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Abstract: Optimal Reactive Power Dispatch (ORPD) is a power system optimization tool that modifies
system control variables such as bus voltage and transformer tap settings, and it compensates devices’
Volt Ampere Reactive (VAR) output. It is used to decrease real power loss, enhance the voltage profile,
and promote stability. Furthermore, several issues have been faced in electricity markets, such as price
volatility, transmission line congestion, and an increase in the cost of electricity during peak hours.
Programs such as demand response (DR) provide system operators with more control over how small
customers participate in lowering peak-hour energy prices and demand. This paper presents an
extensive study on ORPD methodologies and DR programs for lowering voltage deviation, limiting
cost, and minimizing power losses to create effective and economical operations systems. The
main objectives of this work are to minimize costs and losses in the system and reduce voltage
variation. The Grasshopper Optimization Algorithm (GOA) and Dragonfly Algorithm (DA) have
been implemented successfully to solve this problem. The proposed technique has been evaluated
by using the IEEE-30 bus system. The results obtained by the implementation of demand response
systems show a considerable reduction in costs and load demands that benefit consumers through
DR considerations. The results obtained from the GOA and DA are compared with those generated
by other researchers and published in the literature to ascertain the algorithm’s efficiency.

Keywords: demand response; electricity markets; Grasshopper Optimization Algorithm; Optimal
Reactive Power Dispatch

1. Introduction

Within the complex and multifaceted landscape of modern power systems, ORPD
stands out as a crucial factor that has a significant impact on both the stability of the power
grid and the overall efficiency of its operations, making it a central component in the dis-
course surrounding energy management. The challenges associated with voltage deviation,
which frequently arise in power system management, stem from the intricate and sensitive
balance that must be maintained between reactive power generation and consumption,
emphasizing the importance of careful monitoring and control. Recent investigations by
various regulatory authorities and academic institutions studying power systems have
revealed a significant and alarming increase in the frequency of power outages and grid
instability incidents observed around the world, emphasizing the importance of addressing
these issues [1]. Such disruptions not only disrupt the usual flow of everyday activities
for individuals and communities but also have far-reaching economic consequences for
a wide range of sectors and enterprises that rely largely on continuous and dependable
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energy supply. As a result, the importance of ORPD cannot be overstated, as it plays a
critical role in ensuring the stability and reliability of power systems by optimizing the
flow of reactive power, whereas demand response analysis provides a strategic method
for effectively managing electricity consumption and strengthening the grid’s resilience
against various challenges [2]. Over the years, a multitude of mathematical models have
been methodically built to handle the complexity and constraints connected with ORPD,
demonstrating continued attempts to improve power system management. Newton’s
Method [3], the Interior Point Method [4], the Quadratic Programming Method [5], the
Linear Programming Method [6], and the Nonlinear Programming Method [7] are some of
the traditional techniques used to address the initial stages of ORPD problems, with each
contributing to a better understanding and resolution of these complex issues. As we work
toward a sustainable and ecologically friendly energy future, it is becoming increasingly
important to discover and implement creative solutions that can successfully solve the
various difficulties confronting the power sector today. With growing concerns about
environmental deterioration and the need for a thorough energy transition, optimizing
reactive power dispatch and managing voltage deviations are emerging as major goals that
require immediate attention.

These efforts go beyond technical projects; they symbolize our ethical responsibility to
protect the environment while guaranteeing fair access to energy resources for everyone.
The authors of [8] discussed the various challenges associated with optimizing microgrids,
including the unpredictability of renewable energy sources, fluctuations in electricity prices,
resource allocation, fuel cost minimization, and battery system degradation. They suggest
using a backcasting method to successfully manage the intermittent nature of renewable
energy, as well as Light GBM approaches for precise solar and load forecasts. Furthermore,
an innovative evolutionary algorithm is used for optimization, which smoothly integrates
forecasting and optimization processes with a cost model for battery deterioration and
demand response tactics. The findings of their analysis show a surprising 14.22% decrease
in power costs, illustrating the significant benefits that may be obtained through intelligent
scheduling and smart battery management procedures. In [9], the authors investigated the
transformational potential of blockchain technology in the field of decentralized energy
management and demand response systems. They highlight the prospective use of smart
contracts, which enable energy transactions while improving transparency and security
in the energy industry. The outcomes of this study show that using such a strategy can
result in considerable cost savings, improved dependability, and increased consumer trust.
This decentralized management of energy resources, as noted in their research, leads to
significant cost reductions and promotes a wider integration of renewable energy sources
into the grid. In [10], the authors looked into the possibility of connecting electricity and
gas systems to improve decentralized demand response, leveraging the flexibility provided
by the line pack to manage the delicate balance of demand and supply more efficiently.
Their detailed research shows that this integrated technique not only enhances system
dependability and flexibility but also lowers operational costs while optimizing the use of
available energy resources.

In [11], the authors presented a unique multi-objective optimization technique that
efficiently solves the challenging task of tackling the complexities associated with the actual
and reactive power dispatch problem, which is an important component of power system
management. The authors use mixed-integer nonlinear programming, the ε-constraint
method, and fuzzy satisficing principles to minimize active power losses and generation
costs, resulting in optimal results. The usefulness of this approach was thoroughly eval-
uated on the well-known IEEE 30 bus system, indicating a significant improvement in
optimization performance when compared to earlier optimization methods used in the
sector. In [12], the authors tackled the important difficulty of properly predicting and
forecasting the behavior of distributed energy resources (DERs), particularly in settings
where there is a paucity of relevant data for study. They significantly enhanced the predic-
tion accuracy by strategically applying modern machine learning techniques while also
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controlling power flow in a very effective way. The findings of their thorough research
show a significant improvement in power flow management systems and a more exact
assessment of capacity. The authors of [13] proposed a revolutionary strategy to encourage
demand-side responsiveness through the creative use of discount scheduling, which is
enabled by the use of hybrid quantum optimization techniques. This strategy improves the
stability and efficiency of the electrical grid by actively encouraging customer engagement
in demand response programs, resulting in considerable cost savings and more efficient use
of energy resources. In [14], the authors provided an evolutionary programming approach
that focuses on optimum reactive power dispatch (ORPD) with the stated objective of
reducing both transmission losses and voltage variations within the power system architec-
ture. Their method, which was rigorously tested on the IEEE 30 bus system, was found to
be highly effective in successfully reducing transmission losses while improving voltage
stability, demonstrating evolutionary programming’s significant potential in the context of
power system optimization. To achieve lower loss and a higher voltage profile, the innova-
tive Gaussian Mutation-Based Teaching–Learning Optimization (GMBTLO) technique is
used to derive the critical control variable settings, such as terminal voltages, transformer
taps, and the output power of shunt reactive compensators (VAR), as shown in [15]. The
authors of [16] successfully handled the inherent uncertainty involved with the integration
of renewable energy sources by applying both stochastic optimization approaches and
rigorous uncertainty modeling methodologies. Their multimodal approach significantly
improves the reliability and efficiency of power systems that contain renewable energy
sources, resulting in a strong and dependable solution for efficiently controlling the inherent
unpredictability of power generation in this context.

