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Abstract: The growing concern about air quality and its influence on human health has prompted
the development of sophisticated monitoring and forecast systems. This article gives a thorough
investigation into forecasting the air quality index (AQI) with an Internet of Things (IoT) device that
analyzes temperature, humidity, PM10, and PM2.5 levels. The dataset used for this analysis comprises
5869 data points across six critical parameters essential for accurate air quality prediction. The data
from these sensors is sent to the ThingSpeak cloud platform for storage and preliminary analysis.
The system forecasts AQI using a TensorFlow-based regression model, delivering real-time insights.
The combination of IoT technology and machine learning improves the accuracy and responsiveness
of air quality monitoring systems, making it a useful tool for environmental management and public
health protection. This work presents comparatively the effectiveness of feedforward neural network
models trained with the ‘adam’ and ‘RMSprop’ optimizers over different epochs, as well as the
machine learning algorithm random forest with varying numbers of estimators to forecast AQI.
The models were trained using both types of regression analysis: linear regression and random
forest regression. The findings show that the model achieves a high degree of accuracy, with the
predictions closely aligning with the actual AQI values, thus having the potential to significantly
reduce the negative health impact associated with poor air quality, protecting public health and
alerting users when pollution levels are higher than allowed. Specifically, the random forest model
with 100 estimators delivers the best overall performance for both AQI 10 and AQI 2.5, achieving the
lowest Mean Absolute Error (MAE) of 0.2785 for AQI 10 and 0.2483 for AQI 2.5. This integration of
IoT technology and advanced predictive analysis addresses the significant worldwide issue of air
pollution by identifying the pollution hotspots and allowing decision-makers for quick reactions, and
the development of effective strategies to reduce pollution sources.

Keywords: Internet of Things; prediction; machine learning; sensors; air quality index; environment

1. Introduction

Due to permanent degradation, environmental monitoring is mandatory both for
industrial companies and for society to keep life parameters in a normal range. Ecolog-
ical monitoring collects and analyses data on various environmental characteristics like
temperature, humidity, gas, and dust concentrations. This action is critical in analyzing
and maintaining ideal environmental conditions, particularly those related to indoor air
quality, industrial processes, agriculture, and public health. Sensors are utilized in these
applications to detect and quantify all types of environmental change. Businesses and
government entities can use IoT devices to monitor and measure certain environmental
factors in various settings [1]. The Internet of Things (IoT) is a network of actual objects,
electronic devices, embedded systems, and other ‘things’ that gather and share data via
the Internet using sensors and software applications to allow for remote monitoring and
control. ‘Things’ are commonplace items that, regardless of the communication method
used (RFID, Wi-Fi, Bluetooth, etc.), may be read, recognized, located, and addressed by
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information-sensing devices and/or controlled online anytime. The issue of air pollution is
relevant and significant since it affects the entire natural ecosystem, and endangers people’s
health, being also associated with infectious disease transmission [2]. According to the
World Health Organization, polluted air causes millions of deaths each year, primarily due
to diseases such as heart disease, stroke, chronic obstructive renal diseases, pulmonary
disease, lung cancer, and acute respiratory infections [3]. To mitigate these consequences, it
is critical to accurately assess air quality and anticipate its degradation in the short term
caused by changes in wind directions and intensification, or other calamities. Platforms
equipped with particle detectors may alert citizens to the rising quantities of pollen or dust.
In such cases, it may be recommended that people avoid regions that may be hazardous to
their health, take a different route, and find the nearest pharmacies where antihistamine
medications may be purchased [4].

The urgent need for integrated IoT devices in environmental monitoring is highlighted
due to the old and fixed infrastructure existing in some cities, the lack of advanced sensor
technologies, optimized connectivity, and sustainable energy solutions. This hinders real-
time data acquisition, processing, and analysis, limiting informed decision making and
sustainable resource management [5]. Addressing these issues could be carried out by
designing advanced IoT devices that revolutionize environmental data collection [6], ensure
relevance across applications, and provide actionable insights for stakeholders [7].

This paper explores merging IoT systems and machine learning algorithms to predict
air quality index, crucial for public health and environmental management. Machine
learning (ML) is a subset of the artificial intelligence (AI) domain that involves training
algorithms to recognize patterns and make predictions based on data, gradually improving
its accuracy. The learning system of an ML algorithm is divided into three main parts: a
decision process, an error function, and an iterative ‘evaluate and optimize’ process. In
environmental monitoring, machine learning algorithms can analyze complex datasets
generated by IoT devices, learning from past data to make accurate predictions about future
air quality conditions. By processing large amounts of data, machine learning models can
identify trends, detect anomalies, and provide early warnings, making them invaluable
for forecasting pollution levels and helping to mitigate health risks. The study uses an
IoT device to measure indoor environmental characteristics like temperature, humidity,
PM10, and PM2.5. PM10 and PM2.5 refer to particulate matter with diameters less than
10 µm and 2.5 µm, respectively (e.g., allergens, like pollens, mold spores, dust mites, and
cockroaches). PM2.5 is more harmful to human health than PM10 due to its smaller size and
ability to penetrate deeper into the respiratory and renal system [8]. The data are stored on
ThingSpeak for analysis. A TensorFlow-based regression model predicts air quality index
(AQI), providing timely alerts and insights for preventive actions. This could help identify
pollutants, highlight high concentrations, and predict future dangerous areas. Machine
learning algorithms provide accurate and fast air quality estimates, crucial for public health
responses and environmental policy development. These technologies detect complex
environmental data patterns, increasing AQI forecast accuracy. Real-time information and
forecasts limit exposure to harmful pollutants, minimizing health risks. Combining these
technologies creates scalable, cost-effective air quality monitoring networks. This AIoT
system (AI + IoT) is a prototype and in this stage, it was tested just in indoor conditions
(private house). It can be applied in industrial shop floors, offices, and rooms of school
classes, etc. Still, it is easily extendable to include other sensors and to be tested outdoors
to help decision-makers from the city level or local environmental agencies. The machine
learning algorithms are not affected by the place where the IoT system is applied.

