Adsorption of Methylene Blue and Eriochrome Black T onto Pinecone Powders (Pinus nigra Arn.): Equilibrium, Kinetics, and Thermodynamic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of PC-PnA
2.3. Physicochemical Characterization of PC-PnA
2.4. Adsorption Studies
2.4.1. Effect of Experimental Parameters
2.4.2. Adsorption Kinetics
2.4.3. Adsorption Isotherms
3. Results and Discussion
3.1. Characteristic of PC-PnA
3.1.1. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX)
3.1.2. Fourier Transform Infrared Spectroscopy
3.1.3. BET Surface Area and Porosity
3.1.4. pHpzc of the PC-PnA
3.2. Influence of Experimental Parameters
3.2.1. Effect of pH
3.2.2. Effect of Adsorbent Amount
3.2.3. Effect of Time
3.2.4. Effect of Initial Concentration
3.3. Adsorption Kinetics
3.4. Adsorption Isotherms
3.5. Adsorption Thermodynamics
3.6. Comparison of the Study and the Results Obtained with the Literature
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Deniz, F. Dye Biosorption from Water Employing Chemically Modified Calabrian Pine Cone Shell as an Effective Biosorbent. Environ. Prog. Sustain. Energy 2015, 34, 1267–1278. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef] [PubMed]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Chandanshive, V.; Kadam, S.; Rane, N.; Jeon, B.-H.; Jadhav, J.; Govindwar, S. In Situ Textile Wastewater Treatment in High Rate Transpiration System Furrows Planted with Aquatic Macrophytes and Floating Phytobeds. Chemosphere 2020, 252, 126513. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Kant, R. Textile Dyeing Industry an Environmental Hazard. Nat. Sci. 2012, 4, 17027. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.d.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance Evaluation of Dye Wastewater Treatment Technologies: A Review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Patel, Y.; Chhaya, U.; Rudakiya, D.M.; Joshi, S. Biological Decolorization and Degradation of Synthetic Dyes: A Green Step Toward Sustainable Environment. In Microbial Rejuvenation of Polluted Environment; Springer: Singapore, 2021; pp. 77–110. [Google Scholar]
- Yang, P.; Lu, Y.; Zhang, H.; Li, R.; Hu, X.; Shahab, A.; Elnaggar, A.Y.; Alrefaei, A.F.; AlmutairiI, M.H.; Ali, E. Effective Removal of Methylene Blue and Crystal Violet by Low-Cost Biomass Derived from Eucalyptus: Characterization, Experiments, and Mechanism Investigation. Environ. Technol. Innov. 2024, 33, 103459. [Google Scholar] [CrossRef]
- Bansal, M.; Patnala, P.K.; Dugmore, T. Adsorption of Eriochrome Black-T (EBT) Using Tea Waste as a Low Cost Adsorbent by Batch Studies: A Green Approach for Dye Effluent Treatments. Curr. Res. Green Sustain. Chem. 2020, 3, 100036. [Google Scholar] [CrossRef]
- Mosoarca, G.; Popa, S.; Vancea, C.; Dan, M.; Boran, S. Modelling and Optimization of Methylene Blue Adsorption Process on Leonurus Cardiaca L. Biomass Powder. Processes 2023, 11, 3385. [Google Scholar] [CrossRef]
- Langer, I.; Atassi, G.; Robberecht, P.; Résibois, A. Eriochrome Black T Inhibits Endothelial Cell Growth through S-Phase Blockade. Eur. J. Pharmacol. 2000, 399, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Gupta, V.K. Adsorptive Removal and Recovery of the Azo Dye Eriochrome Black T. Toxicol. Environ. Chem. 2010, 92, 1813–1823. [Google Scholar] [CrossRef]