The authors of [2] examined the intricacies of ORPD challenges, which are crucial
for maintaining the stability and economic viability of electrical power systems. These
challenges encompass nonlinear optimization processes aimed at minimizing real power
losses and augmenting voltage profiles through the strategic optimization of an array of
control variables, encompassing both discrete and continuous types. The authors intro-
duced a novel algorithm termed Lévy-flight Phasor Particle Swarm Optimization (LPPSO),
which is specifically designed to address the complexities associated with ORPD. The
principal objective of reference [17] was to tackle the SORPD by optimally integrating
various renewable energy sources, including photovoltaic (PV) systems and wind energy
turbines, alongside the Unified Power Flow Controller (UPFC). The proposed PSOSHO
algorithm [18] signifies a notable progression within the domain, offering a robust solu-
tion to the challenges introduced by the increasing prevalence of electric vehicles, thereby
facilitating the sustainable operation of power systems in the context of electromobility.
Reference [19] presents a data-centric framework devised to quantify the demand response
capability of industrial consumers. This framework leverages data from smart electric-
ity meters to scrutinize operational behaviors and delineate a flexibility boundary that
quantifies the load flexibility accessible within the industrial consumer’s system. The au-
thors of [20] explained the importance of Peak Demand Management (PDM) within smart
grid infrastructures, accentuating the challenges engendered by rising power demand
and the transition towards low-carbon energy alternatives. The authors of [21] described
essential terminology pertinent to demand response, encompassing accumulated workload
and power consumption for EVs and Thermostatically Controlled Loads (TCLs). They
introduced a mean field term to capture power consumption across diverse demand-side
resources, thereby establishing a comprehensive framework for analytical assessment.

This work makes numerous significant contributions to the broad field of power
system optimization by thoroughly addressing both the intricate aspects of ORPD and the
implementation of DR programs, which are becoming increasingly important in modern
energy management. The main contributions can be categorized as follows:

• This paper provides a detailed and comprehensive examination of a variety of ORPD
methodologies as well as DR programs, all to reduce voltage deviation, limit opera-
tional costs, and minimize power losses within the energy distribution network. This
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in-depth research not only clarifies the present landscape of these approaches but also
evaluates their efficacy and usefulness in real-world circumstances, thus improving
our understanding of their practical applications.

• The fundamental aims of this study are clearly stated, with an emphasis on decreasing
both total system costs and related losses while also reducing voltage variations. These
objectives are extremely important since they play a critical role in improving the
efficiency, dependability, and stability of power systems, all of which are required to
fulfill contemporary society’s expanding energy demands.

• The implementation of a demand response program results in a significant reduction
in both costs and load demands, a finding that has far-reaching implications for
consumers, as it highlights the economic benefits that can be gained by thoughtfully
incorporating DR considerations into the overarching framework of power system
operations. This discovery is especially pertinent in light of rising energy prices and
the need for more sustainable consumption behaviors.

• This research successfully employs the Grasshopper Optimization Algorithm (GOA)
as a methodological approach to effectively resolve the ORPD problem, demonstrating
the GOA’s promising capabilities as a powerful optimization tool for use in power
system applications. This novel technique demonstrates the algorithm’s versatility
and efficiency in handling difficult optimization issues in energy management.

• This work is rigorously evaluated utilizing the IEEE-30 bus system, which provides
a standardized benchmark for testing the GOA’s efficacy and performance in a well-
defined and controlled environment. This thorough evaluation not only allows for a
comparative analysis of the GOA against other existing optimization methods, but
it also plays an important role in confirming the GOA’s efficiency and competitive
edge in addressing the ORPD problem, demonstrating its potential superiority or
equivalence to alternative optimization algorithms commonly used in the field.

Overall, this comprehensive study not only introduces the Grasshopper Optimization
Algorithm (GOA), an innovative and highly effective optimization tool, but it also provides
a wealth of valuable insights into the seamless integration of Optimal Reactive Power
Dispatch (ORPD) and demand response (DR) programs, both of which are critical for
significantly improving the performance and economic viability of modern power systems.
Minimizing power losses helps create more sustainable power systems as less energy
is wasted and demand is better managed. This contributes to promoting sustainable
consumption behaviors, as DR encourages consumers to adjust their power usage. This
study contributes to the literature by demonstrating the integration of GOA with DR
programs for solving ORPD problems. This represents an advancement in both fields by
combining optimization and demand-side management.

