vi(s)− vd(s)|2 (43)

(a) (b)

Figure 3. Output curves. (a) DESO-MFASMC; (b) MFAC.
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(a) (b)

Figure 4. Error curves. (a) DESO-MFASMC; (b) MFAC.

(a) (b)

Figure 5. Input curves. (a) DESO-MFASMC; (b) MFAC.

In conclusion, this paper adopts integral sliding mode function based on MFASMC to
reduce the chattering issue generated by conventional sliding modes, enhance the stability
of the controller, and improve the control accuracy. Furthermore, this paper introduces
a discrete extended state observer in the controller design for real-time compensation to
alleviate the impact of external disturbances on the control effectiveness.

Table 1. Performance indexes.

METHODS MFAC DESO-MFASMC

Rise time (s) 5 3
Adjust time (s) 22 8

MAE 1.48 × 10−2 6.27 × 10−3

MSE 1.52 × 10−2 2.45 × 10−3

5.2. Experiment 2: Electric Forklift

Electric transport forklifts are key equipment in modern logistics and manufacturing
industries, designed for the efficient handling and transportation of heavy goods. These
forklifts typically use an electric drive system, which has significant environmental advan-
tages over traditional internal combustion engine forklifts, such as zero emissions and low
noise. Their core components include a sturdy chassis and drive system, consisting of an
electric motor, transmission device, and reinforced wheels, ensuring reliable operation in
different terrains and work environments [38,39]. The control system is designed to be
simple and intuitive, allowing operators to control the lifting and tilting of the forks through
levers and a dashboard for precise cargo handling, as shown in Figure 6. Electric transport
forklifts are also equipped with advanced batteries and charging systems to support long
hours of continuous work, meeting the demands of efficient operations. The drive system
of an electric forklift is crucial, comprising traction motors, control systems (such as motor
drives, controllers, and various sensors), mechanical reduction and transmission devices,
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and wheels. Their operational performance largely depends on advanced drive system
speed control technology, currently utilizing two main drive speed control systems: direct
current and alternating current. Overall, electric transport forklifts have become indis-
pensable tools in modern logistics and manufacturing industries by improving handling
efficiency, reducing operating costs, and minimizing environmental impact.

Figure 6. Electric forklift operation.

Regarding the electric forklift as a particle, the force analysis is shown in Figure 7.
The main forces include the driving force and braking force provided by the electric drive
system, which is used to change its speed and stop the movement; the gravity generated by
the load of the forklift affects its stability and driving ability; and air resistance and rolling
resistance. In summary, the dynamic equation of the forklift running state can be obtained
as follows [32,33].

mah =
Ft − Ff − Fw − Fb − Fg

δ
(44)

where Ft =
Teigi0ηT

r ; Ff = mg f cos F; Fw = 1
2 CD Aρu2

r ; Fb = kb pb; Fg = mg sin F. Ft is driving
force; Ff is rolling resistance; Fw is air resistance; Fb is wheel braking force; Te is motor
torque; ig is motor transForce analysis of electric balanced forklift mission ratio; i0 is
transmission ratio of reducer; ηT is transmission efficiency; f is rolling resistance coefficient;
CD is air resistance coefficient; a is windward area; and ρ is air density. From Equation (44),
the desired motor torque Tdes can be obtained by the expected acceleration ades:

Tdes =

(
mg f cos F + mg sin F + 1

2 CD Aρu2
r + kb pb + δmah

)
r

igi0ηT
(45)

Figure 7. Force analysis.
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For the braking conditions, the relationship between pb and Fb applied to the wheels
can be regarded as linear. Therefore, under the braking condition, we can obtain the desired
braking force pdes as

pdes =

(
δmah +

Teigi0ηT
r + mg f cos F + mg sin F + 1

2 CD Aρu2
r

kb

)
(46)

This paper collects real-time control force and speed data from electric forklifts and
employs recursive least squares online identification to estimate the parameters of the
longitudinal dynamic model in real-time, with continuous updates.