- Iwuozor, K.O.; Ighalo, J.O.; Ogunfowora, L.A.; Adeniyi, A.G.; Igwegbe, C.A. An Empirical Literature Analysis of Adsorbent Performance for Methylene Blue Uptake from Aqueous Media. J. Environ. Chem. Eng. 2021, 9, 105658. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Ghiasvand, A.R.; Noorimotlagh, Z. Removal of Methylene Blue and Acid Orange 7 from Aqueous Solutions by Activated Carbon Coated with Zinc Oxide (ZnO) Nanoparticles: Equilibrium, Kinetic, and Thermodynamic Study. Desalination Water Treat. 2015, 55, 252–262. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive Removal of Dyes from Wastewater Using a Metal-Organic Framework: A Review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef]
- Teo, S.H.; Ng, C.H.; Islam, A.; Abdulkareem-Alsultan, G.; Joseph, C.G.; Janaun, J.; Taufiq-Yap, Y.H.; Khandaker, S.; Islam, G.J.; Znad, H.; et al. Sustainable Toxic Dyes Removal with Advanced Materials for Clean Water Production: A Comprehensive Review. J. Clean. Prod. 2022, 332, 130039. [Google Scholar] [CrossRef]
- Solmaz, A.; Turna, T.; Baran, A. Ecofriendly Synthesis of Selenium Nanoparticles Using Agricultural Citrus Fortunella Waste and Decolourization of Crystal Violet from Aqueous Solution. Can. J. Chem. Eng. 2024, 102, 2051–2067. [Google Scholar] [CrossRef]
- Solmaz, A.; Sari, Z.A.; Karta, M.; Turna, T.; Yücel, A.; Depci, T. Production and Characterization of Activated Carbon from Pomegranate Peel for Pharmaceutical Waste (Paracetamol) Removal: Response Surface Methodology Application. Water Air Soil Pollut. 2023, 234, 645. [Google Scholar] [CrossRef]
- Beni, A.A.; Esmaeili, A. Biosorption, an Efficient Method for Removing Heavy Metals from Industrial Effluents: A Review. Environ. Technol. Innov. 2020, 17, 100503. [Google Scholar] [CrossRef]
- Praveen, S.; Jegan, J.; Bhagavathi Pushpa, T.; Gokulan, R.; Bulgariu, L. Biochar for Removal of Dyes in Contaminated Water: An Overview. Biochar 2022, 4, 10. [Google Scholar] [CrossRef]
- Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef]
- Gemici, B.T.; Ucun Ozel, H.; Ozel, H.B. Adsorption Behaviors of Crystal Violet from Aqueous Solution Using Anatolian Black Pine (Pinus Nigra Arnold.): Kinetic and Equilibrium Studies. Sep. Sci. Technol. 2020, 55, 406–414. [Google Scholar] [CrossRef]
- Zulu, C.B.; Onyango, M.S.; Ren, J.; Lwesifi, T.Y. Modified Pine Cone for Dye Pollutants Removal from Aqueous Solution. In Proceedings of the Sustainable Research and Innovation Conference, Juja, Kenya, 3–5 May 2017; pp. 23–29. [Google Scholar]
- Ighalo, J.O.; Adeniyi, A.G. Adsorption of Pollutants by Plant Bark Derived Adsorbents: An Empirical Review. J. Water Process Eng. 2020, 35, 101228. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Buyuksari, U.; Avci, E.; Koc, E. Utilization of Pine (Pinus Pinea L.) Cone in Manufacture of Wood Based Composite. For. Ecol. Manage 2009, 259, 65–70. [Google Scholar] [CrossRef]
- Aldemir, A.; Turan, A.; Kul, A.R.; Koyuncu, H. Comprehensive Investigation of Basic Red 46 Removal by Pinecone Adsorbent: Experimental, Isotherm, Kinetic and Thermodynamic Studies. Int. J. Environ. Sci. Technol. 2023, 20, 2601–2622. [Google Scholar] [CrossRef]