2. Problem Formulation
2.1. Optimal Reactive Power Flow (ORPF)

Optimal Power Flow (OPF) is a critical optimization tool in the field of power systems
as it seeks to improve specific objectives while also ensuring that the power system operates
at its most efficient level, all while adhering to the inherent physical and operational
constraints that govern its performance. On the other hand, ORPD is a more specialized
variant of OPF that focuses on the optimization of reactive power-specific objectives such
as minimizing active power losses, reducing voltage deviations, and improving network
voltage stability. Throughout this intricate optimization process, ORPD must adhere to
several constraints, including the need to keep load voltages within predetermined limits,
ensure that power flows through transmission lines remain within specified thresholds,
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and achieve a proper balance of active and reactive power at the system’s various buses. In
mathematical terms, the formulation of the ORPD issue may be represented as follows:

Minimize f (r, a)

Subject to
{

u(r, a) = 0
v(r, a) ≤ 0

(1)

In this case, f (r,a) represents the objective function, with ‘r’ representing the vector
of dependent variables and ‘a’ representing the vector of independent variables. The
functions u(r,a) and v(r,a) represent the equality and inequality requirements, respectively.
In the ORPD issue, the real power output of generator buses (except the slack bus) is held
constant, while the remaining control variables are considered as independent variables.
The independent variables in ORPD issues can be formally expressed as follows:

at = [vgen1 . . . . . vgenNG, qc1 . . . . . qcnc, t1 . . . . . tnt] (2)

In this formulation, vgen1 represents the voltage of the generator bus, and ‘NG’ denotes
the number of generator buses. qc indicates the VAR compensation of the shunt capacitors,
‘nc’ represents the number of VAR compensators, ‘t’ denotes the tap ratios, and ‘nt’ signifies
the number of tap-changing transformers. The dependent variables of ORPD problems can
be mathematically expressed as follows:

st = [p1, vb1 . . . . . vbnpq, qgen1 . . . . . qgenNG, sl1 . . . . . sln l ] (3)

In this context, p1 represents the power of the slack bus and vb denotes the voltage of
PQ buses, with npq indicating the number of PQ buses. qgen signifies the reactive power
output of generator buses. Sl corresponds to the line flow through the transmission line,
and ‘nl’ indicates the number of transmission lines.

2.2. Demand Response

Demand response is broadly defined as the active engagement of smaller energy users
in the complex dynamics of the electricity market in which they modify their consumption
patterns in direct reaction to variations in market spot prices. Two primary factors can
significantly influence consumers’ willingness to participate in this process: first, changes
in retail electricity pricing, which reflect the varying real costs associated with electricity
over time, and second, the implementation of incentive programs meticulously designed
to motivate consumers to reduce their energy consumption during times of peak demand
or critical situations. The incentive-based demand response system may be defined as
financial compensation offered to customers in exchange for voluntarily decreasing their
power usage when necessary. A model of demand elasticity based on these incentives is
presented to accurately assess the marketplace’s capacity for demand responsiveness. The
following equation mathematically expresses the fluctuation in response load that happens
after the installation of demand response algorithms. The change in the mth response load
following the implementation of DR programs is expressed by the following equation:

∆dm = d0m − dm (4)

Here, d0m and dm represent the load at the mth response bus before and after the
demand response, respectively. If an incentive amount ‘inc’ is paid to the customer for each
unit of load reduction, the total incentive paid to the mth responsive bus for participating
in DR programs is calculated using the following equation:

incm = inc × (d0m − dm) (5)

If the customers participating in DR programs do not meet the minimum load reduc-
tion required by the contract, they will be subject to a penalty. Given that the load reduction
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for the mth responsive load is denoted by LRm, the total penalty for the mth responsive load
can be calculated as follows:

penm = pen × (LRm − ∆dm) (6)

The values of ‘inc’ and ‘pen’ are determined by the market operator. In this scenario, the
penalty factor is set to zero, and the incentive coefficient is considered to be 2.5 USD/MW
(0.05 times the electricity price before the implementation of DR programs). To express the
customer’s revenue in terms of load, a linear responsive load model is used in this paper,
which can be formulated as follows:

dm = d0m × [1 + E × ρ − ρ0 + inc − pen
ρ0 ] (7)

where E represents the load elasticity, and ρ0 and ρ are the electricity prices before and after
the implementation of DR programs, respectively.

2.3. Objective Function

In this work, the ORPD problem is mainly concerned with two objectives, i.e., voltage
deviation minimization at load buses and generation cost minimization.

2.3.1. Voltage Deviation Minimization at Load Buses

In power system operation, load voltages may exceed their permissible limits due
to the implementation of a demand response (DR) program. To address this, the ORPD
problem formulation includes an objective to minimize voltage deviation (VD) at all load
buses. Minimizing VD can improve the voltage profile, ensuring safer the operation of power
systems. The minimization of voltage deviation at load buses can be expressed as follows:

min( f1) = ∑ npq
t = 1

∣∣∣∣vt − vre f ,t
∣∣∣∣ (8)

Here, ‘npq’ represents the number of load buses, and vref,t denotes the reference value
for the voltage magnitude at the tth load bus (1 pu).

2.3.2. Generation Cost Minimization

The generation cost, along with the amount paid as incentives to the set of respon-
sive loads, constitutes this objective, which is ultimately calculated using the following
cost equation:

min( f2) = ∑ ng
p = 1

α1 p2
gg + β1 pgg + γ1 + ∑ nDR

m = 1
incm (9)

Here, a1, b1, and c1 are the cost coefficients of the p-th generating unit, and pgg rep-
resents the generator’s power generation. This is also referred to as active power cost
minimization.

Constraints

The DR-based ORPD problem is the presence of both equality and inequality con-
straints. The sets of equality and inequality constraints are presented below:

Equality constraints:

PGq − (PDq − dq)− Vq

NB

∑
j=1

Vj[Gqj cos(δq − δj) + Bij sin(δq − δj)] ; q= 1 . . . NB (10)

QGq − QDq − Vq

NB

∑
j=1

Vj[Gqj cos(δq − δj)− Bqj sin(δq − δj)]; q = 1 . . . . NB (11)
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where PDq and QDq are the demand for active and reactive power, respectively; δq and δj
denote the q-th and j-th bus angles, respectively; Gqj and Bqj denote the transfer conductance
and susceptance between buses q and j, respectively; PGq and QGq are the generation of
active and reactive power, respectively; and ‘NB’ is the total number of buses.