Based on (44)–(46), the dynamic equations describing the relationship between control
force and speed for the electric forklift are

E(z−1)v(s) = G(z−1)u(s − 1) +
P(z−1)Υ(s)

1 − z−1 (47)

The corresponding system parameters are
E(z−1) = 1 + E0z−1 + · · ·+ EnE z−nE

G(z−1) = G0 + G1z−1 + · · ·+ GnG z−nG

P(z−1) = 1 + P1z−1 + · · ·+ PnP z−nP

(48)

Rewrite (48) to the following form

∆v(s) = [1 − E(z−1)]∆v(s) + G(z−1)∆u(s − 1) + Υ(s)
= QT(s)F + Υ(s)

(49)

where Q(s) and F(s) are data vectors and model parameters, respectively, defined as{
Q(s) = [−∆v(s − 1), · · · ,−∆v(s − na), ∆u(s − 1), · · · , ∆u(s − nb − 1)]T

F = [E1, · · · , EnE , G0, · · · , GnG ]
T (50)

The unknown parameter vector is estimated using the recursive least squares algo-
rithm with forgetting factor, as described in [33].

F̂(s) = F̂(s − 1) + M(s)[∆v(s)− QT(s)F̂(s − 1)]
M(s) = C(s−1)Q(s−1)

λ+QT(s)C(s−1)Q(s)
C(s) = 1

λ

[
I − M(s)QT(s)

]
C(s − 1)

(51)

where λ is the forgetting factor, with values ranging from 0.9 to 1.
To validate the effectiveness of DESO-MFASMC, this section conducts a simulation

experiment on an electric forklift as the controlled object, recording control forces, speed,
and other data. The control block diagram is depicted in Figure 8, and the forklift pa-
rameters are listed in Table 2. Simulations with DESO-MFASMC, MFAC, and PID are
performed for comparison, analyzing tracking errors, changes in driving force, and accel-
eration. The superiority of the DESO-MFASMC method is demonstrated through these
analyses. For the DESO-MFASMC and MFAC method: η = 0.15, µ = 0.7, ρ1 = 0.9, ρ2 = 1,
σ = 6 × 10−5, b2 = 0.07, α = 0.2, b1 = 0.03, h = 0.247, ws = 0.56, l1 = 0.3, l2 = 1.5 × 10−5,
and Φ̂(1) = Φ̂(2) = [0.3, 0.3]. For the PID method: v(1) = vd(1), Kp = 0.65, Ki = 0.7, and
Kd = 0.06.
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Table 2. EFG-BC/320 forklift and control parameters.

Parameter Name - Parameter Name -

Forklift model EFG-BC/320 Control method DESO-MFASMC
Maximum speed 18 km/h Load capacity 2000 kg

Overall length 3096 mm Power system Electric drive (48 V)

System parameter
ig=3.95, CD=0.75,
kb=1.23, A=1.85
f = 0.05, m = 3820kg

- -

Input and output data Speed, position and driving
force sensors Control accuracy ±0.132 m/s (velocity

tracking error)

Figure 8. DESO-MFASMC for Electric forklift.

Figures 9 and 10 display the speed and error curves for the electric heavy-duty fork-
lift using DESO-MFASMC, MFAC, and PID. MFAC and PID errors fluctuate between
[−0.052 m/s, 0.068 m/s] and [−0.738 m/s, 0.136 m/s], respectively. In contrast, DESO-
MFASMC employs full-state MFAC, with parameters optimized by a genetic algorithm
and an extended state observer for system disturbances and uncertainties, significantly
enhancing robustness and convergence. This achieves a speed error range of [−0.031 m/s,
0.048 m/s] during operation, with low sensitivity to disturbances. DESO-MFASMC shows
superior tracking accuracy and robustness compared to MFAC and PID. Simulations con-
firm DESO-MFASMC’s ability to effectively suppress measurement disturbances from
sensor noise and external interference, thus improving the operational safety and reliability
of the forklift. The proposed algorithm’s performance in complex conditions demonstrates
strong potential for practical applications.

(a) (b)

Figure 9. Cont.
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(c)

Figure 9. Output curves. (a) DESO-MFASMC; (b) MFAC; (c) PID.