Briefly, the research objectives are the following:

RO1: Identifying hotspot areas from the air and noise pollution point of view by developing
an IoT system (the hardware and software components) responsible for data gathering,
reading sensors’ values, and uploading them on the cloud/web server;
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RO2: Developing the software application (data analytics level of IoT system) for con-
tinuous information about indoor and outdoor environment quality, possible threats,
and advice;
RO3: Implementing the prediction algorithms of weather parameters and pollutant trends;
RO4: Implementing the module for data visualization and proposing suggestions for
decision-makers.

The rest of this paper is structured as follows: Section 2 reviews previous work and
challenges in the field; Section 3 describes the proposed solution—the hardware system
implemented, the methodology of data collection, the metrics involved, and analysis pro-
cesses; and Section 4 briefly highlights the results and significant findings. Section 5 reflect
the limitations of this work and to provide a more comprehensive analysis and challenges
of air quality monitoring in outdoor environment. Finally, the Section 6 summarizes the
key points and suggests future research directions.

2. Related Work

In recent years, significant progress has been achieved in the ability to monitor and,
in some situations, anticipate air quality. Government monitoring stations, on the other
hand, are accurate but have a limited number of locations and high operational costs [9].
To address these restrictions, researchers have combined IoT devices to improve flexibility
and cost-effectiveness in monitoring air quality [10]. The Internet of Things (IoT) and ma-
chine learning have significantly improved air quality monitoring and prediction systems.
IoT-enabled systems collect real-time data on air pollutants, which are then evaluated using
machine learning techniques to forecast air quality levels [11,12]. The rapid expansion of
IoT technology has revolutionized industries with remote monitoring and sophisticated
analytics [13]. Monitoring air quality is crucial for resolving health issues and mitigating
the effects of poor air quality on public health [14]. The rapidly expanding field of IoT mon-
itoring indoor parameters includes sensor technology, data administration, user experience,
health consequences, calibration, validation, and integration [15].

For example, Kumar Sai et al. [16] proposed an inexpensive IoT-based air quality
monitoring system based on Arduino and the MQ series (specifically MQ135 and MQ7).
These sensors detect ammonia, carbon dioxide, alcohol, smoke, and carbon monoxide. This
arrangement allows for the cost-effective and adaptable display of contaminants in the
air. The system analyzes air quality using data obtained from several sensors, proving the
feasibility of using low-cost sensors for environmental monitoring. This strategy not only
improves the availability of air quality monitoring, but also ensures that IoT can be used to
address environmental challenges. The authors emphasize the importance of accessible air
quality monitoring to raise awareness and improve public health.

Karnati [17] assessed IoT-based air pollution monitoring systems focusing on big data
and machine learning. They highlighted the need for smart devices and advanced analytics
for effective air quality control plans.

Air pollution affects human health, plant life, and wildlife. Traditional methods like
lab analysis and expensive models are no longer effective. Recent research focuses on smart
devices using machine learning algorithms, big data technologies, and IoT to collect and
analyze air data [18]. The aim is to improve air pollution models and address research
challenges, focusing on data sources, monitoring, and forecasting models. Some of the
shortcomings of the data collection systems are the fixed and aging infrastructure of the
local environmental protection agencies and the change in traffic and the industrial pole
in certain cities, which makes it ineffective to collect data from areas that are no longer
relevant as they were 10–15 years ago [4].

Al horr et al.’s studies explore the impact of indoor factors such as temperature,
humidity, air quality, and illumination on occupant health, well-being, and productivity [19].
Identifying the best parameter ranges for human comfort and performance is a research goal.
Zhang et al. [20] assess indoor particulate matter in urban households, highlighting health
hazards and practical ways to reduce exposure. They suggest improving ventilation, using
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air purifiers, using cleaner cooking methods, and reducing indoor PM-generating activities.
Pope and Dockery’s [21] study highlights the severe health consequences of PM2.5 exposure,
highlighting the link between fine particulate matter and increased risk of cardiovascular
and respiratory disorders. They call for strict air quality standards and policies to protect
public health and emphasize the need for ongoing research and effective treatments to
reduce these risks. Gope, Dawn, and Das’ study [22] on the impact of COVID-19 lockdown
measures on air quality found that these measures positively impacted the environment,
resulting in lower air pollutant concentrations in cities worldwide. The study also found a
significant decrease in PM2.5 and PM10 levels during lockdown periods, highlighting the
effectiveness of lockout procedures in improving air quality. These findings contribute to a
growing body of research on the environmental effects of pandemic-induced societal shifts.

The studies [23,24] examine the impact of COVID-19 on air quality in 87 major cities
globally, highlighting the environmental impacts of reduced human activity. The authors
suggest using the pandemic as a natural experiment to understand the relationship between
human activities and air quality. They advocate for sustainable urban planning; promoting
public transport, cycling, and walking; and accelerating the adoption of cleaner energy
sources. They also suggest implementing air quality regulations to maintain lower pollution
levels during lockdowns and raising public awareness about improved air quality. The
study found a strong correlation between reduced human activity and improved air quality,
suggesting that long-term improvements can be achieved through sustainable practices
during the pandemic.

Monitoring indoor elements using IoT devices is driven by a desire to create healthier
and more sustainable indoor environments [25]. Researchers intend to increase occupant
well-being and productivity by addressing research questions on sensor technology, data
management, user experience, health implications, calibration and validation, and inte-
gration and interoperability [19]. By solving these research concerns, progress can be
achieved in monitoring indoor parameters with IoT devices, resulting in healthier and
more sustainable indoor environments.

In [26], the authors developed a monitoring network in the city of Salerno (placed
at the seaside in southern Italy) composed of three collection stations of air quality in
relatively highly crowded areas. The stations combine information from sensors for PM10
detection, temperature, humidity, pressure, and wind direction in order to better evaluate
the pollution degree. The authors applied an interpolation model to determine the areas of
highest pollution concentration within the monitored area based on weather conditions,
traffic speed and volume, and street geometry. Unfortunately, the applicability of the
solution is limited due to the legal regulation of the location of IoT monitoring systems
(data collection stations). At least in Romania, only city halls have the right of installing
such monitoring systems in public spaces.

