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Abstract: The bypass valve of a positive displacement motor is a key component for regulating
the bottom hole pressure and ensuring the normal circulation of drilling fluid during the drilling
process. Severe erosion damage to the bypass valve significantly affects the service life of the positive
displacement motor, yet there is currently a lack of related research. In this research, the flow
characteristics of drilling fluid inside the valve core were analyzed through flow field simulation,
and the main factors influencing erosion damage to the valve core were investigated. The results
indicate that the side holes and flow channel structure of the valve core are the main causes of erosion.
Based on this, two optimization schemes are proposed, namely, reducing the number of bypass side
holes to 4 and optimizing the flow channel cone angle to 45◦. The simulation results show that the
erosion rate of the optimized valve core is significantly reduced, and the service life is effectively
improved. Finally, a valve core life prediction model is established using a back propagation (BP)
neural network to evaluate the optimization effect. The results show that the applicable flow range
and maximum service life of the optimized valve core are increased by approximately 60% and 75.4%,
respectively, validating the effectiveness of the optimization scheme.

Keywords: bypass valve; positive displacement motor; erosion damage; life prediction;
structural optimization

1. Introduction

Geological drilling is a technique that utilizes specialized tools to drill holes from the
surface of the earth downwards and retrieve core samples from within the boreholes [1,2].
Nearly 70% of the Earth’s surface is covered by oceans, which harbor abundant oil and
gas resources [3], mineral resources [4], and biological resources [5]. Employing marine
geological drilling techniques to drill the seabed and obtain high-quality seabed core
samples is a crucial technological approach for realizing the exploration and development
of marine resources [6,7].

Positive displacement motors are essential equipment in marine drilling. Their operat-
ing principle resembles that of a hydraulic motor, where they rotate under the scouring
action of drilling fluid within the borehole, thereby breaking down rock layers and drilling
deeper into the Earth. Relevant scholars have carried out research on screw drilling tools,
mainly focusing on the optimization of drilling technology and the improvement of service
life. For the performance optimization of screw drilling tools, the research results mainly
include impedance modeling optimization [8], drilling tool parameter optimization [9],
and new drilling tool modeling and design [10,11]. In terms of positive displacement motor
drilling processes, related achievements concentrate on increasing drilling speed in hard-to-
drill formations [12], shallow soft formations [13], and abrasive formations [14], configuring
and optimizing positive displacement motor parameters to reduce axial vibration [15,16],
stick–slip vibration [17] impact on drilling processes, and some researchers have optimized
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the power configuration of small screw drilling tools for perforation [18] to enhance positive
displacement motor performance.

In terms of improving the service life of screw drilling tools, the relevant research results
have been studied from the failure analysis and optimization of drive shaft threads [19–22], stator
and rotor coordination [23,24], rubber shock absorption [25], the use of thick-walled rubber
stators [26], bearing wear analysis and optimization [27,28], powertrain failure analysis [29],
the establishment of a mechanical specific energy model [30], and unconventional formation
practice [31]. The service life of screw drilling tools has been greatly improved. In addition,
some scholars have used measurement and prediction methods to optimize the life of screw
drills, such as speed and direction measurement [32], state and performance prediction [33],
and stall prediction [34].

However, the existing results do not consider the influence of the bypass valve of the
positive displacement motors on the service life of the drill. As the core component of
the positive displacement motors, the bypass valve often needs to be opened and closed
during the working process. The mismatch of drilling fluid flow and bypass valve structure
will lead to excessive wear and erosion of the bypass valve, thereby reducing the working
life of the positive displacement motors and increasing the cost of drilling. Therefore, it is
necessary to study the erosion damage law of the bypass valve of the positive displacement
motors and optimize its structure on this basis, so as to reduce wear and erosion, improve
the service life of the positive displacement motors, and reduce the drilling cost.