(a) (b)

(c)

Figure 10. Output error curves. (a) DESO-MFASMC; (b) MFAC; (c) PID.

Figure 11 illustrates the curves of driving force and braking force for electric forklifts
when controlled by DESO-MFASMC, MFAC, and PID. As can be observed from Figure 11,
the force ranges for driving and braking under MFAC and PID methods are [−610 N,
423 N] and [−412 N, 634 N], respectively, which exhibit significant fluctuations, frequent
changes in operating conditions, and large system oscillations. In contrast, the control force
variation with DESO-MFASMC is more stable, with minimal system overshoot, effectively
mitigating changes during the transition phase. The force range for driving and braking
using DESO-MFASMC is [−408 N, 405 N].
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(a) (b)

(c)

Figure 11. Input curves. (a) DESO-MFASMC; (b) MFAC; (c) PID.

Figure 12 shows the acceleration change curve of the electric heavy-duty forklift under
the action of DESO-MFASMC, MFAC, and PID. It can be seen from the figure that the
acceleration ranges of MFAC and PID are [−0.192 m·s−2, 0.114 m·s−2] and [−0.216 m·s−2,
0.108 m·s−2], respectively. In contrast, under the action of DESO-MFASMC, the acceleration
change of the electric forklift is gentle, with a range of [−0.105 m·s−2, 0.104 m·s−2], ensuring
the safe operation of the electric forklift and preventing overturning during the handling
process. Furthermore, the performance metrics (52) and (53) are used to evaluate the
DESO-MFASMC, MFAC, and PID schemes, as shown in Table 3. In Table 3, the MSE and
IAE values of MFAC and PID are both greater than those of DESO-MFASMC.

(1) MAE

MAE =
1
S

S

∑
s=1

|v(s)− vd(s)| (52)

(2) MSE

MSE =
1
S

S

∑
s=1

|v(s)− vd(s)|2 (53)

Table 3. Performance indexes.

Methods PID MFAC DESO-MFASMC

Adjust time (s) 26 17 6
MAE 6.21 × 10−2 4.38 × 10−2 1.84 × 10−2

MSE 3.14 × 10−3 7.41 × 10−4 2.08 × 10−4
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(a) (b)

(c)

Figure 12. Acceleration curves. (a) DESO-MFASMC; (b) MFAC; (c) PID.

6. Conclusions

To handle the problem of low accuracy in trajectory tracking control of general nonlin-
ear discrete-time systems, a novel MFASMC algorithm based on a DESO is proposed. This
algorithm combines full-format MFAC and active disturbance rejection, and the param-
eters are tuned using a genetic algorithm. After determining the coefficients, simulation
experiments were conducted to evaluate the algorithm’s performance. The results indicate
that the DESO-MFASMC algorithm not only enhances the tracking accuracy of nonlinear
systems but also reduces dependence on models in DSMC. The introduction of the extended
state observer helps to observe uncertainties and disturbances, and promptly compensates
the controller, increasing its practical utility.

Future work will include the following: The effects of different transport types and
delays will be considered and external disturbances taken into account; some intelligent
algorithms will be introduced to further optimize DESO-MFASMC control parameters.
The problem of coordination and formation control in multi-agent systems is a hot topic
in the control field. Therefore, a multi-agent coordination and formation control scheme
should be studied in the future. The control performance of DESO-MFASMC is further
improved by improving the sliding mode surface and sliding mode reaching rate. Future
research directions also include optimizing the computational efficiency and performance
of the algorithms, exploring their applicability in complex systems and wider application
scenarios, and improving their learning capabilities through deep learning and reinforce-
ment learning techniques. Further experimental verification and refinement of parameter
optimization strategies will better meet the increasingly complex and diverse engineering
control needs. It is important to note that it is important to adjust controller parameters
adaptively without using model information. For example, the parameter tuning methods
of PID control include iterative feedback tuning, virtual reference feedback tuning, etc.,
which are all data-driven methods. Therefore, in our research in the near future, we will
develop the tuning mechanism of controller parameters by referring to these methods to im-
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prove the control performance. In addition, the uncertainties such as random [40], frictional
effect [41], input saturation, and output constraint are not considered in the design and
analysis of the controller in this work, making them important topics for future research.
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Appendix A