Most research studies do not simultaneously present information about developing
an IoT system and applying machine learning algorithms on data (produced by their IoT
system or obtained from other sources). Usually, the topics are split: either discussing
from the hardware perspective development of the IoT system or discussing the machine
learning algorithms (the software perspective). Unlike the previously mentioned papers,
this work combines both topics in a holistic approach, targeting a social problem, namely
air quality monitoring with an impact on human health and employee productivity in shop
floors or offices. The novelty of this AIoT solution consists of developing a fully functional
IoT system that produces real data regarding indoor air pollution which are then analyzed
and used as input in machine learning algorithms for predicting air quality index based on
indoor environmental characteristics like temperature, humidity, PM10, and PM2.5. The
developed application can be used as a decision or warning tool for the population by
employers (if is used indoors) or local authorities (if is used outdoors).
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3. Proposed Solution

This article presents practical solutions for addressing challenges in air quality mon-
itoring systems using IoT-based data acquisition and TensorFlow-based analysis. The
strategy aims to enhance the effectiveness and efficiency of these systems, enabling better
environmental monitoring and management to support healthier living conditions. Indoor
parameters play a crucial role in occupant health, well-being, and productivity [27].

The project aims to collect natural environmental parameters such as temperature,
humidity, and air quality, which are influenced by suspended particles such as PM10 and
PM2.5, which are complex mixtures of very small particles and liquid droplets. The sensors
used for collecting the data are high-precision sensors with low power consumption.

Figure 1 represents the system architecture, which reflects the flow of data from
collection to prediction, integrating the export of data from ThingSpeak as a CSV file for
analysis with TensorFlow. This provides a streamlined process for real-time air quality
monitoring and forecasting.
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3.1. Hardware Part

Hardware represents the physical portion of a computer model, as opposed to software,
which deals with the logical part.

Figure 2 presents the structure of the device. The processing unit with a Wireless Local
Area Network (WLAN) module reads data from the connected sensors. The data are sent
via HTTP to the cloud at configurable intervals (currently 1 min). The device has 3 sensors
connected and is currently in use for temperature, humidity, and dust particles. The system
could be easily extended with gas or other sensors.
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Figure 2. Hardware architecture.

3.1.1. Raspberry Pi 4 B

The Raspberry Pi 4 Model B offers enhanced multimedia capabilities, computing
speed, memory, and networking with a 64-bit quad-core processor, dual displays, and PoE
capability [28].

3.1.2. Temperature Sensor TMP117

TMP117 is a precise digital temperature sensor [29]. The temperature sensor uses digi-
tal data and Raspberry Pi’s GPIO pins for easy connection. To use the I2C communication
protocol, SDA and SCL pins must be connected to microcontroller pins, requiring I2C-6
channel creation.

3.1.3. Humidity Sensor HIH-4030

The project utilized a SparkFun breakout board for Honeywell’s HIH-4030 humidity
sensor, measuring relative humidity and providing an analog output voltage for easy data
processing [30]. The analog sensor requires a converter from analog data into digital values
for humidity calculation, influenced by ambient temperature using Formula (1).

True RH =
SensorRH

1.0546 − 0.00216T
, T in ◦C, (1)

3.1.4. Analog–Digital Converter ADS1015

ADS1015 is a precision 12-bit ADC with an on-board reference, oscillator, and I2C-
compatible serial interface [31]. The converter uses the I2C communication protocol, so I
connected it directly to the pins specific to this communication.

3.1.5. Dust Particle Sensor SDS011

SDS011 is an air quality sensor that measures dust particles and smoke concentrations,
ensuring stability and security [32]. The sensor sends binary data on a serial port, which
can be read directly using a UART controller or a USB serial connector. The SDS011 is
connected to a Raspberry Pi using a serial adapter.

Figure 3 shows the electrical connection of each sensor to the microcontroller. To make
this possible, mother–mother threads are used to connect the sensor to the development
board. One end of the wire is connected to one of the sensor pins, and the other end to the
corresponding pin of the plate.



Processes 2024, 12, 1961 7 of 25
Processes 2024, 12, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 3. Interconnecting components. 

Figure 4 depicts the electrical diagram and shows how each sensor is connected to 
the microcontroller. In the provided diagram, the color coding for the connections is as 
follows: red wires are used for power connections (3.3 V and 5 V), black wires are used 
for ground connections, yellow wires represent SDA (I2C data), orange wires are for SCL 
(I2C Clock), blue wires are used for the analog output from the HIH 4030 to A0 on the 
ADS 1015, and green wires are for the connections to the SDS011. 

 
Figure 4. Electrical diagram. 

The flow diagram below indicates the process of data gathering and transmission via 
an IoT device and describes a data-gathering system based on a Raspberry Pi. The method 
begins with turning on the Raspberry Pi, and then running an application that activates 
the sensors to collect data. The system then looks for a Wi-Fi connection; if one is not 

Figure 3. Interconnecting components.

Figure 4 depicts the electrical diagram and shows how each sensor is connected to the
microcontroller. In the provided diagram, the color coding for the connections is as follows:
red wires are used for power connections (3.3 V and 5 V), black wires are used for ground
connections, yellow wires represent SDA (I2C data), orange wires are for SCL (I2C Clock),
blue wires are used for the analog output from the HIH 4030 to A0 on the ADS 1015, and
green wires are for the connections to the SDS011.
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Figure 4. Electrical diagram.

The flow diagram below indicates the process of data gathering and transmission via
an IoT device and describes a data-gathering system based on a Raspberry Pi. The method
begins with turning on the Raspberry Pi, and then running an application that activates the
sensors to collect data. The system then looks for a Wi-Fi connection; if one is not available,
the program terminates. If Wi-Fi is enabled, the system connects to a cloud database, and
transfers and stores the collected data. After storing, the system waits for one minute before
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starting the next data collection cycle. The process comes to an end when the application is
stopped (Figure 5).
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3.2. Software Part

This component oversees gathering data, delivering it to a database, and predicting
it. Software is a collection of instructions, data, or programs used to run machines and
complete certain tasks.

3.2.1. Acquisition of Data by Sensors

The Raspberry Pi microcontroller works by running an application developed using
the Python 3.9 programming language.

Using the values from collected PM10 and PM2.5, AQI is calculated as in (2). To make
this possible is required the installation of the python library python-aqi [33]. This library
converts the AQI value to the pollutant concentration (µg/m3 or ppm) using the United
States Environmental Protection Agency (EPA) algorithm [34,35] (Table 1).