Inequality constraints:

Vmin
Gi ≤ VGi ≤ Vmax

Gi ; i ∈ Npv (12)

Qmin
Gi ≤ QGi ≤ Qmax

Gi ; i ∈ Npv (13)

Qmin
Ci ≤ QCi ≤ Qmax

Ci ; i ∈ NC (14)

Pmin
Gi ≤ PGi ≤ Pmax

Gi ; i ∈ = NPV (15)

Vmin
Li ≤ VLi ≤ Vmax

Li ; i ∈ NPQ (16)

Tmin
tap ≤ Ttap ≤ Tmax

tap ; tap ∈ NT (17)

STL ≤ Smax
TL ; TL ∈ NTL (18)

incmin
m ≤ incm ≤ incmax

m ; m = 1 . . . . . . NDR (19)

where PGi
min and PGi

max are the lower and upper limits of active power generation, QGi
min

and Qgi
max are the lower and upper limits of reactive power generation, Vi

min and Vi
max

are lower and upper bus voltage limits, where Tsi
min and Tsi

max are the lower and upper
limits of transformer taps, QCi

min and QCi
max are the lower and upper limits of shunt

compensation, STL and STL
max are the apparent power flow and maximum permissible

apparent power flow in the transmission line, and incm denotes the incentive paid to each
responsive load restricted between the lower and upper limits.

3. Implementation of Multi-Objective Grasshopper Optimization Algorithm (MOGWO)

The Grasshopper Optimization Algorithm (GOA) is introduced in this section, fol-
lowed by the Multi-Objective Grasshopper Optimization Algorithm (MOGOA).

3.1. Grasshopper Optimization Algorithm

The Grasshopper Optimization Algorithm, or GOA, is a sophisticated and nature-
inspired computational approach that is fundamentally based on population behaviors [22].
It has gained significant recognition as an effective stochastic optimization technique used
in a variety of fields. This innovative algorithm is intricately modeled after grasshoppers’
unique and fascinating behaviors, and it demonstrates efficacy in addressing complex
real-world optimization challenges by either minimizing or maximizing a designated target
function relevant to the problem at hand. The primary goal of this technique is to reliably
find the optimal values associated with key decision variables in the optimization process.
Grasshoppers are recognized for their comparatively sluggish mobility and the short,
gradual movements they take in their larval stage, which contrasts strongly with their
adult phase when they demonstrate fast movement and may cover long distances as they
traverse their surroundings. Grasshoppers’ swarming behavior is characterized by their
instinctive search for food sources, which is critical to their survival and understanding
their movement patterns. Grasshoppers seek food in two separate phases, exploration and
exploitation, each of which has its own set of movement dynamics and techniques. During
the exploration phase, grasshoppers are observed to make sudden and unpredictable
movements that allow them to cover new ground, whereas in the exploitation phase, their
movements become more localized and focused as they hone in on specific areas rich in
food resources. The mathematical modeling of grasshopper swarming behavior may be
articulated through a set of equations and representations that capture these complicated
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dynamics, allowing for more in-depth knowledge of their optimization processes and
tactics to be obtained.

xi = ti + gi + ai (20)

where xi represents the grasshopper, gi represents the force of gravity operating on the i-th
grasshopper, ti represents social interaction, and ai represents wind advection. The above
equation may be expressed as follows to provide random behavior:

xi = r1ti + r2gi + r3ai (21)

where [0, 1] are the random values r1, r2, and r3.

ti = ∑ N
j = 1

t(dij)
→
d

ij
, j ̸= i (22)

dij =
∣∣∣xj − xi

∣∣∣ (23)

t(r) = f e
−r
l − e−r (24)

The distance dij is the distance between the i-th and j-th grasshoppers. The unit vector
→
d

ij
= xj−xi

dij is obtained from the i-th and j-th grasshoppers. In this context, ‘f ’ represents
the intensity of gravitation, and ‘l’ is the absorptive length scale. The ‘G’ component can be
formulated as

Gi = −g
→
e g (25)

where ‘g’ is the gravitational constant, and
→
e g is the unit vector directed towards the center

of the earth. The value of the ‘ai’ parameter in Equation (26) is determined as

ai = u
→
e w (26)

In the wind direction, u and
→
e w represent the constant drift and unit vector, respectively.

By replacing t, g, and a in Equation (21), the equation may be reformulated as follows:

xi = ∑ N
j = 1

t(
∣∣∣xj − xi

∣∣∣ ) xj − xi

dij − g
→
e g + u

→
e w (27)

Here, ‘N’ is the number of grasshoppers in the population. The best solution found by
the swarm is treated as an objective that the grasshopper population continually improves.
The flow chart of the GOA is given in Figure 1. The GOA contributes to solving the
ORPD problem by efficiently exploring the solution space and optimizing both reactive
power dispatch and demand response programs. It provides superior solutions to other
algorithms in terms of minimizing voltage deviations and operational costs. GOA offers
benefits such as an improved convergence speed, better exploration and exploitation
balance, and the ability to handle multi-objective problems like minimizing both costs and
voltage deviations simultaneously.

3.2. Multi-Objective Grasshopper Optimization Algorithm

A multi-objective algorithm is specially intended to successfully meet two basic objec-
tives that occur while attempting to solve complicated multi-objective issues with trade-offs
and conflicting aims [22]. First and foremost, this algorithm seeks to locate and identify
very exact and accurate approximations of the genuine Pareto optimum solutions that
reflect the best potential outcomes in the current environment. Second, it seeks to ensure
that the found optimum solutions are not only accurate but also uniformly and correctly
distributed among all goals inside the chosen search area, hence improving the overall
quality of the results. This distribution of solutions is critical and plays an important part
in the process of posterior decision making, which occurs after the optimization process is
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complete. In the field of multi-objective optimization, it is typical to come across numerous
solutions that may all be considered optimum or nearly optimal under various criteria.
The idea of Pareto optimum dominance is used to systematically compare and assess these
numerous solutions within the context of the Multi-Objective Grasshopper Optimization
Algorithm (MOGOA), allowing for better-informed decision making. To guarantee that
the best solutions are saved for future research and evaluation, the Pareto optimum so-
lutions are scrupulously archived in a separate archive that serves as a repository. The
goal function, a fundamental component of the optimization process, directs and guides
search agents to the most promising and possibly profitable locations within the vast search
universe. This objective becomes especially difficult when modeling the MOGOA because
the target solution must be carefully chosen from a diverse set of Pareto optimal solutions
rather than being chosen from a single-objective perspective, where identifying the optimal
solution is relatively simple.
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To improve the distribution of solutions in the archive, the algorithm calculates the
number of neighboring solutions within a defined distance of each Pareto solution. This
quantitative indicator measures the density or crowdedness of a region inside the Pareto
set. The chance of choosing a target from the archive may be stated as

pi = 1 − ni (28)

where ni represents the number of neighboring solutions around the i-th solution. This
probability is used in the roulette wheel selection mechanism to choose the target from the
archive list.