- Sarıcı Özdemir, Ç. Equilibrium, Kinetic, Diffusion and Thermodynamic Applications for Dye Adsorption with Pine Cone. Sep. Sci. Technol. 2019, 54, 3046–3054. [Google Scholar] [CrossRef]
- Olsson, S.; Grivet, D.; Cattonaro, F.; Vendramin, V.; Giovannelli, G.; Scotti-Saintagne, C.; Vendramin, G.G.; Fady, B. Evolutionary Relevance of Lineages in the European Black Pine (Pinus Nigra) in the Transcriptomic Era. Tree Genet. Genomes 2020, 16, 30. [Google Scholar] [CrossRef]
- Hameed, B.; Din, A.; Ahmad, A. Adsorption of Methylene Blue onto Bamboo-Based Activated Carbon: Kinetics and Equilibrium Studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Khnifira, M.; Boumya, W.; Abdennouri, M.; Sadiq, M.; Achak, M.; Serdaroğlu, G.; Kaya, S.; Şimşek, S.; Barka, N. A Combined Molecular Dynamic Simulation, DFT Calculations, and Experimental Study of the Eriochrome Black T Dye Adsorption onto Chitosan in Aqueous Solutions. Int. J. Biol. Macromol. 2021, 166, 707–721. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the Theory of So-Called Adsorption of Soluble Substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; Wase’, D.; Forster, C.F. Removal of Lead Ions from Aqueous Solution Using Sphagnum Moss Peat as Adsorbent. Water Sa 1996, 22, 214–219. [Google Scholar]
- Kumar, P.S.; Ramalingam, S.; Kirupha, S.D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S. Adsorption Behavior of Nickel(II) onto Cashew Nut Shell: Equilibrium, Thermodynamics, Kinetics, Mechanism and Process Design. Chem. Eng. J. 2011, 167, 122–131. [Google Scholar] [CrossRef]
- Boyd, G.E.; Adamson, A.W.; Myers, L.S. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Wang, J.; Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Temkin, M.I. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. Acta Physiochim. URSS 1940, 12, 327–356. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Subbiah, K.; Lee, H.-S.; Mandal, S.; Park, T. Conifer Cone (Pinus Resinosa) as a Green Corrosion Inhibitor for Steel Rebar in Chloride-Contaminated Synthetic Concrete Pore Solutions. ACS Appl. Mater. Interfaces 2021, 13, 43676–43695. [Google Scholar] [CrossRef]
- Varshney, S.; Jain, P.; Srivastava, S. Removal and Recovery of Chromium from E-Waste by Functionalized Wood Pulp: A Green Bio-Hydrometallurgical Approach. Natl. Acad. Sci. Lett. 2019, 42, 99–103. [Google Scholar] [CrossRef]
- Assefi, M.; Davar, F.; Hadadzadeh, H. Green Synthesis of Nanosilica by Thermal Decomposition of Pine Cones and Pine Needles. Adv. Powder Technol. 2015, 26, 1583–1589. [Google Scholar] [CrossRef]
- Kaya, N.; Yıldız Uzun, Z.; Altuncan, C.; Uzun, H. Adsorption of Congo Red from Aqueous Solution onto KOH-Activated Biochar Produced via Pyrolysis of Pine Cone and Modeling of the Process Using Artificial Neural Network. Biomass Convers. Biorefin. 2022, 12, 5293–5315. [Google Scholar] [CrossRef]
- Kumar, N.S.; Asif, M.; Al-Hazzaa, M.I. Adsorptive Removal of Phenolic Compounds from Aqueous Solutions Using Pine Cone Biomass: Kinetics and Equilibrium Studies. Environ. Sci. Pollut. Res. 2018, 25, 21949–21960. [Google Scholar] [CrossRef] [PubMed]