I =
Ihigh − Ilow

BPhigh − BPlow
·(C − BPlow) + Ilow, (2)

where
I = the (Air Quality) index
C = the pollutant concentration
BPlow = the concentration breakpoint that is ≤C
BPhigh = the concentration breakpoint that is ≥C
Ilow = the index breakpoint corresponding to Clow
Ihigh = the index breakpoint corresponding to Chigh
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Table 1. AQI ranges.

Daily AQI Color Levels of Concern Values of Index Description of
Air Quality

Green
Air quality is satisfactory,

Good 0 to 50 and air pollution poses
little or no risk.

Yellow

Air quality is acceptable. However, there may be a
risk for some people,

Moderate 51 to 100 particularly those who are usually
sensitive to air pollution.

Orange
Members of sensitive groups

Unhealthy for Sensitive Groups 101 to 150 may experience health effects. The public is less
likely to be affected.

Red

Some members of the general

Unhealthy 151 to 200
public may experience health effects: members of

sensitive groups may experience more serious
health effects.

Purple Health alert: The risk to health
Very Unhealthy 201 to 300 effects is increased for everyone.

Maroon
Health warning of emergency

Hazardous 301 and higher conditions: everyone is more
likely to be affected.

3.2.2. ThingSpeak Cloud Computing Platform

The collected data are sent to ThingSpeak, which is an ‘Application Programming
Interface’ (API) and web service for the ‘Internet of Things’ (IoT) [36]. ThingSpeak serves
as a valuable tool for displaying and analyzing the environmental data collected through
the IoT-based monitoring system implemented in the study. A new channel is created on
ThingSpeak and data is sent to it using an HTTP GET request. The URL was constructed
with the Write API Key and the appropriate field values, enabling the transmission of data
to the ThingSpeak platform for visualization and analysis.

The communication between the collecting stations and the central node is wireless.
At 1 min intervals, samples of data are collected and sent to the device. In order to connect
and send data to the ThingSpeak platform, the device is connected to a Wireless Local
Area Network (WLAN) and Hyper-Text Transfer Protocol (HTTP) is used, as can be seen in
Figure 6.
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ThingSpeak offers 4 channels for free, where each channel can contain a maximum
of 10 fields. As the implemented IoT system collects 6 factors, only 6 fields are required.
After creating the channel, it is accessible through an API key. Having only 1 collecting
device, this channel is enough for this IoT system. Uploading data to ThingSpeak is made
with HTTP requests. A GET method is called to the ThingSpeak platform’s URL with the
parameters—the API key and the values for the 6 fields (e.g., url):

URL = f ′https : //api.thingspeak.com/update?api_key = ““& f ield1
= {temp_db}& f ield2 = {hum_db}& f ield3 = {pm_ten_db}& f ield4
= {pm_two f ive_db}& f ield5 = {aqi_ten_db} f ield6
= {aqi_two f ive_db}′

The method of uploading data from the device was chosen due to the fact that con-
necting the collecting station to the internet would increase the power consumption of the
microcontroller. In this way, the running time of the device increases.

The data are precisely read by the sensors, which include the temperature sensor,
humidity sensor, dust sensor, and index quality, as illustrated in Figure 7, and thus, no
human intervention is required in the sensing process. The IoT device is responsible for
collecting the environmental parameters, for processing the raw data and calculating the
air quality index based on the particle matter data, and for transmitting the data to the
cloud database using Wi-Fi.
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The second component represents the cloud database, and it oversees storing the
transmitted data securely for real-time and historical analysis. It also provides functionality
to export the stored data as a CSV file for further analysis.

The last part is represented by the data analysis and prediction model. Firstly, the
dataset must be imported for analysis. Then, the prediction model would be created using
TensorFlow-based analysis. In the end, the resulting data will be displayed and visualized
for easy interpretation by the user.

3.2.3. Making Predictions

The proposed system imports the air quality dataset into Google Collab, saving it in
CSV format for easy computer analysis. These data are easily analyzed using the Tensor-
Flow (version 2.17.0) package included with the Google Collab program. TensorFlow [37]
is an open-source machine learning library developed by Google that offers two modes of
execution: the eager mode and graph mode.

The dataset includes 6 critical parameters that aid in air quality prediction. Initially,
the dataset is preprocessed using appropriate approaches to remove inconsistent and
missing valued data, and the necessary features from the dataset are chosen to improve the
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outcomes. The dataset is then divided into two parts: training and testing to evaluate the
model’s performance.

Regression analysis [38] is a type of predictive modeling technique that examines the
relationship between a dependent and an independent variable. This technique is used for
forecasting or predicting, time series modeling, and determining the causal relationship
between variables.

1. Air quality dataset collection

The project uses an air quality dataset from the ThingSpeak cloud, available in CSV
format. The data, spanning 5 days from 17 to 21 May 2024, and taken from an office with
two people, offers information on the average minute reactions of air components. The
dataset has 5869 rows and 8 columns.

2. Data preprocessing

This is a data mining method that converts raw data into a comprehensible format by
cleansing it, filling in missing values, smoothing noisy data, resolving inconsistencies, and
converting decimal values to suitable floats.

The errors or inconsistencies in the data are identified and corrected. This involves
removing duplicates, handling outliers, and correcting data entry errors. The missing
values are handled. The data are normalized or standardized by converting them to a
consistent scale, which is often necessary for algorithms that require normalized input
data. Decimal values are converted to suitable floats to maintain precision and ensure
consistent analysis.

In detail, the following preprocessing steps have been performed:

• Handling Missing Values: The method dropna(inplace = True) addresses missing values
by removing the rows with any missing data. This ensures that the dataset used for
training and testing does not contain null or missing entries.

• Outlier Detection and Removal using IQR: Outliers are detected using the Interquartile
Range (IQR) method. The IQR is calculated by subtracting the first quartile (Q1) from
the third quartile (Q3). Outliers are defined as values that lie below Q1−1.5IQR or
above Q3 + 1.5IQR. These rows are removed from the dataset.

• Data Transformation: The PowerTransformer with the yeo–johnson method [39] is used
to transform the selected numeric columns (temperature, humidity, pm10, and pm25).
The Yeo–Johnson transformation is suitable for data that include both positive and
negative values. It adjusts the distribution to be more Gaussian-like without los-
ing information. By making the data more Gaussian-like, it can often improve the
performance and stability of the machine learning models.