4. Results and Discussions

To comprehensively evaluate the Optimal Reactive Power Dispatch (ORPD) while
taking into consideration the demand response (DR) program, we must present three
carefully selected case studies that will be developed by utilizing the IEEE 30 bus system
as a fundamental framework for our study. According to reference [23], this network
consists of 20 unique loads, six functioning generators, and an array of 41 transmission
lines. The data provided in reference [24] include critical information about the maximum
and minimum power requirements designated for the generators, the specific quantities
of both active and reactive power that are required for optimal performance, as well as
comprehensive details about the transmission lines, all of which are kept within acceptable
limits, along with all other control variables relevant to the IEEE 30 bus system. A single-
line diagram of the considered IEEE system is depicted in Figure 2. The IEEE-30 bus system
serves as a well-recognized benchmark for evaluating optimization algorithms in power
systems. The GOA’s effectiveness was demonstrated through significant reductions in
voltage deviations and operational costs.
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Case 1: Voltage Deviation Minimization at Load Buses

The first scenario focuses on minimizing voltage variation, especially for the load
buses within the power system architecture. The objective function, which incorporates
this goal, is thoroughly specified in Equation (8), while the appropriate range of control
variables is methodically described in Table 1. To efficiently determine the optimal control
settings that would result in a considerable decrease in voltage deviation at the load buses,
both the GOA and the DA are used in tandem. Given that randomization is a key feature of
meta-heuristic algorithms, it is critical to undertake a significant number of trial runs before
deciding that any single solution is the best one. As a result, each algorithm is exposed to a
rigorous set of 50 separate test runs, with the most beneficial consequence emerging as the
ultimate perfect response. Furthermore, these findings are thoroughly compared to several
newly created algorithms that have been thoroughly described in the current literature.
In this regard, Table 1 gives a detailed and complete comparison of Case 1. The statistics
in the table clearly show that the Grasshopper Optimization Algorithm (GOA) results
in a significant reduction in voltage deviation recorded at load buses across the power
system network. Reducing voltage deviations ensures the power system remains stable
and operates efficiently. Voltage deviations can lead to equipment malfunction, increased
losses, and power outages.

Table 1. Comparison results of IEEE-30 bus system for Case 1.

Control Variable Initial PSO [1] BFOA [1] BOA [1] GSA [1] FA [1] CSA [1] DA GOA

Vg1 1.05 1.00618 0.95 0.98389 0.99298 1.00346 0.9856 1.0223 1.012

Vg2 1.04 1.00751 1.0702 0.95 0.95519 1.01638 1.0345 1.0224 1.011

Vg5 1.01 1.00839 0.9645 1.05135 1.0189 1.01945 1.0478 1.0318 1.021

Vg8 1.01 1.03935 1.0258 1.032 1.0189 1.01822 1.0567 1.0223 1.012

Vg11 1.05 1.00346 1.0375 1.03461 1.01198 0.98227 0.9786 1.0245 1.013

Vg13 1.05 1.04466 0.9914 1.05693 1.03598 1.01546 1.0652 1.0160 1.001

T6-9 1.078 0.99 0.98 1.02183 1.0578 0.99 1.043 0.9009 0.989

T6-10 1.069 0.9 0.96 0.94817 1.05 0.9 1.044 0.9364 0.924

T4-12 1.032 0.99 1.02 1.02614 0.9 0.98 1.0279 0.9702 0.967

T27-28 1.068 0.95 0.99 0.94513 1.05 0.96 0.9236 1.0805 1.079

Qc10 0 4.4 4.8 4.14888 0.966 3.2 4.298 5 4.89

Qc12 0 0.9 1.3 2.42959 4.5 0.5 2.678 0 0

Qc15 0 1.2 4.5 1.40045 2.5 4.9 1.345 5 4.86

Qc17 0 1.9 2 0.70444 1.4 0.1 0.7654 5 5

Qc20 0 1.1 4.3 3.90726 4 3.8 3.8976 5 5

Qc21 0 1 3.9 3.66445 3.8 5 3.5789 5 5

Qc23 0 0.9 4 3.50953 2.9 5 3.4867 5 5

Qc24 0 1 4.5 1.19123 2.5 3.9 1.3478 4.7718 4.781

Qc29 0 0.9 3.4 0.80943 3.1 1.5 0.3467 2.5950 2.765

TVD 1.0582 0.1535 0.149 0.14248 0.118 0.1157 0.1115 0.0999 0.098

% change 0 85.4942 85.9194 86.5356 88.8489 89.066 89.454 90.559 90.71

The results that are thoroughly presented in Table 1 encapsulate a detailed and com-
prehensive analysis as well as a meticulous comparison of a variety of distinct optimization
techniques that have been employed specifically to minimize the total voltage deviation
(TVD) within the intricate framework of the IEEE-30 bus system. Each row within this
table delineates the progressive evolution of control variables that are associated with the



Processes 2024, 12, 2049 12 of 22

different optimization algorithms, which include, but are not limited to, Particle Swarm
Optimization (PSO), the Bacterial Foraging Optimization Algorithm (BFOA), the Firefly
Algorithm (FA), the Gravitational Search Algorithm (GSA), the Bat Optimization Algorithm
(BOA), DA, and the GOA. Through a methodical examination and comparison of the
various parameter values utilized in this context, it is particularly noteworthy to mention
that the analysis prominently included the GOA, which yielded the most favorable re-
sults, alongside a comparative evaluation between the DA and the GOA, in addition to a
thorough assessment of other existing algorithms within the same category.