- Almendros, A.I.; Martín-Lara, M.A.; Ronda, A.; Pérez, A.; Blázquez, G.; Calero, M. Physico-Chemical Characterization of Pine Cone Shell and Its Use as Biosorbent and Fuel. Bioresour. Technol. 2015, 196, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Das, R. Strong Adsorption of CV Dye by Ni Ferrite Nanoparticles for Waste Water Purification: Fits Well the Pseudo Second Order Kinetic and Freundlich Isotherm Model. Ceram. Int. 2023, 49, 16199–16215. [Google Scholar] [CrossRef]
- Blázquez, G.; Martín-Lara, M.A.; Dionisio-Ruiz, E.; Tenorio, G.; Calero, M. Evaluation and Comparison of the Biosorption Process of Copper Ions onto Olive Stone and Pine Bark. J. Ind. Eng. Chem. 2011, 17, 824–833. [Google Scholar] [CrossRef]
- Chebbi, M.; Ounoki, S.; Youcef, L.; Amrane, A. Synthesis and Characterization of Pine Cones Biochar for the Removal of an Antibiotic (Metronidazole) from Aqueous Solutions. J. Ind. Eng. Chem. 2023, 126, 327–339. [Google Scholar] [CrossRef]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Sequestration of As(III) Pollutant from Water Using Chemically Activated Pine Cone Biomass: Evaluation of Interaction and Mechanism. Int. J. Environ. Sci. Technol. 2019, 16, 6907–6920. [Google Scholar] [CrossRef]
- Sah, M.K.; Edbey, K.; EL-Hashani, A.; Almshety, S.; Mauro, L.; Alomar, T.S.; AlMasoud, N.; Bhattarai, A. Exploring the Biosorption of Methylene Blue Dye onto Agricultural Products: A Critical Review. Separations 2022, 9, 256. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Yu, W.; Zou, W.; Shi, J.; Liu, H. Biosorption of Methylene Blue from Aqueous Solution by Rice Husk in a Fixed-Bed Column. J. Hazard. Mater. 2007, 141, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. [Google Scholar] [CrossRef]
- Lafi, R.; Montasser, I.; Hafiane, A. Adsorption of Congo Red Dye from Aqueous Solutions by Prepared Activated Carbon with Oxygen-Containing Functional Groups and Its Regeneration. Adsorpt. Sci. Technol. 2019, 37, 160–181. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Hayati, B.; Arami, M.; Lan, C. Adsorption of Textile Dyes on Pine Cone from Colored Wastewater: Kinetic, Equilibrium and Thermodynamic Studies. Desalination 2011, 268, 117–125. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef] [PubMed]
- Deniz, F. Color Removal from Aqueous Solutions of Metal-Containing Dye Using Pine Cone. Desalination Water Treat. 2013, 51, 4573–4581. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K.; Phan, C. Synthesis and Characterisation of Novel-Activated Carbon from Waste Biomass Pine Cone and Its Application in the Removal of Congo Red Dye from Aqueous Solution by Adsorption. Water Air Soil Pollut. 2014, 225, 1818. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Ang, M. Removal of Cationic Dye Methylene Blue (MB) from Aqueous Solution by Ground Raw and Base Modified Pine Cone Powder. Environ. Earth Sci. 2014, 71, 1507–1519. [Google Scholar] [CrossRef]
- Debnath, S.; Ballav, N.; Maity, A.; Pillay, K. Competitive Adsorption of Ternary Dye Mixture Using Pine Cone Powder Modified with β-Cyclodextrin. J. Mol. Liq. 2017, 225, 679–688. [Google Scholar] [CrossRef]