• Converting Data Types to Float: To ensure consistency in the data format, the numeric
columns are converted to float. This is crucial for accurate computations, especially in
machine learning models, which often require numeric input data in the float format.

• Normalization or Standardization: The code uses the StandardScaler method to stan-
dardize the feature values. This scales the data so that it has a mean of 0 and a standard
deviation of 1, which helps certain machine learning models perform better, especially
those that are sensitive to the scale of input data.

3. Splitting training and test dataset

Separating datasets into training and testing sets is a crucial step in evaluating data
mining methods. Most data are used for training, while a smaller amount is used for
testing. Create a model using training data and test it against the test set to minimize data
discrepancies and improve model properties.

The data are split as follows: 80% was used to train the model and 20% was used for
testing it. By training the model on one subset and testing it on another, it can be assessed
how well the model generalizes to new data, helping to identify and minimize overfitting
or underfitting.
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4. Feature selection

Machine learning models’ performance is heavily influenced by the data features used
to train them. Irrelevant or partially relevant features may have a negative impact on the
model performance. In this project, attributes such as ‘temperature’, ‘humidity’, ‘pm10′,
and ‘pm25′ were chosen for better results. The relevance of a feature is measured as the
entire reduction in criteria caused by that characteristic.

The feature importance is measured using various techniques, such as the following:

• Correlation Analysis: Evaluating the correlation between each feature and the tar-
get variable.

• Feature Importance Scores: Using algorithms like random forests to rank feature
importance.

5. Regression analysis

The processed datasets are used to generate a function that plots training and valida-
tion data for a sequential neural network with backpropagation learning. This model is
designed for regression tasks, where the goal is to predict a continuous numerical value.

Linear regression is a widely used predictive analysis method that assesses the ef-
fectiveness of a group of predictor variables in predicting an outcome and identifies the
most significant predictor variables. It is a statistical technique utilized to analyze the
correlation between a dependent variable (y—which is the target prediction) and one or
more independent variables (x) [40].

Consider the model function (3) which describes a line with slope β and y-intercept α.

y = α + β x, (3)

The scientific literature reveals the following benefits of using linear regression:

• Simplicity and Interpretability: Linear regression is a computationally efficient, simple,
and easy-to-understand technique. The correlation between the variables is easily
understood because the coefficients show the precise influence of each predictor.

• Low Variance: Compared to more complex models, linear regression is less prone to
overfitting because it is based on a single model.

• Helpful for Small Datasets: It works effectively with smaller datasets with a linear
relationship.

There are also disadvantages of linear regression:

• Assumption of Linearity: Linear regression assumes a linear relationship between
the independent and dependent variables, which limits its effectiveness in capturing
complex patterns.

• Sensitivity to Outliers: Linear regression is sensitive to outliers, which can distort the
model and affect its prediction accuracy.

• Limited in Handling Multicollinearity: Multicollinearity among predictor variables
can impact the stability of the model coefficients.

Backpropagation is a fundamental technique for training neural networks involving
the backward propagation of mistakes. It involves computing the difference between the
expected output and the actual target value and adjusting the weights based on this gradient.
This technique helps the model learn from past failures and improve its predictions over
time, thereby enhancing performance.

Random forest regression is a machine learning technique for predicting continuous
outcomes by aggregating the predictions of numerous decision trees. It operates by building
a ‘forest’ of decision trees during training, with each tree employing a random part of the
training data and a random subset of the characteristics [41]. In random forest regression,
the final prediction is obtained by averaging the predictions of all the individual trees in
the forest, resulting in a more accurate and stable forecast than a single decision tree model.
This strategy reduces the variance of regression predictors using bagging while keeping
the bias largely constant.
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Random forest (RF) regression overcomes some shortcomings of linear regressions.
Thus, the main advantages of RF are as follows:

• Robustness to Outliers and Noise: RF models are resilient to outliers and noise due
to their ensemble approach, which averages out extreme predictions from individ-
ual trees.

• Ability to Capture Non-Linear Relationships: Unlike linear regression, random forests can
model complex, non-linear relationships between the predictor and response variables.

• Feature Importance: RF can rank the importance of variables, providing insights into
which predictors have the most influence on the outcome.

However, there are some disadvantages specific to random forest regression:

• Complexity and Interpretability: Unlike linear regression, RF models are complex
and less interpretable, making it difficult to understand how individual predictions
are made.

• Higher Computational Cost: RF requires more computational resources and time,
especially with large datasets and many trees.

• Tendency to overfit: Although reduced by bagging, random forests can still overfit,
particularly when too many trees are used or if not properly tuned.

Judging from practical reasons, linear regression is suitable for simple, small-scale
problems where interpretability and low variance are crucial. Instead, random forest
regression is better suited for complex tasks with larger datasets, high dimensionality, and
where capturing non-linear interactions among variables is essential.

In this work, we preferred both linear regression due to its simplicity and small
dataset produced by the IoT system, but also random forest regression for its benefit of
robustness to outliers and noise and the ability to capture non-linear relationships between
the predictor and response variables.

6. Air quality prediction metrics

The Mean Absolute Error (MAE) is a statistical measure used to evaluate the perfor-
mance of a regression model, calculating the average difference (4) between the model’s
predicted and actual data values. It is also known as the L1 loss function and is calculated
by dividing the number of observations by the predicted value.

MAE =
∑n

i=1|yi − ŷi|
n

, (4)

where
n is the number of observations in the dataset.
yi is the true value.
ŷi is the predicted value.
R-squared, also known as the coefficient of determination, is the proportion of variance

in the dependent variable that can be predicted from the independent variables in a
regression model (5). It has a value between 0 and 1, with 1 indicating that the model
accounts for all the variability in the data and 0 indicating that none of it does [42].

R2 = 1 − SSRES
SSTOT

= 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2 , (5)

where
SSRES is the sum of the squares of the residual errors (the difference between the

observed and predicted values).
SSTOT is the total sum of squares (the difference between the observed values and

their mean, squared).
Mean squared error (MSE) is a statistical measure that quantifies the average squared

difference between the observed and predicted values (6). After calculating the squared
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difference for each data point, the average of those squared differences is calculated. MSE
is more prone to outliers than MAE since it allocates higher weights to errors [43].