From the insights in Table 1, it becomes clear that the GOA demonstrates superior
performance by successfully reducing the total voltage deviation (TVD) to a significant
value of 0.984 per unit (p.u.), which constitutes a significant decrease of 90.701% when
compared to the initial value of 1.0582 p.u. This performance distinctly outperforms
the DA, which, while commendable, achieves a total voltage deviation of 0.09990 p.u.,
thereby marking a slightly lesser reduction of 90.5594%. These results serve to highlight the
efficiency of the GOA in adeptly addressing and mitigating voltage deviation issues that
are commonly encountered in contemporary power systems. Figure 3 provides a visual
representation of the total voltage deviation (TVD) for all load voltages within the IEEE-30
bus system, showcasing the performance of various optimization algorithms used in this
analysis. From the information presented in Figure 3, it can be conclusively verified that
the GOA consistently yields better results in comparison to the other algorithms that have
been implemented within this study.
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The primary objective behind tackling the Optimal Reactive Power Dispatch (ORPD)
problem is fundamentally centered on the imperative goal of decreasing the total voltage
deviation (TVD), which is recognized as a critical factor that significantly influences the
stability and reliability of power systems. By optimizing the reactive power dispatch, one
can effectively maintain the voltage levels within designated safe limits, thereby enhancing
the overall performance and operational efficiency of the entire system. Figure 4 illustrates
the load voltages of the IEEE 30 bus system when utilizing both the GOA and the DA.
Moreover, the visual representations in Figure 4 meticulously verify the conformity of
these load voltages to the predefined violation limits, thereby ensuring that they remain
compliant throughout the entire optimization process that is aimed at minimizing the total
voltage deviation.



Processes 2024, 12, 2049 13 of 22

Processes 2024, 12, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 3. Comparison results of TVD for IEEE 30 bus system [1]. 

The primary objective behind tackling the Optimal Reactive Power Dispatch (ORPD) 
problem is fundamentally centered on the imperative goal of decreasing the total voltage 
deviation (TVD), which is recognized as a critical factor that significantly influences the 
stability and reliability of power systems. By optimizing the reactive power dispatch, one 
can effectively maintain the voltage levels within designated safe limits, thereby enhanc-
ing the overall performance and operational efficiency of the entire system. Figure 4 illus-
trates the load voltages of the IEEE 30 bus system when utilizing both the GOA and the 
DA. Moreover, the visual representations in Figure 4 meticulously verify the conformity 
of these load voltages to the predefined violation limits, thereby ensuring that they remain 
compliant throughout the entire optimization process that is aimed at minimizing the to-
tal voltage deviation. 

 
Figure 4. Load voltage profile of IEEE 30 bus system. 

The convergence curves associated with each algorithm serve to effectively illustrate 
their overall efficiency as well as the remarkable speed at which they are capable of reach-
ing the optimal solution that best addresses the problem at hand. The characteristics of 
convergence regarding the total voltage deviation, specifically for the IEEE-30 bus system, 

Figure 4. Load voltage profile of IEEE 30 bus system.

The convergence curves associated with each algorithm serve to effectively illustrate
their overall efficiency as well as the remarkable speed at which they are capable of reach-
ing the optimal solution that best addresses the problem at hand. The characteristics of
convergence regarding the total voltage deviation, specifically for the IEEE-30 bus system,
are depicted in the graphical representation in Figure 5. This illustration demonstrates how
the various optimization algorithms progressively work to lower the total voltage devia-
tion (TVD) through a series of multiple iterations that reflect their operational dynamics.
Notably, the curve associated with the GOA stands out as it particularly illustrates a remark-
ably swift and consistent decrease in the TVD, thereby highlighting its exceptional search
capabilities along with its efficient exploration of the solution space. This rapid convergence
proves to be highly advantageous in real-time scenarios that necessitate prompt decision
making to respond to dynamic conditions. The iterative refinement process executed by
the optimization algorithms is graphically showcased, effectively presenting the gradual
reduction in the TVD that occurs across successive iterations, allowing for a clear visual
representation of their performance.
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The comparative analysis conducted also compellingly demonstrates that the GOA
significantly outperforms the other algorithms in terms of both the accuracy and speed of
convergence, thereby establishing it as an invaluable tool for the management of reactive
power in the increasingly complex landscape of modern power systems.
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Case 2: Cost Minimization Considering Incentive-Based Demand Response

The implementation of incentive-based demand response (DR) strategies has resulted
in a significant maximum load reduction that can reach up to 10% for the selected buses
within the power system under consideration. The specific load buses that were selected
for this evaluation include the numbers 7, 8, 12, 17, 19, 21, and 30, which will be used to
thoroughly assess the impact of the demand response strategies on the overall operation of
the power system as documented in reference [25].

By optimizing the generation schedules, the demand response strategies play a crucial
role in helping to mitigate voltage deviations while simultaneously enhancing the stability
of the overall system. The numerical results that detail the load reduction achieved in the
context of responsive loads are presented in Table 2, while Figure 6 visually illustrates the
extent of load reduction observed at the response buses. The data indicate that incentive-
based demand response strategies can effectively shift the electrical load away from peak
periods, thus contributing to a significant reduction in the overall system demand during
critical times that require careful management. This strategic load shifting not only aids
in the maintenance of voltage stability but also serves to diminish the necessity for costly
peak generation resources that can strain the system during high-demand periods. Figure 6
is an exemplary representation that captures a key notion regarding the significant effects
produced by the aforementioned method under examination. The computations for the
cost functions were carefully constructed and assessed in compliance with the criteria
specified in Equation (9). The deployment of the demand response (incentive-based) tactics
has resulted in a significant and noticeable decrease in the value of the cost function.

Table 2. Numerical results of load reduction in responsive loads in terms of MW.

Cases Bus 7 Bus 8 Bus 12 Bus 17 Bus 19 Bus 21 Bus 30

Load Without DR (MW) 22.8 30 11.2 9 9.5 17.5 10.6

Load With DR (MW) 20.52 27 10.08 8.1 8.55 15.75 9.54

Load Reduction (MW) 2.2800 3.0000 1.1200 0.9000 0.9500 1.7500 1.0600

% Load Reduction 10 10 10 10 10 10 10
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Figure 6. Response bus load reduction with DR.