2. Bypass Valve Working Principle

As illustrated in Figure 1a,b, the positive displacement motor serves primarily as
downhole power machinery. It utilizes the mud pump to deliver drilling fluid to the
motor, creating a specific pressure differential between the upper and lower ends. This
pressure differential drives the rotation of the motor rotor. The resulting torque and
rotational speed are transmitted to the drill bit via the cardan shaft and transmission
shaft. The bypass valve, a crucial component of the positive displacement motor, primarily
consists of the valve body, valve core, valve sleeve, and spring. It plays an essential role in
regulating downhole pressure, ensuring normal circulation of drilling fluid, and preventing
unexpected downhole incidents.
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Figure 1. Schematic diagram of bypass valve structure and working steps. (a) Schematic diagram
of positive displacement motor and bypass valve structure; (b) photo of bypass valve; (c) schematic
diagram of bypass valve working steps.
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The fundamental working principle of the bypass valve is depicted in Figure 1c.
When the bypass valve is in the open position, the spring elevates the valve core, thereby
permitting the drilling fluid to flow from the drill string to the annular space through
the bypass side hole. As drilling operations advance, fluctuations in hydraulic pressure
influence the position of the spring surrounding the valve core, resulting in the spring
compressing and closing the bypass side hole. This mechanism facilitates the circulation of
drilling fluid throughout the system, supplying power to the motor. At the onset of drilling
operations, the bypass valve mitigates the influence of hydraulic pressure, enabling the
spring to reset the valve core and reopen the bypass valve. Consequently, this allows the
fluid within the drill string to flow smoothly into the annular passage of the wellbore, thus
ensuring the continuity and efficiency of drilling operations.

3. Valve Core Flow Field Simulation Model

This study employs flow field simulations on the vulnerable component of the bypass
valve, specifically the valve core, to analyze the flow characteristics of drilling fluid within
the core and the distribution of particles in the flow field. The results facilitate the identifi-
cation of erosion and wear mechanisms within the valve core, offering valuable insights for
subsequent structural optimization. The fluid models utilized in the flow field simulation
of the valve core include the continuous phase model, discrete phase model, turbulence
model, and erosion model, which are detailed below.

The flow of the two-phase mixture in the flow passage of the bypass valve is chaotic
and irregular. The basic control equations involved in the finite volume analysis for the
valve core are represented by Equation (1).

∂ρ

∂t
+

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0, (1)

where ρ represents fluid density; t represents time; u, v, and w represent velocity compo-
nents; and x, y, and z represent coordinate components.

When conducting erosion analysis on the valve core of the bypass valve, the sand
concentration inside is typically between 1% and 2%. The volume fraction of the discrete
phase is low, generally less than 10%. Therefore, the discrete phase model (DPM) is chosen
to track solid particles. This model considers the influence of particles on the flow and also
roughly accounts for turbulent diffusion. The equations for the motion of solid particles
are shown in Equations (2) and (3).

dxpi

dt
= upi, (2)

∂ρ

∂t
+ u

∂(ρu)
∂x

+ v
∂(ρv)

∂y
+ w

∂(ρw)

∂z
= 0, (3)

Turbulence, as a form of fluid motion, is characterized by its irregular nature and the
presence of velocity components perpendicular to the direction of fluid motion. Since the
drilling fluid passing through the valve core is in a turbulent state under high Reynolds
number, the kinetic energy equation for the turbulence model chosen for calculation is
shown in Equation (4).

∂(ρ K)

∂t
+

∂(ρµi K)

∂xi
=

∂

∂xj

[
(µ +

σK
σω

)
∂K
∂xj

]
+ PK − Pε, (4)

where K represents turbulent kinetic energy; µ represents the dynamic viscosity coefficient
of the fluid; σK and σω are turbulence constants; PK is the production term for turbulent
kinetic energy; and ε is the turbulence dissipation rate.

The factors influencing erosion are numerous, and the mechanism of erosion is quite
complex. Erosion is typically quantified using the erosion rate. In this research, the
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simulation of the valve core considers the following influencing factors: the impact angle
of solid particles, the velocity of the impacting particles, the shape of the particles, and
the properties of the wall material. Therefore, the expression for the erosion model used is
shown in Equation (5).

R =

Nparticles

∑
γ=1

mpC(dp) f (α)vb(v)

A f ace
, (5)

where R represents the erosion wear rate on the surface of the structural component, γ is
the number of particles, Nparticles is the total number of particles, C(dp) is the particle size
distribution function, v is the velocity of the impacting particles, b(v) is a function of the
relative velocity between particles and the structural component, and α is the angle between
the trajectory of the impacting particles and the surface of the structural component.

4. Simulation of Influencing Factors on Valve Core Erosion

This research employs Ansys Fluent software 2021 to conduct simulation analyses
aimed at obtaining contour plots of velocity and pressure distribution within the flow
field of the valve core. It establishes particle velocity monitoring lines to examine flow
behavior and generate a distribution map of solid particle volume fraction. Based on these
findings, the primary factors influencing internal erosion in the valve core are identified,
and subsequent optimization of the valve core is carried out. The specific details are
provided below.