MSE =
∑(yi − ŷi)

2

n
, (6)

The square root of MSE is referred to as the root mean squared error (RMSE). This
measure is frequently used since it is simple to read and has the same unit as the dependent
variable. It gives an indicator of the average error magnitude [44].

The root mean squared error (RMSE) is one of two primary performance measures for
a regression model. It calculates the average difference between the values predicted by a
model and the actual values. It estimates the model’s ability to predict the target value (7).

RMSE =
√

MSE =

√
∑(yi − ŷi)

2

n
, (7)

The model performs better when the root mean squared error decreases. A perfect
model (a hypothetic model that consistently predicts the precise expected value) would
have a root mean squared error of zero.

In statistics, the Mean Absolute Percentage Error (MAPE), sometimes referred to as
mean absolute percentage deviation (MAPD), is a metric of forecasting method prediction
accuracy. MAPE is the average of Absolute Percentage Errors (APEs). Let At and Ft denote
the actual and forecast values at data point t, respectively [45]. It typically expresses
accuracy as a ratio specified by the following Formula (8), where N is the number of
data points:

MAPE =
1
N

N

∑
t=1

∣∣∣∣ At − Ft

At

∣∣∣∣× 100, (8)

However, MAPE has one big drawback: it generates infinite or undefined results when
the actual values are 0 or close to zero, which is typical in particular domains. If the real
values are very tiny (often less than one), MAPE produces extraordinarily large percentage
mistakes (outliers), whereas zero actual values produce endless MAPEs.

The Root Mean Squared Logarithmic Error (RMSLE) is determined by applying the log
function to the actual and predicted values and then subtracting them. RMSLE is resistant
to outliers when both minor and large errors are considered [46].

RMSLE =

√√√√ 1
N

N

∑
i=0

(log(yi + 1)− log(ŷi + 1))2, (9)

Symmetric Mean Absolute Percentage Error (SMAPE) is a modified version of MAPE
that accounts for symmetry, providing a balanced measure of prediction error relative to
both the actual and predicted values [47]. SMAPE is a modified MAPE where the divisor is
half the sum of the actual and forecast values, addressing MAPE’s issue with outliers by
providing a symmetric measure of forecast accuracy. It is usually defined as follows (10):

SMAPE =
100
N

N

∑
t=1

|Ft − At|
|At |+|Ft |

2

, (10)

The absolute difference between At and Ft is calculated by dividing the sum of the
absolute values of the actual and predicted values by half. The result of this calculation is
added for each fitted point t and then divided by the number of fitted points N.

Mean Directional Accuracy (MDA) measures how often the predicted direction of
change matches the actual direction of change. It is useful for time series and directional
forecasts. It compares the forecast direction (upward or downward) to the actual realized
direction. It is defined by the following Formula (11), where yi is the actual value at time i
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and ŷi is the forecast value at time i. Variable N represents the number of forecasting points
and I[·] is the indicator function that equals 1 if the condition inside is true and 0 otherwise.

MDA =
1
N

N

∑
i=2

I [(yi − yi−1)·(ŷi − ŷi−1) > 0] (11)

The Median Absolute Error (MedAE) is a robust statistical measure used to evaluate
the accuracy of predictions, particularly in the presence of outliers. It is defined as the
median of the absolute differences between the predicted and actual values, making it less
sensitive to extreme values compared to other metrics like Mean Absolute Error (MAE) or
Root Mean Square Error (RMSE).

The loss is calculated by taking the median of all the absolute differences between the
target and the prediction, by following Formula (12):

MedAE = median |yi − ŷi|, (12)

In the source code, we easily changed the methods depending on the needs (e.g., from
‘tf.keras.metrics.MeanSquaredError’ to ‘tf.keras.metrics.MeanAbsolutePercentageError’)
when compiling the model.

4. Results

The graphs presented below were generated in the ThingSpeak platform based on the
data collected by the implemented IoT device. Figures 8 and 9 represent the charts that
contain all the entries of AQI 10 and AQI 2.5, respectively, in the database.
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The simple method of graphing and calculating using a machine learning methodology
is discussed below.

Figure 10 depicts a heat map of the air quality dataset’s properties in a graphical
format. The color scale runs from −1 to 1, with dark green indicating stronger positive
correlations (closer to 1), brown indicating stronger negative correlations (closer to −1),
and white or light green expressing no correlation (closer to zero).
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Figure 10. Heatmap of correlation between variables.

Based on the provided heatmap, AQI 2.5 shows a strong positive correlation with
temperature and PM2.5, indicating that as these parameters increase, AQI 2.5 also increases
significantly. Additionally, AQI 2.5 has moderate positive correlations with PM10 and
AQI10, suggesting a moderate relationship with these parameters. However, AQI 2.5 does
not exhibit strong correlations with temperature or humidity, as indicated by their lower
correlation values. On the other hand, AQI 10 demonstrates moderate positive correlations
with both PM10 and PM2.5, but it does not show strong correlations with temperature
or humidity. This analysis highlights that while AQI 2.5 and AQI 10 are influenced by
particulate matter levels, they are not significantly affected by temperature and humidity.

The model is trained using both types of regression analysis: linear regression and
random forest regression. For linear regression are used different numbers of epochs (50,
100, 500, and 1000), and for random forest, two values for the number of decision trees (100
and 1000). The following figures represent the accuracy of the predictions by 50 epochs.

The following 5 figures (Figures 11–16) compare the actual AQI 10 or AQI 2.5 with the
predicted one. Each scatter plot used displays the actual values of AQI along the X-axis,
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and displays the predicted values along the Y-axis. Each point represents individual data
entries, and the dashed red line indicates the ideal relationship where the predicted values
exactly match the actual measurements. Correlating the results from Figures 11–16 with
the previous charts (Figures 8 and 9—Graph generated in ThingSpeak web application
for AQI), it is easier to understand why for a single value on the X-axis (taken at different
times in the measurement interval) there are more (predicted) values on the Y-axis. To some
extent, this is also the purpose of machine learning algorithms to reduce the prediction
error over multiple iterations.
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The results in Figure 11 are obtained after the dataset was trained using the ‘adam’
optimizer for the prediction model while Figure 12 contains the results using the ‘RMSprop’
optimizer. It can be observed that this model is more accurate than the other one.