For the convenience of the readers, the proof is rewritten here. From MIMO system (1)

∆v(s + 1) =f(v(s), · · · , v(s − pv), u(s), · · · , u(s − pu))

−f(v(s − 1), · · · , v(s − pv − 1), u(s − 1), · · · , u(s − pu − 1))
(A1)

Using Assumption 1 and the Cauchy’s mean value theorem on (54) gives

∆v(s + 1) =
∂f∗

∂v(s)
∆v(s) + . . . +

∂f∗

∂v(s − pv)
∆v(s − pv)

+
∂f∗

∂u(s)
∆u(s) + . . . +

∂f∗

∂u(s − pu)
∆u(s − pu)

(A2)

where

∂f∗

∂v(s − i)
=


∂ f ∗1

∂v1(s−i)
∂ f ∗1

∂v2(s−i) · · · ∂ f ∗1
∂vn(s−i)

∂ f ∗2
∂v1(s−i)

∂ f ∗2
∂v2(s−i) · · · ∂ f ∗2

∂vn(s−i)
...

...
. . .

...
∂ f ∗n

∂v1(s−i)
∂ f ∗n

∂v2(s−i) · · · ∂ f ∗n
∂vn(s−i)



∂f∗

∂u(s − j)
=



∂ f ∗1
∂u1(s−j)

∂ f ∗1
∂u2(s−j) · · · ∂ f ∗1

∂un(s−j)
∂ f ∗2

∂u1(s−j)
∂ f ∗2

∂u2(s−j) · · · ∂ f ∗2
∂un(s−j)

...
...

. . .
...

∂ f ∗n
∂u1(s−j)

∂ f ∗n
∂u2(s−j) · · · ∂ f ∗n

∂un(s−j)



(A3)

where ∂f∗
∂v(s−i) and ∂f∗

∂u(s−j) denotes the mean value of the Jacobian Matrix of f(·) with respect
to all variables at certain point between

[vT(s), · · · , vT(s − pv), uT(s), · · · , uT(s − pu)]
T (A4)

and
[vT(s − 1), · · · , vT(s − pv − 1), uT(s − 1), · · · , uT(s − pu − 1)]T (A5)
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Denote

ψ(s) =
∂f∗

∂v(s − Lv)
∆v(s − Lv) + . . . +

∂f∗

∂v(s − pv)
∆v(s − pv)

+
∂f∗

∂u(s − Lu)
∆u(s − Lu) + . . . +

∂f∗

∂u(s − pu)
∆u(s − pu)

(A6)

Noting that ψ(s) is a bounded numerical value vector in nature at a given time k, and con-
sidering the following pure numerical data relationship matrix equation with a variable
ȷ(s) for every fixed time instant k.

ψ(s) =ȷ(s)[∆vT(s), · · · , ∆vT(s − Lv + 1), ∆uT(s), · · · , ∆uT(s − Lu + 1)]T

=ȷ(s)∆H(s)
(A7)

At least one solution matrix ȷ∗(s) must exist for (60) due to ∥∆H(s)∥ ̸= 0. Denoting

Φ(s) = [
∂f∗

∂v(s)
, · · · ,

∂f∗

∂vv(s − Lv + 1)
,

∂f∗

∂u(s)
, · · · ,

∂f∗

∂u(s − Lu + 1)
]T + ȷ∗(s) (A8)

this yields the direct result of the FFDL data model (4).
By the FFDL data model (4) and Assumption 2, one has

∥∆v(s + 1)∥ =
∥∥∥ΦT(s)∆H(s)

∥∥∥ ≤ b∥∆H(s)∥ (A9)

for any k and ∥Φ(s)∥ ≤ b. From the above-mentioned inequality, we can see that if any
element matrix of Φ(s) is unbounded, it would violate the inequality (62). Therefore,
the boundedness of Φ(s) is guaranteed for any k.
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