4.1. Flow Field Simulation and Analysis

The fluid domain within the valve core is modeled as axisymmetric; therefore, the
XOY section of this domain is selected for analyzing flow behavior. Figure 2a displays the
velocity and pressure contour plots of the valve core flow field in the XOY section, derived
from simulation calculations. At the inlet of the valve core, characterized by a relatively
large opening area, the mud enters smoothly. As the valve core structure changes abruptly,
the cross-sectional area of the flow passage decreases, leading to a gradual increase in mud
velocity. The maximum velocity is 11.2 m/s at the valve core’s varying diameter section.
Meanwhile, the pressure inside the valve core gradually decreases from the inlet to the
outlet, creating a certain pressure gradient between the inlet and outlet with a pressure
difference of 11.73 MPa.

Processes 2024, 12, 1953 5 of 18 
 

 

the inlet to the outlet, creating a certain pressure gradient between the inlet and outlet 
with a pressure difference of 11.73 MPa. 

The mud velocity and pressure primarily change at the valve core’s varying diameter 
section and side holes. It can be seen that the structural variation inside the valve core not 
only changes the flow direction of the drilling fluid but also leads to phenomena such as 
localized pressure reduction, increased mud velocity, and complex flow conditions within 
the valve core. This is because when solid particles move from a large diameter to a small 
diameter, the concentration of solid particles per unit space increases, resulting in a 
gradual increase in velocity. However, within a uniformly sized cylindrical pipeline, the 
velocity of solid particles gradually decreases due to the loss of kinetic energy during 
movement. The drilling fluid flows at a fast speed with a large velocity gradient inside the 
valve core, which explains why the valve core experiences significant axial impact from 
the drilling fluid, leading to the detachment of the elastic sealing ring in the holes between 
the valve core and the valve sleeve, ultimately reducing the valve core’s lifespan. 

  
(a) (b) 

Figure 2. Flow field simulation results. (a) Velocity and pressure contour plots of the liquid phase 
flow in the YOZ section; (b) velocity contour plot of a typical cross-section. 

Figure 2b presents the typical cross-sectional velocity contour plot within the valve 
core’s flow domain. With the flow trend from the inlet to the outlet and under the pressure 
exerted by the annular vortex flow, the maximum velocity difference occurs at y = 30 mm, 
and the velocity contour surfaces gradually shrink inward from the outer ring. At y = 50 
mm, the velocity difference begins to decrease, and the overall velocity stabilizes. 
Additionally, the maximum velocity value on the cross-section exhibits a decreasing 
trend. From the velocity contour plots at different positions, it can be observed that the 
annular vortex region gradually decreases after the varying diameter section, reaching its 
maximum area at y = 30 mm. As the distance from the outlet decreases, the intensity of 
the swirling flow gradually weakens, and the phenomenon of vortex dissipation becomes 
less apparent. The velocity distribution within the entire flow passage becomes more 
uniform, approaching the average flow velocity. 

4.2. Particle Motion Simulation and Analysis 
Create three velocity monitoring lines, Line 1, Line 2, and Line 3, along the y-axis 

direction in the valve core as shown in Figure 3a. Line 1 represents the central axis passing 
through the center of the passage, Line 3 represents the central axis inside the circular 
vortex close to the wall, and Line 2 represents the outermost isovelocity surface within the 
circular vortex. Plot the velocity data obtained from each monitoring line to generate the 
velocity profile curves shown in Figure 3b. It can be observed that the trend of the three 
curves is roughly similar. During the flow process from the inlet of the valve core to the 
variable-diameter section, the velocity gradually increases. This occurs because the 
particle concentration per unit space increases as solid particles move from a larger 

Figure 2. Flow field simulation results. (a) Velocity and pressure contour plots of the liquid phase
flow in the YOZ section; (b) velocity contour plot of a typical cross-section.

The mud velocity and pressure primarily change at the valve core’s varying diameter
section and side holes. It can be seen that the structural variation inside the valve core not
only changes the flow direction of the drilling fluid but also leads to phenomena such as
localized pressure reduction, increased mud velocity, and complex flow conditions within
the valve core. This is because when solid particles move from a large diameter to a small
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diameter, the concentration of solid particles per unit space increases, resulting in a gradual
increase in velocity. However, within a uniformly sized cylindrical pipeline, the velocity
of solid particles gradually decreases due to the loss of kinetic energy during movement.
The drilling fluid flows at a fast speed with a large velocity gradient inside the valve core,
which explains why the valve core experiences significant axial impact from the drilling
fluid, leading to the detachment of the elastic sealing ring in the holes between the valve
core and the valve sleeve, ultimately reducing the valve core’s lifespan.