The strategies associated with incentive-based demand response (DR) have unequivo-
cally contributed to a notable and discernible decrease in the values associated with the cost
function, which is meticulously illustrated in the data presented in Table 3. The empirical
findings derived from this analysis compellingly indicate that the strategic integration of
incentives aimed at enhancing consumer participation within demand response programs
has a substantial effect in diminishing the total incurred costs. Table 4 comprehensively
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illustrates the outcomes of the IEEE 30 bus system, which has been evaluated under a cost
minimization objective while simultaneously taking into consideration the implications of
the incentive-based demand response program. To ensure the robustness and reliability
of the results obtained, the GOA (Grasshopper Optimization Algorithm) was initially
employed to achieve cost minimization objectives; subsequently, the outcomes derived
from this algorithm were meticulously juxtaposed with those yielded by the DA results. In
addition to this comparative analysis, it is pertinent to note that the results obtained from
both algorithms were also compared against the performance metrics of other previously
published algorithms, specifically the Ant Colony System (ACS) and Multi-Objective Evo-
lutionary Algorithm based on Decomposition (MOEA/D), as referenced in reference [26].
Upon an examination of the data encapsulated in Table 4, it becomes clear that the GOA
consistently produces superior results when compared to the performance outcomes of the
other algorithms evaluated in this study.

Table 3. Total cost of system operation with and without incentive-based DR using GOA.

Sl. No. Name of Case Cost Function Value (USD)

1 Minimization of cost without DR 799.1768

2 Minimization of cost with DR 786.8650

Table 4. Numerical results of IEEE 30 bus system for Case 2.

Control Variable
Without DR With DR

ACS [26] MOEA/D [26] DA GOA GOA

Pg1 173.34 174.796 177.7323 178.0448 172.0674

Pg2 48.685 49.874 48.7472 48.4417 46.2437

Pg3 21.055 21.784 21.6471 21.3339 21.1126

Pg4 24.802 21.317 20.6702 20.8181 18.5236

Pg5 10.429 12.386 11.6071 11.8676 10.8611

Pg6 13.831 12.000 12.1677 12.0000 12.0000

Vg1 1.0931 1.1000 1.1000 1.1000 1.0681

Vg2 1.0724 1.0861 1.0747 1.0852 1.0630

Vg5 1.0491 1.0556 1.0450 1.0495 1.0648

Vg8 1.0465 1.0677 1.0561 1.0681 1.0526

Vg11 1.0816 1.0981 1.1000 1.1000 1.0923

Vg13 1.0840 1.0937 1.1000 1.1000 1.1000

T6-9 0.9674 1.0272 0.9022 1.0832 0.9575

T6-10 1.0958 0.9057 0.9455 0.9767 0.9559

T4-12 1.0510 1.0162 1.0085 0.9580 0.9843

T27-28 0.9653 0.9775 1.0295 0.9551 1.0911

Qc10 1.7255 1.600 5.0000 5.0000 5.0000

Qc12 2.5131 1.243 4.3771 5.0000 5.0000

Qc15 2.3766 3.242 4.9602 5.0000 4.9990

Qc17 1.9687 4.362 5.0000 5.0000 5.0000

Qc20 2.2595 4.270 5.0000 5.0000 5.0000

Qc21 4.9871 5.000 5.0000 4.9886 5.0000

Qc23 4.0805 3.760 4.6609 4.7996 4.8400

Qc24 1.9866 4.653 5.0000 5.0000 5.0000
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Table 4. Cont.

Control Variable
Without DR With DR

ACS [26] MOEA/D [26] DA GOA GOA

Qc29 2.9271 2.689 4.4313 4.1461 3.6421

Cost 800.83 799.29 799.2887 798.9780 786.8352

From Table 4, it can be discerned that the GOA presents a cost of USD 786.8352 per
hour when the demand response (DR) program is taken into account, whereas the cost rises
to USD 798.9780 per hour when the DR program is not considered, thereby highlighting a
significant difference in operational expenses associated with the presence or absence of
this program. It is clear that the incorporation of the DR program results in a noticeably
reduced operational cost for the overall system when compared to the situation where the
DR program is not implemented, illustrating the financial advantages of such strategies.

The depiction in Figure 7 effectively illustrates the voltage levels at the load bus, both
in scenarios that include the demand response program and those that do not. Upon analyz-
ing Figure 7, it becomes evident that there is a marked increase in voltage across nearly all
load buses when the implementation of the DR program is in effect, indicating the positive
impact of such programs on voltage stability and overall system performance. Increasing
voltage levels within a power system assumes supreme importance for the preservation and
enhancement of voltage stability, which serves as a foundational criterion for the reliable
functioning of electrical networks. When the optimization of voltage levels is pursued and
achieved, it not only aids in ensuring that the entire system operates within prescribed
safe limits but it also significantly mitigates the potential risks associated with voltage
collapse or instability, thereby safeguarding the integrity of the power infrastructure. This
consideration becomes especially critical in the context of complex power systems, where
even minor fluctuations can precipitate substantial operational challenges and complica-
tions. Through the strategic optimization of reactive power dispatch, it becomes possible to
effectively minimize the total voltage deviation (TVD), which serves as a crucial metric for
evaluating voltage uniformity across the grid. A reduced TVD is indicative of a situation
where voltage levels throughout the system exhibit greater uniformity and stability, which
is fundamentally essential for the reliable and uninterrupted operation of various electrical
equipment and devices. This enhanced uniformity not only aids in the prevention of
potential equipment malfunctions but also plays a significant role in diminishing energy
losses, thereby contributing positively to the overall efficiency of the power system. The
maintenance of elevated voltage levels can improve the operational efficiency within the
power system. When voltage levels are maintained in a stable manner and remain within
the desired operational range, the power system is positioned to function with greater
efficacy, thereby minimizing the necessity for corrective measures and simultaneously
enhancing the overall performance metrics of the electrical grid. This consideration holds
particular relevance in the contemporary landscape of power systems, which are increas-
ingly confronted with a myriad of both internal and external challenges that can disrupt
normal operations.