The following diagrams compare the actual with the predicted value of AQI 2.5. Most
of the data points which can be seen in the Figure 13 cluster more closely around the red
dashed line than the ones from the diagram represented in Figure 14, suggesting that the
first model’s predictions are more accurate than the other one.
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The values obtained indicate that our model prediction is performing well and ac-
cording to Figures 11 and 13, our data fits into the ‘good’ range from the AQI categories,
which can be seen in the Table 1 [35]. However, the low values of AQI can be due to the
rather high temperatures (above 22 degrees Celsius) from the time of data collection—May
2024, because it is known that PM ratios decrease with increasing temperature [2]. On
the other hand, the particular context of the analyzed environment with less household
activities like cooking on stoves and indoor smoking positively affected the less indoor
particulate emissions.

The Figures 15 and 16 represent the accuracy of the predictions by 1000 epochs using
random forest regression.

Table 2 reflect the results generated by the Mean Absolute Error, Mean Squared Error,
Root Mean Squared Error, and R-squared metrics.
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Table 2. AQI measurements resulted after evaluating the model with MAE, MSE, RMSE and R2.

Prediction
Model

Epochs
AQI 10 AQI 2.5

MAE MSE RMSE R2 MAE MSE RMSE R2

‘adam’
optimizer

50 0.3289 0.1968 0.4437 0.9383 0.3205 0.1557 0.3946 0.9953

100 0.3276 0.1972 0.4440 0.9382 0.3211 0.1573 0.3966 0.9952

500 0.3246 0.2032 0.4508 0.9363 0.3247 0.1622 0.4028 0.9951

1000 0.3174 0.2102 0.4585 0.9341 0.3145 0.1494 0.3865 0.9955

‘RMSprop’
optimizer

50 0.3550 0.2202 0.4693 0.9309 0.3283 0.1678 0.4096 0.9949

100 0.3142 0.1901 0.4360 0.9404 0.3432 0.1795 0.4237 0.9946

500 0.3145 0.1995 0.4467 0.9374 0.3222 0.1581 0.3976 0.9952

1000 0.3088 0.2018 0.4492 0.9367 0.3361 0.1690 0.4111 0.9949

n_estimator

Random
Forest

100 0.2785 0.2095 0.4577 0.9343 0.2483 0.1516 0.3894 0.9954

1000 0.2778 0.2086 0.4568 0.9346 0.2482 0.1503 0.3877 0.9955

The ‘adam’ optimizer’s performance improves with increasing epochs, with a slight
decrease in the Mean Absolute Error (MAE) for AQI 10 and a similar trend for AQI 2.5.
The root mean squared error (RMSE) also decreases with more epochs, suggesting better
predictions. The R-squared values are consistently high for both AQI 10 and AQI 2.5,
indicating that the model explains a significant portion of the data’s variance. This suggests
that the ‘adam’ optimizer is effective in predicting data.

The ‘RMSprop’ optimizer significantly improves the MAE for AQI 10 from 0.35508
to 0.30883 at 1000 epochs, while the MAE for AQI 2.5 initially increases but decreases
to 0.33618 at 1000 epochs. The RMSE for both AQI 10 and AQI 2.5 follows a similar
trend, improving with more epochs. The R2 values remain high, indicating the optimizer
effectively explains data variance, though slightly lower than the ‘adam’ optimizer.

The random forest model with 100 estimators has a lower MAE for AQI 10 and AQI
2.5 compared to the neural network models using the ‘adam’ and ‘RMSprop’ optimizers.
Increasing the number of estimators slightly reduces the MAE, indicating a marginal
improvement. The RMSE values are comparable to the neural network models, and the R2
values are high, indicating a strong fit to the data.

Table 3 summarizes the findings generated by the Mean Absolute Percentage Er-
ror, Root Mean Squared Log Error, Symmetric Mean Absolute Percentage Error, Mean
Directional Accuracy, and Median Absolute Error metrics.

For the ‘adam’ optimizer, as the epochs increase from 50 to 1000, there is a noticeable
improvement in the accuracy metrics for both AQI PM10 and PM2.5. For instance, the
MAPE for AQI PM10 decreases from 5.8233 at 50 epochs to 5.5584 at 1000 epochs, while the
SMAPE drops from 2.8391 to 2.7145, indicating a reduction in error.

Similarly, for AQI PM2.5, the MAPE reduces from 2.9556 at 50 epochs to 2.8293 at
1000 epochs, and the MedAE decreases from 0.3009 to 0.2645, demonstrating enhanced
prediction accuracy with more training.

In contrast, the ‘RMSprop’ optimizer exhibits fluctuating results across epochs; for
example, the MAPE for AQI PM10 varies from 5.7068 to 5.6649, while the MDA slightly
decreases from 0.8154 to 0.8108. AQI PM2.5 performance remains relatively stable, with the
MDA around 0.9000 but some inconsistencies in other metrics like the SMAPE and MedAE.
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Table 3. AQI measurements resulted after evaluating the model with MAPE, RMSLE, SMAPE, MDA
and MedAE.

Prediction
Model

Epochs
AQI 10 AQI 2.5

MAPE RMSLE SMAPE MDA MedAE MAPE RMSLE SMAPE MDA MedAE

‘adam’
optimizer

50 5.8233 0.0641 2.8391 0.8181 0.2574 2.9556 0.0350 1.4827 0.8973 0.3009

100 5.7407 0.0651 2.8698 0.8172 0.2519 3.0036 0.0349 1.4933 0.8973 0.2807

500 5.6104 0.0639 2.7885 0.8163 0.2472 2.8540 0.0335 1.4272 0.9019 0.2716

1000 5.5584 0.0643 2.7145 0.8154 0.2268 2.8293 0.0333 1.4046 0.9001 0.2645

‘RMSprop’
optimizer

50 5.7068 0.0644 2.8106 0.8154 0.2501 3.0410 0.0360 1.5331 0.8992 0.3048

100 5.9537 0.0656 2.8735 0.8145 0.2581 3.0137 0.0357 1.4772 0.8973 0.2952

500 5.5275 0.0633 2.7228 0.8127 0.2385 3.0861 0.0357 1.5194 0.9001 0.2990

1000 5.6649 0.0665 2.7507 0.8108 0.2193 3.0040 0.0357 1.5155 0.9000 0.3023

n_estimator

Random
Forest

100 4.8627 0.0662 4.7675 0.8151 0.1300 2.3673 0.0351 2.3568 0.8997 0.1100

1000 4.8703 0.0662 4.7767 0.8099 0.1340 2.3608 0.0348 2.3490 0.8971 0.1140

The random forest model, evaluated with 100 and 1000 estimators, shows consistent
performance, maintaining a lower MAPE of around 4.8627 for AQI PM10 and 2.3673 for
AQI PM2.5 compared to the optimizers. However, the SMAPE values are higher, such as
4.7675 for AQI PM10, highlighting differences in how errors are distributed.