Figure 2b presents the typical cross-sectional velocity contour plot within the valve
core’s flow domain. With the flow trend from the inlet to the outlet and under the pressure
exerted by the annular vortex flow, the maximum velocity difference occurs at y = 30 mm, and
the velocity contour surfaces gradually shrink inward from the outer ring. At y = 50 mm,
the velocity difference begins to decrease, and the overall velocity stabilizes. Additionally,
the maximum velocity value on the cross-section exhibits a decreasing trend. From the
velocity contour plots at different positions, it can be observed that the annular vortex
region gradually decreases after the varying diameter section, reaching its maximum area
at y = 30 mm. As the distance from the outlet decreases, the intensity of the swirling flow
gradually weakens, and the phenomenon of vortex dissipation becomes less apparent. The
velocity distribution within the entire flow passage becomes more uniform, approaching
the average flow velocity.

4.2. Particle Motion Simulation and Analysis

Create three velocity monitoring lines, Line 1, Line 2, and Line 3, along the y-axis
direction in the valve core as shown in Figure 3a. Line 1 represents the central axis passing
through the center of the passage, Line 3 represents the central axis inside the circular
vortex close to the wall, and Line 2 represents the outermost isovelocity surface within the
circular vortex. Plot the velocity data obtained from each monitoring line to generate the
velocity profile curves shown in Figure 3b. It can be observed that the trend of the three
curves is roughly similar. During the flow process from the inlet of the valve core to the
variable-diameter section, the velocity gradually increases. This occurs because the particle
concentration per unit space increases as solid particles move from a larger diameter to
a smaller diameter, resulting in a gradual increase in velocity. In the process from the
variable-diameter section to the side hole, the velocity reaches a relatively high value and
tends to stabilize. Finally, from the side hole to the outlet of the valve core, the velocity
gradually decreases. This occurs because the side hole diverts part of the mainstream flow,
resulting in a decrease in the number of particles in the central mainstream that flow out
from the outlet. The difference lies in the fact that the average velocity of Line 1, Line 2,
and Line 3 increases successively. This occurs because the motion of particles tends to be
smoother in the central axial region, while particles closer to the wall are more likely to
collide with the wall, leading to more complex particle motion.

As shown in Figure 4, the histogram of the particle volume fraction distribution along
the y-axis inside the valve core reveals that the solid particles are primarily concentrated
between 78 mm and 100 mm, reaching a maximum proportion of 36.53%. This region is
located directly below the bypass side holes. A secondary peak in particle volume fraction is
observed around 20 mm from the valve core inlet, with a proportion of approximately 25%.
This area coincides with the inlet diameter change. The distribution of solid particles in
other locations is generally uniform and relatively low. Notably, the particle volume fraction
at the valve core outlet is significantly smaller. This is attributed to the flow diversion
effect of the five bypass side holes within the valve core, which directs the majority of the
solid particles towards the annular space, reducing the particle content in the fluid flowing
towards the motor.
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4.3. Experimental and Simulation Verification

In order to verify the reliability of the simulation analysis, the indoor erosion experi-
ment was carried out on the valve core of the bypass valve, and the actual picture of the
erosion valve core of the bypass valve was obtained as shown in Figure 5a. It can be ob-
served that the erosion area inside the valve core of the bypass valve is mainly concentrated
on the inner wall surface of the variable diameter and the lower end of the side hole of the
valve core. The variable diameter is only some erosion wear on the surface, and the lower
end of the side hole of the valve core has been seriously damaged by erosion into a pit. The
erosion cloud diagram obtained by Fluent software 2021 simulation is shown in Figure 5b.
It can be found that the main erosion area predicted by the simulation is at the lower end
of the side hole of the valve core, which is roughly the same as the physical diagram.