- Sen, T.K. Adsorptive Removal of Dye (Methylene Blue) Organic Pollutant from Water by Pine Tree Leaf Biomass Adsorbent. Processes 2023, 11, 1877. [Google Scholar] [CrossRef]
- Chandarana, H.; Senthil Kumar, P.; Seenuvasan, M.; Anil Kumar, M. Kinetics, Equilibrium and Thermodynamic Investigations of Methylene Blue Dye Removal Using Casuarina Equisetifolia Pines. Chemosphere 2021, 285, 131480. [Google Scholar] [CrossRef] [PubMed]
- Bouguettoucha, A.; Chebli, D.; Mekhalef, T.; Noui, A.; Amrane, A. The Use of a Forest Waste Biomass, Cone of Pinus Brutia for the Removal of an Anionic Azo Dye Congo Red from Aqueous Medium. Desalination Water Treat. 2015, 55, 1956–1965. [Google Scholar] [CrossRef]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an Anionic Dye (Congo Red) from Aqueous Solutions by Pine Bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef] [PubMed]
- Kavci, E. Malachite Green Adsorption onto Modified Pine Cone: Isotherms, Kinetics and Thermodynamics Mechanism. Chem. Eng. Commun. 2021, 208, 318–327. [Google Scholar] [CrossRef]
- Sen, T.K.; Afroze, S.; Ang, H.M. Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus Radiata. Water Air Soil Pollut. 2011, 218, 499–515. [Google Scholar] [CrossRef]
Models | Nonlinear Form | Linear Form | References |
---|---|---|---|
Pseudo-first-order | [32] | ||
Pseudo-second-order | [33] | ||
Elovich | [34] | ||
Intra-particle diffusion | [35] |
Surface Area (ABET) (m2/g) | Pore Volume (Vtotal) (cm3/g) | Mean Pore Size (D) (Å) |
---|---|---|
0.7710 | 0.001188 | 61.6608 Å |
Kinetics | Pseudo-First-Order | Pseudo-Second-Order | Elovich | Intra-Particle Diffusion | ||||
---|---|---|---|---|---|---|---|---|
MB | EBT | MB | EBT | MB | EBT | MB | EBT | |
Parameters | k1 = 0.052 | k1 = 0.052 | k2 = 0.404 | k2 = 0.322 | β = 2.038 | β = 2.91 | ki = 0.218 | ki = 0.159 |
qe = 6.26 | qe = 3.54 | α = 4633.0 | α = 226.56 | a = 4.77 | a = 2.40 | |||
R2 | 0.918 | 0.896 | 0.999 | 0.999 | 0.793 | 0.870 | 0.677 | 0.736 |
SSE | 44.36 | 16.44 | 1.43 | 0.134 | 2.69 | 0.719 | 4.29 | 1.38 |
SAE | 14.05 | 9.32 | 1.66 | 0.825 | 3.99 | 2.06 | 4.72 | 2.63 |
ARE | 39.73 | 48.98 | 6.23 | 4.76 | 11.82 | 11.50 | 14.41 | 15.17 |
HYBRID | 55.62 | 68.57 | 5.44 | 0.111 | 2.89 | 2.99 | 4.38 | 5.21 |
MPSD | 0.994 | 0.996 | 0.971 | 0.934 | 0.965 | 0.966 | 0.969 | 0.971 |
X2 | 8.74 | 6.02 | 0.423 | 0.060 | 0.638 | 0.320 | 1.09 | 0.658 |
Isotherms | Freundlich | Langmuir | Temkin | Sips | ||||
---|---|---|---|---|---|---|---|---|
MB | EBT | MB | EBT | MB | EBT | MB | EBT | |
Parameters | kF = 34.72 | kF = 1.895 | kL = 0.751 | kL = 0.04 | BT = 0.223 | BT = 0.709 | n = 1.625 | n = 0.893 |
1/n = 0.269 | 1/n = 0.42 | RL = 0.014 | RL = 0.612 | kT = 52.63 | kT = 0.398 | ks = 0.965 | ks = 0.055 | |
qmax = 91.46 | qmax = 15.85 | |||||||
R2 | 0.974 | 0.970 | 0.999 | 0.995 | 0.955 | 0.989 | 0.993 | 0.989 |
SSE | 446.74 | 5.21 | 79.33 | 1.41 | 213.07 | 1.45 | 236.38 | 3.69 |
SAE | 41.15 | 4.94 | 16.98 | 2.17 | 28.84 | 2.16 | 30.43 | 3.99 |
ARE | 12.74 | 9.30 | 6.95 | 3.94 | 13.08 | 4.05 | 13.39 | 7.99 |
HYBRID | 2.52 | 2.44 | 6.81 | 0.58 | 5.96 | 1.09 | 8.86 | 6.51 |