Overall, the ‘adam’ optimizer demonstrates gradual improvement with more epochs,
the ‘RMSprop’ optimizer shows mixed stability, and random forest provides consistent but
distinct error dynamics, especially in the MAPE and SMAPE comparisons.

5. Discussions

One limitation of our study is that the IoT system has been tested indoors. Even if
from a physical point of view the IoT system can be relatively easily adapted for outdoor
environments, in the following is provided a more comprehensive analysis from a holistic
view (physical, economical, authorization and legislation, etc.).

Outdoor air quality monitoring comes with some challenges besides adding sensors.
First of all, it is about powering the IoT systems, developed and placed on poles, to voltage
sources (either for direct connection to the city network power grid or using solar batteries)
but the latest will offer a different lifetime from one area to another, from a season to another,
and variability including in the collection of data from the sensors. Another challenge
consists of transmitting data to the cloud and ensuring the level of connectivity of the IoT
system (wired networks, Wi-Fi, RFID, GSM, etc.). These constraints, besides the number
of systems implemented and arranged on poles approximately 200 m apart, will have an
economic impact. Another impediment in outdoor implementation is the agreement of
local or county authorities to place IoT systems in the city for monitoring as well as ensuring
their maintenance in the case of malfunctions. The system implemented in this phase and
support for the scientific paper is only a prototype with the aim of generating data that can
then be used in the application of artificial intelligence algorithms for prediction. The IoT
system was tested internally to avoid some of the previously mentioned challenges.

However, in 2017, one of the co-authors had such a development for outdoor air
quality monitoring using a prototype connected to cars, GSM for data transmission using
mobile phones, and GPS sensors to identify the geographic position with impact in the case
of changes in weather conditions [4]. Sensors that must be added for outdoor monitoring
are a gas sensor for measuring CO2 and NOX (e.g., SainSmart MQ135 Sensor Air Quality
Sensor and Hazardous Gas Detection Module) and barometric pressure (e.g., BMP085
Digital Barometric Pressure Measurement Sensor). For communication could be used either
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a combined GPS/GSM unit for location and communication or a Wi-Fi connectivity and
GPS unit. Another limitation consists of the relatively small dataset and using machine
learning algorithms with fixed parameters. For any kind of optimization problem, the
hyperparameters can be tuned and varied in a design space exploration process. An auto-
matic design space exploration process based on genetic algorithms or other evolutionary
algorithms consumes a lot of execution time and was not the initial scope of this work.
However, the idea will be investigated by the authors as a further development.

Despite these limitations, the current work has succeeded in presenting an integrated
AIoT system in which the physical IoT system is functional and produces real data re-
garding air pollution which are then analyzed and used as input in machine learning
algorithms (AI component of the system) for the implementation of prediction algorithms.
The random forest model expresses the best performance exploiting the robustness to
outliers and noise and the ability to capture non-linear relationships between the predictor
and response variables.

6. Conclusions and Further Work

This study presents an integrated IoT system developed by the authors for evaluating
the performance of different machine learning models in predicting air quality indices
(AQI 10 and AQI 2.5) based on various features such as temperature, humidity, PM10, and
PM2.5 concentrations.

Specifically, it compared the effectiveness of neural network models trained with the
‘adam’ and ‘RMSprop’ optimizers over different epochs with a random forest model with
varying numbers of estimators. The key metrics used for evaluation included the Mean
Absolute Error (MAE), mean squared error (MSE), root mean squared error (RMSE), and
R-squared (R2).

Both the ‘adam’ and ‘RMSprop’ optimizers show improvements in the MAE and
RMSE with increasing epochs. However, the random forest model outperforms the neural
network models for both AQI 10 and AQI 2.5 in terms of the MAE. The random forest
model with 100 or 1000 estimators provides the best performance.

Finally, monitoring indoor parameters using IoT devices is motivated by a desire
to build healthier and more sustainable interior environments. Researchers intend to
improve occupant well-being and productivity by addressing research issues such as
sensor technology, data management, user experience, health implications, calibration and
validation, integration, and interoperability.

In a longer perspective, our aim is to further develop the device by incorporating
more diverse sensors (like gas detection, barometric pressure, etc.) to measure other
pollutants (nitrogen dioxide, nitric oxide, carbon monoxide, carbon dioxide, sulfur dioxide)
or to extend the applicability of the IoT system in agriculture (soil moisture sensors and
light intensity sensors). This would provide a more comprehensive understanding of
environmental quality monitoring. Applying advanced machine learning methods such as
deep learning models and tuning the model hyperparameters into an automatic design
space exploration process could lead to better forecast accuracy. Another future work
direction consists of creating a network of monitoring stations to have multiple data
collection points and combining them with traffic information and vane anemometer
sensors (wind speed and direction) to create a lively map of air quality and understand the
combined effects of distributed and concentrated sources.

This article, in addition to the physical implementation of the IoT system for air quality
monitoring and the successful prediction of the quality index (AQI) based on history using
different machine learning algorithms, illustrates the fine details of a technical nature
(hardware related to the sensors used) and software (regarding the importance of the dataset
and their characteristics, the choice of suitable regression algorithms) but also emphasizes
the importance of the holistic approach of the environmental monitoring problem. For this,
the cooperation between engineering specialists (to develop AIoT solutions), those from the
national meteorological agency (providing real-time data), medical doctors (for specialized
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recommendations), local environmental protection agencies, and local authorities that
can ensure the legal framework for the implementation and operation of such solutions
is necessary.
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