In addition to the comparison of the erosion area, the erosion depth data can also
be used as an important criterion for simulation verification. After the experiment, the
three-dimensional erosion depth of the valve core surface after erosion is measured by
the ultra-depth-of-field three-dimensional microscopic system. As shown in the right two
of Figure 6, through the straight line on the y-axis of the side hole center, the red × 1 is
the measurement base point, because it is relatively smooth and not eroded. The second
red × on the straight line is the lowest point on the line segment, and the height difference
with the base point is 6.668 mm. The blue × point is the deepest erosion point in the lower
part of the area, and the height difference with the base point is 4.314 mm. The difference
between the two points is 2.354 mm.
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Quantitative calculation of the depth of wear and erosion of the valve core [35]:

R′ =
C
ρ

R, (6)

where C is the unit conversion constant, ρ is the wall material density, R′ is the erosion rate.
Considering the erosion physical time of solid particles on the wall, the above equation

can be further transformed into the following:

D = R′t, (7)

where D is the depth of erosion pit per unit area, t is erosion time.

Figure 6. Measured erosion depth.

According to this, the calculation results of the simulation can be quantified in depth
for the above formula. As shown in Figure 5b, the maximum erosion rate of the inner
wall of the spool is located on the cylindrical wall under the bypass side hole. According
to the range of erosion rate in this area and the calculation time of the simulation setting
of 120 min, the maximum erosion damage depth and the average erosion damage depth
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can be calculated. The calculated maximum predicted erosion depth is 1.974 mm, and the
error relative to the actual measured value is 16%, which can verify the correctness of the
simulation results.

5. Valve Core Structure Optimization
5.1. Reduce the Number of Holes

Through the analysis of the particle motion curve and volume distribution in the spool
in the previous section, it can be seen that the existence of the side hole of the spool will
affect the trajectory of the particles, resulting in the movement disorder of the solid particles
at the lower end of the side hole. Therefore, without changing the flow capacity of the
side hole of the bypass valve, reducing the number of side holes may reduce the degree
of disorder of the particles, thereby reducing wear. Therefore, the number of side holes
is reduced from five to four, and the spool is simulated; the results are shown in Figure 7.
It can be seen that the erosion wear area is mainly concentrated in the variable diameter
of the valve core. The erosion of the cylindrical wall under the side hole is not obvious,
but the erosion wear on the overall wall of the valve core appears uniform distribution.
The overall change trend of the erosion wear rate curve is roughly the same as that of the
valve core erosion curve of the conventional five bypass side holes, but the erosion wear
rate is reduced to a certain extent, and the maximum erosion wear rate is reduced from
5.89 × 10−8 kg·S−1·m−2 to 1.51 × 10−8 kg·S−1·m−2. The reason for the relief of erosion is
preliminarily speculated to be that after the number of bypass side holes decreases and the
diameter of the side holes increases, the solid particles are less affected by the fluid flow at
the side hole position, and the impact of the fluid on the wall surface during the movement
slows down, thereby reducing the wear rate.
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5.2. Valve Core Flow Channel Optimization

By analyzing the velocity and pressure gradient sections inside the valve core in the
previous section, it can be concluded that another reason for the occurrence of turbulence at
the lower end of the valve core is the abrupt changes in velocity and pressure on the upper
and lower surfaces of the valve core. If the vertically ejected outlet channel is replaced
with a tapered inclined surface, the abrupt trajectory of particles during motion can be
effectively reduced, thereby reducing erosion. The simulation results are shown in Figure 8.

Figure 8a,b show the simulation results of changing the flow channel to a tapered one
when the valve core has five holes; it can be seen that erosion still occurs in the main erosion
area analyzed earlier. The erosion on the vertical wall at the lower end of the side hole
shows a decreasing trend, while the overall erosion rate increases in the tapered surface.
However, the erosion rates in both parts are lower than the erosion rate in the fully vertical
case, and the maximum erosion wear rate decreases from 5.89 × 10−8 kg·S−1·m−2 to
1.40 × 10−8 kg·S−1·m−2. A preliminary analysis suggests that the reason for the reduction
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in erosion is that the modified inclined wall increases the area of particle motion, resulting
in a larger particle flow region and a smaller probability of cutting material when impacting
the wall.
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The simulation results for the valve core flow channel, which was further optimized
to have four holes and a 35◦ taper, are shown in Figure 8c,d. From the figures, it can be
observed that opening below the holes increases the particle’s motion area, resulting in a
more pronounced reduction in erosion. Similar to the original structure, the erosion areas
at the varying diameter and valve core side holes remain unchanged, but the erosion rates
have decreased. The most significant change is the substantial alleviation of erosion at the
lower end of the valve core side holes, with only a small portion of the area being affected.
Apart from changes in the erosion areas, the maximum erosion wear rate has decreased
from 5.89 × 10−8 kg·S−1·m−2 to 1.16 × 10−8 kg·S−1·m−2. This solution exhibits the most
significant reduction in erosion compared to other alternatives. Therefore, the number of
bypass side holes has been improved to 4, and an angled opening has been added at the
lower end of the flow channel.