MPSD | 0.964 | 0.964 | 0.974 | 0.950 | 0.972 | 0.956 | 0.976 | 0.973 |
X2 | 6.13 | 0.483 | 1.58 | 0.126 | 5.39 | 0.136 | 5.69 | 0.383 |
Temp (K) | KL | ΔG0 (KJ/mol) | ΔH0 (KJ/mol) | ΔS0 (J/K.mol) | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MB | EBT | MB | EBT | MB | EBT | MB | EBT | MB | EBT | |
298 | 54.56 | 0.777 | −9.91 | 0.624 | 23.49 | 4.35 | 112.15 | 12.47 | 0.999 | 0.998 |
308 | 75.92 | 0.818 | −11.09 | 0.514 | ||||||
318 | 99.00 | 0.868 | −12.15 | 0.374 |
This Study | [64] | [65] | [60] | [66] | [28] | [61] | [67] | |
---|---|---|---|---|---|---|---|---|
Biosorbent Origin | Pinus nigra Arn. | Pinus brutia | Pinus pinaster | Pinecone | Pinecone | Pinecone | Modified pinecone | Pinus radiata |
BET surface area (m2/g) | 0.771 | - | - | 0.1065 | - | - | 0.3378 | - |
Average pore width (Å) | 61.66 | - | - | - | - | - | 109.76 | - |
pHpzc | 5.77 | - | 3.4 | - | - | 4.63 | - | |
Experiment volume (mL) | 10–100 | 50 | 100 | 50 | 50 | 50 | 50 | 50 |
Mixing speed (rpm) | 200 | - | 100 | 150 | 175 | 400 | 200–300 | 120 |
Experiment time (min) | 75 | 180 | 7 days | 250 | 120 | 120 | 400 | 340 |
Working pHs | 3–11 | 3–11 | 2–9 | 2.01–9.2 | 3–10.3 | - | 2–10 | 3.47–7.28 |
Optimum pH | 3 | 4 | 2 | 9.02 | >6 | - | >5 | 7.28 |
Working Temperature (°C) | 25, 35, 45 | 22, 40, 60 | 25–60 | 30, 40, 50, 60 | 25, 35, 45 | 25, 40, 50 | 25, 35, 45 | 30, 45, 60 |
Pollutant type removed | MB and EBT | CR | CR | MB | MG | MB | SO, BG, MB | MB |
Working pollutant conc. (mg/L) | 13.17–150 | 1–250 | 5–100 | 0.37–122.82 | 30–200 | 50–250 | 50–1800 | 20–60 |
Best fitted kinetic model | Pseudo-second-order | Intraparticle diffusion | Pseudo-second-order | Pseudo-second-order | Pseudo-second-order | Pseudo-second-order | Pseudo-second-order | Pseudo-second-order |
Best fitted kinetic model (R2) | MB and EBT: 0.999 | 0.999 | >0.995 | >0.992 | 1 | >0.95 | >0.99 | |
Best fitted isotherm model | Langmuir | Sips | Freundlich | Langmuir | Langmuir | Langmuir | Langmuir | Langmuir |
Best fitted isotherm model (R2) | MB: 0.999, EBT: 0.995 | 0.996 | >0.995 | 0.994 | >0.98 | >0.95 | 0.997 | |
Adsorption capacity (mg/g) | MB: 91.6 EBT: 15.85 | 102.8 | 0.3–1.6 | 129.87–142.25 | 111.1 | 125 | SO: 182.71, BG: 158.61 MB: 136.71 | 109.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solmaz, A. Adsorption of Methylene Blue and Eriochrome Black T onto Pinecone Powders (Pinus nigra Arn.): Equilibrium, Kinetics, and Thermodynamic Studies. Processes 2024, 12, 2044. https://doi.org/10.3390/pr12092044
Solmaz A. Adsorption of Methylene Blue and Eriochrome Black T onto Pinecone Powders (Pinus nigra Arn.): Equilibrium, Kinetics, and Thermodynamic Studies. Processes. 2024; 12(9):2044. https://doi.org/10.3390/pr12092044
Chicago/Turabian StyleSolmaz, Alper. 2024. "Adsorption of Methylene Blue and Eriochrome Black T onto Pinecone Powders (Pinus nigra Arn.): Equilibrium, Kinetics, and Thermodynamic Studies" Processes 12, no. 9: 2044. https://doi.org/10.3390/pr12092044
APA StyleSolmaz, A. (2024). Adsorption of Methylene Blue and Eriochrome Black T onto Pinecone Powders (Pinus nigra Arn.): Equilibrium, Kinetics, and Thermodynamic Studies. Processes, 12(9), 2044. https://doi.org/10.3390/pr12092044