Further simulations were conducted on the erosion rate of different opening angles in
the flow channel, and the results are shown in Figure 9. From Figure 9, it can be observed
that when the lower opening angle is around 45◦, the erosion rate is relatively small, and
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the erosion phenomenon is mitigated. It can also be noticed that the erosion rate decreases
when the opening angle exceeds 50◦. However, based on the analysis of actual operating
conditions, it can be inferred that if the lower opening angle of the flow channel is too large,
the amount of drilling fluid flowing out through the side holes, which is originally intended
to pass through the bypass valve, will be reduced. This would affect the communication
between the interior and exterior channels of the drill string. Therefore, selecting an opening
angle of 45◦ not only meets the operational requirements but also helps alleviate erosion.
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6. Optimization Effect Evaluation

This research adopts a back propagation (BP) neural network to establish a prediction
model for valve core life. It predicts and compares the life spans of the original and
optimized valve cores, aiming to evaluate the effectiveness of the optimization. During the
model establishment process, erosion impact parameters should be selected first. Then, a
life prediction model should be built based on these parameters to evaluate the optimization
effect of the valve core. The specific steps are as follows.

6.1. Factors Affecting Erosion Impact Selection

This research discusses the factors influencing erosion simulation. The main factors
considered include fluid velocity, fluid viscosity, particle diameter, and sand concentration.
The simulation results for different erosion factors are shown in Figure 10. As shown in
Figure 10a, with an increase in the inlet fluid velocity, the erosion rate gradually increases.
This is because as the fluid velocity increases, the kinetic energy of the particles impacting
the wall surface also increases, leading to an increase in shear stress on the wall surface.
Consequently, the cutting amount on the wall surface increases, resulting in more severe
erosion. As shown in Figure 10b, as the fluid viscosity increases, the erosion rate gradually
decreases. This is because when the fluid viscosity increases, solid particles experience
greater flow resistance while moving with the fluid. This leads to larger forces between the
fluid and solid phases. Consequently, the probability of solid particles impacting the inner
wall of the valve core decreases, resulting in a smaller erosion rate. As shown in Figure 10c,
with an increase in particle diameter, the erosion rate gradually increases. This is because
when the diameter of solid particles increases, the likelihood of these particles separating
from the liquid phase increases. These particles directly impact the wall surface of the
valve core, causing an increase in the maximum erosion rate of the valve core. As shown in
Figure 10d, with an increase in sand concentration, the erosion rate gradually increases.
This is because an increase in sand concentration means an increase in the number of
solid particles within the same unit volume of fluid. Consequently, the frequency of solid
particle impacts on the wall surface of the valve core increases, leading to an increase in the
maximum erosion rate of the valve core.
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6.2. Valve Core Life Prediction Model

A BP neural network is a machine learning model that processes information by
simulating human brain neuron connections. As shown in Figure 11, the basic method
includes: First, a multi-layer network structure is established, which consists of an input
layer, a hidden layer, and an output layer. Then, the input data is transmitted to the
network, the weighted sum between the layers is calculated, and the output is generated by
the activation function. Then, using the error between the actual output and the expected
output, the weights of each layer are adjusted by the back propagation algorithm to
minimize the loss function. This process continues to iterate until the model converges
and finally achieves effective prediction of new data. In this way, a BP neural network can
learn complex nonlinear relationships and is widely used in classification, regression, and
prediction tasks. In this paper, the process of constructing the erosion life prediction model
of the valve core can be regarded as a function process of fitting multiple independent
variables to solve the single dependent variable. Using the simulation data as a sample,
combined with the mathematical formula of the working life of the valve core derived
below, the erosion life prediction model of the valve core is established. On this basis, the
error analysis of the established model is further carried out.
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During the construction of a valve core erosion life prediction model, the erosion rate
at each location on the main erosion surface of the valve core changes over time. However,
the wall thickness of the erosion damage continues to thin but does not reach the failure
thickness. Therefore, a correction factor K is introduced, resulting in Equation (8).

E = K ∗ ER, (8)

where K is the correction coefficient with a value of 0.1, and E represents the erosion rate.
Equation (9) can be obtained by converting the erosion rate E, obtained from the

simulation calculation results, into the mass loss rate MR at the lower end of the valve core.

MR = E ∗ S = K ∗ ER ∗ S, (9)

where S is the area of the main erosion zone at the bottom of the valve core, ER is the
maximum erosion rate, and MR is the mass loss rate.

Equation (10) is obtained by converting the calculated mass loss rate to the volume
loss rate VR.

VR =
MR
ρ

, (10)

Substituting Equation (9) into Equation (10) yields Equation (11).

VR =
K ∗ ER ∗ S

ρ
, (11)

where VR represents the volume loss rate.
Equation (12) for converting the volume loss rate VR into the unit time erosion depth

LR is as follows.

LR =
VR
S

, (12)

where LR is the time erosion depth.
Substituting Equation (11) into Equation (12) yields Equation (13).

LR =
K ∗ ER

ρ
, (13)

The numerical value of LR is related to the wall material. This is because when a wall
material with a higher density is chosen, the valve core structure becomes more compact,
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resulting in a stronger ability to withstand particle impacts. Consequently, under the same
test conditions, the solid particles cause less erosion depth on the wall material after impact.

Assuming the final allowable erosion depth is LR, and the erosion depth per unit time
is lR, the valve core’s service life T can be obtained under the corresponding maximum
erosion rate.

T =
LR
lR

(14)

where T represents the service life of the valve core.
To make the constructed neural network model better fit the fitting curve and achieve

more accurate results, careful selection of the weights, thresholds, and structure of the BP
neural network is necessary. The erosion life prediction model for valve spools established
in this research involves influencing factors such as fluid velocity, fluid viscosity, particle
diameter, and sand concentration. Therefore, the number of nodes in the input layer is
determined to be 4. The number of nodes in the output layer corresponds to the service life
of the valve spool, so the number of output nodes is 1. When the thresholds, weights, and
algorithms are the same, the relationship between the prediction error percentage and mean
square deviation of the BP neural network and the output layer function is shown in Table 1.

Table 1. Prediction errors corresponding to different activation functions.

Hidden Layer
Function

Output Layer
Function Error Percentage (%) Mean Squared Error

Logsig Tansig 40.63 0.9025
Logsig Purelin 0.08 0.0001
Logsig Logsig 352.65 181.2511
Tansig Tansig 31.9 1.1733
Tansig Logsig 340.9 162.9598
Tansig Purelin 1.7 0.0107
Purelin Logsig 343.36 143.7633
Purelin Tansig 120.08 113.0281
Purelin Purelin 196.49 99.0121

From Table 1, it can be observed that the choice of hidden layer and output layer
functions has an impact on the prediction capability of the BP neural network model. After
comparing the mean squared error and error percentage under different combinations in
Table 1, it is determined to use the tansig function as the activation function for the hidden
layer and the purelin function as the activation function for the output layer. To improve
the accuracy of the model, when setting the learning accuracy of the model, it cannot be set too
high; otherwise, the calculation will not converge. Moreover, the learning accuracy of the model
cannot be set too low either; otherwise, the model will not meet the prediction requirements.

The learning rate of a neural network is typically selected between 0 and 1. A higher
learning rate can expedite the training process of the neural network. However, if the chosen
learning rate is too large, it will significantly cause fluctuations in the constructed network
model during the learning and training process, preventing convergence. Conversely, if the
chosen learning rate is too small, it may lead to an excessively long learning and training time
for the network, and the weights will not be able to stabilize. Based on the above analysis,
this study selects a learning rate of 0.05 and sets the number of training steps to 2000.

In practical applications, this research uses 45 sets of training samples, 25 sets of
orthogonal experimental tables, and 20 sets of single-factor analysis for the four influencing
factors of fluid velocity, fluid viscosity, particle diameter, and sand concentration. There are
42 sets of samples used as learning samples, and the remaining 3 sets are used as prediction
samples. Based on the above sample classification setting, the constructed BP network is
trained and learned using the samples.

The line graph in Figure 12a compares three sets of predicted data with the expected
data. It can be observed that the trends of the three sets of predicted output lines are
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roughly similar to the expected output line. Additionally, the three data points on the
predicted output lines are all located below the corresponding data points on the expected
output line, indicating a close similarity in values. Figure 12b shows a line graph of the
prediction sample errors for the three sets. It is evident that the absolute prediction errors of
the neural network for the three sets of samples are 7.5%, 12.5%, and 15%, respectively, with
an average of 11.67%, which is less than 15%. Therefore, the predictive model constructed
using the BP neural network can accurately predict the erosion life of the valve core.

Using the established erosion life prediction model, the predicted service life of the
original valve core under different flow rates is calculated, as shown in Figure 13a. It can
be seen that the service life of the valve core gradually decreases with increasing flow rate,
with a maximum flow rate of 17.5 L/s and a maximum service life of approximately 130 h.
In the initial stage of flow rate increase, from 8 L/s to 12 L/s, the predicted service life of
the valve core shows an apparent decreasing trend. This is because when the flow rate
changes within the initial range, the predicted life is highly sensitive to changes in flow
rate parameters. However, after the flow rate exceeds 12 L/s, the influence of the flow rate
on the bypass valve decreases. This is because when the flow rate reaches values outside the
reasonable range, the bypass function of the bypass valve no longer exists, and erosion will
cause the valve core to fail. The relationship between the flow rate and the predicted service
life shown in the graph corresponds well to the actual performance of the bypass valve.
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Further prediction of the optimized valve core life yields the results shown in
Figure 13b. The optimized valve core can accommodate a flow rate of up to 28 L/s,
with a maximum service life of approximately 228 h. The upper limit of the applicable
flow rate and the maximum service life are increased by approximately 60% and 75.4%,
respectively, compared to the original valve core. In the process of increasing the flow rate
from 4 L/s to 23 L/s, the decreasing trend of the predicted service life of the valve core is
apparent for the optimized valve core. However, after the flow rate exceeds 23 L/s, the
influence of the flow rate on the bypass valve decreases, and the decreasing trend of the
predicted service life becomes more moderate. This is because the optimized valve core
has a wider range of applicable flow rates, allowing for adjustment and diversion even
when the flow rate exceeds the optimal range, thereby avoiding sudden changes. The curve
depicted in the graph reflects the actual situation of the bypass valve quite well.

7. Conclusions and Discussion

This research focused on the erosion damage of bypass valves in positive displacement
motors and achieved the following three results through in-depth research. Firstly, an
erosion damage simulation model of the bypass valve was established, and the internal flow
field of the valve core was simulated using Ansys Fluent software. The flow characteristics
of the drilling fluid in the valve core were obtained, and it was identified that the side
holes and flow path structure of the valve core were the main causes of erosion. Secondly,
two optimization schemes were proposed: reducing the number of bypass side holes and
optimizing the flow path structure. Specifically, the number of bypass side holes was
reduced to 4, and the flow path cone angle was optimized to 45◦. Simulation results
showed that the erosion wear rate of the optimized valve core was significantly reduced,
and its service life was effectively improved. Thirdly, a valve core life prediction model was
established. A BP neural network was used to establish the valve core life prediction model,
and the optimization effect was evaluated. The results showed that the applicable flow
range and maximum service life of the optimized valve core increased by about 60% and
75.4%, respectively, verifying the effectiveness of the optimization scheme. The research is
of great significance to reduce the erosion damage of the bypass valve, prolong the service
life of the drilling tool in the well, reduce the number of trips, and reduce the drilling cost;
it can also effectively improve the service life of the whole set of volumetric downhole
power drilling tools.

However, the research results still have room for further study. First, the model of the
inner flow field of the valve core established in this paper is fixed, but the erosion wear
of the fluid and solid particles on the valve core wall is essentially a dynamic process. In
future erosion research, the law of erosion wear of the wall surface with time can be added
to explore the influence of different times on the error of the final predicted life result, so as
to modify the prediction model. Second, the erosion wear phenomenon is a complex result
affected by multiple factors. This research only considers the influence of four main factors
on erosion wear, but due to the limitations of the experimental conditions, it is impossible to
simulate and verify some non-main factors such as particle shape and particle impact angle
in the research process, so future research can continue to supplement this. Thirdly, due to
the limitations of experimental conditions and funding, in this research, only laboratory
tests were carried out, and no drilling field tests were carried out. Therefore, in the future,
if there is an actual drilling environment, field tests can be carried out with the help of this
actual drilling environment, and the field test results can be compared with the simulation
results to verify and further modify the model.
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