Figure 8 provides a comprehensive illustration of the pronounced differences in cost
function values between the scenarios in which the demand response integration is present
and those where it is absent. Notably, the introduction of incentive mechanisms reveals
a clear and significant reduction in total costs when compared to situations lacking any
demand response strategies, serving to emphasize the substantial economic advantages
that can be realized through the encouragement of consumer participation in demand
response programs. By motivating consumers to either decrease or shift their energy
consumption during peak demand periods through the provision of financial incentives,
the total electricity costs can be effectively reduced. This decrease in costs is primarily
facilitated by lessening the necessity for expensive peaking power plants and alleviating
the pressure placed on the electrical grid. The economic advantages associated with
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incentive-based demand response programs are considerable as they provide a viable and
cost-efficient approach to harmonizing supply with demand while simultaneously ensuring
the stability and reliability of the grid system.
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Table 5 serves to represent and illustrate the diverse values of incentives that have been
allocated and paid to various load buses, particularly in the context of the integration of a
demand response (DR) program that is designed to encourage participation. The incentives,
which were meticulously derived from the equations presented in (5), function as a signifi-
cant catalyst that motivates consumers, thereby incentivizing their active involvement in
initiatives aimed at reducing load demand, consequently leading to enhanced efficiency in
the overall system. Figure 9, on the other hand, depicts the specific incentives that have
been distributed among the various participants actively engaged in the market, providing
a clear visual representation of these financial allocations. In addition to this, Figure 10,
which illustrates the convergence curve associated with the cost minimization process both
with and without the incorporation of demand response initiatives (specifically those that
are incentive-based) for the IEEE-30 bus system, offers a concise yet informative depiction
of the dynamics involved in algorithmic convergence. This curve effectively delineates the
iterative refinement process that is systematically undertaken by various optimization algo-
rithms in their pursuit of minimizing the total cost function, and it is important to note that
the graphical representation of each algorithm’s convergence trajectory vividly showcases
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the gradual reduction in cost that occurs across successive iterations, thus highlighting the
efficiency of the optimization strategies employed.

Table 5. Incentives paid at different load buses.

Bus No. Incentives Paid (USD) Bus No. Incentives Paid (USD)

7 5.7 19 2.375

8 7.5 21 4.375

12 2.8 30 2.650

17 2.25 % of total cost paid as incentive 3.5141%
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Case 3: Minimize TVD and System Operation Cost

The component of the multi-objective optimization framework engages in the intricate
consideration of both the minimization of voltage deviation—derived from the ORPD
problem—and the minimization of the cost function, which is analyzed in conjunction with
demand response (DR) strategies. To thoroughly investigate the ramifications of demand
response within the context of the ORPD problem, this scholarly article delineates two
distinct scenarios that take into account the aforementioned objective functions:



Processes 2024, 12, 2049 19 of 22

Scenario 1: Minimize the TVD and cost without DR.
Scenario 2: Minimize the TVD and cost with incentive-based DR.

The comprehensive statistical analysis of the multi-objective optimization process is
systematically encapsulated within Table 6, which elucidates the findings. In the context of
this research endeavor, the Multi-Objective Grasshopper Optimization Algorithm (MOGOA)
is meticulously employed to derive the optimal compromise solution for the given scenarios.
Furthermore, Table 6 illustrates the best, worst, and mean values pertinent to both the cost
function and the total voltage deviation (TVD) for the scenarios previously delineated.

Table 6. Statistical analysis for multi-objective optimization.

Value
Scenario 1 Scenario 2

TVD Cost without DR TVD Cost with Incentive-Based DR

Best 0.1575 802.7330 0.1354 792.7732

Worst 0.1569 810.7654 0.1496 798.3353

Mean 0.1589 805.7331 0.1418 795.7014

The comprehensive solution encompassing the various weights can be regarded as
the most plausible resolution to the multi-objective optimization problem, as delineated in
the detailed presentation of Table 7. Upon a meticulous examination of the data presented
in Table 7, it becomes evident that within the confines of Scenario 2, the associated costs are
notably minimized when juxtaposed against those observed in Scenario 1. Furthermore,
this table elucidates the resultant values of the cost function corresponding to each scenario,
thereby clearly indicating the significant influence that adjustments to the control variables
exert on the overarching objective function.

Table 7. Numerical results of IEEE 30 bus system for Case 3.

Control Variable Scenario 1 Scenario 2 Control Variable Scenario 1 Scenario 2

Pg1 175.3433 163.9690 T4-12 1.0417 1.0666

Pg2 50.0660 55.2830 T27-28 1.1000 1.0756

Pg3 22.8557 17.1396 Qc10 0.3262 1.6128

Pg4 21.3708 15.7029 Qc12 0.0332 0.0000

Pg5 11.2464 12.5096 Qc15 5.0000 3.7389

Pg6 12.0000 16.4464 Qc17 3.1813 0.1420

Vg1 1.0926 1.1000 Qc20 3.6133 4.8251

Vg2 1.0960 1.1000 Qc21 4.6859 4.7117

Vg5 1.0890 1.0919 Qc23 1.5998 0.4369

Vg8 1.0794 1.0871 Qc24 3.5941 4.5692

Vg11 1.0821 1.1000 Qc29 5.0000 5.0000

Vg13 1.0774 1.0801 Cost (USD) 802.7330 792.7732

T6–9 1.0685 1.1000 TVD 0.1448 0.1483

T6–10 1.0393 1.1000

Figure 11 depicts the load bus voltage profile with and without the DR program using
the MOGOA. The comparative analysis of the Pareto optimal front for multi-objective
optimization is effectively depicted in Figure 12. This graphical representation serves to
underscore the intricate trade-off that exists between minimizing the total voltage deviation
(TVD) and reducing costs across both scenarios under consideration. The empirical find-
ings reveal that Scenario 2, which uniquely integrates incentive-based demand response
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(DR) mechanisms, accomplishes the objective of achieving the lowest overall cost while
simultaneously upholding acceptable levels of the TVD. Through a thorough examination
of the Pareto front, decision makers are allowed to pinpoint solutions that provide the
most favorable equilibrium between the imperative of minimizing voltage deviation and
the necessity of lowering operational expenditures. This strategic approach guarantees
that the operations of power systems are optimized effectively while considering multiple
objectives concurrently.
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This study demonstrates the GOA’s potential as a robust tool for optimizing energy
management in complex systems by minimizing power losses and improving system effi-
ciency. The findings have practical applications for operators who can use the GOA to man-
age power dispatch and DR programs effectively. Stakeholders can benefit from reduced
costs and enhanced system stability. The limitations of the presented work include the
focus on a single network (IEEE-30 bus system) and the absence of a distribution network
analysis. Future research could explore larger and more complex systems like the IEEE-33
bus system and test the approach under varying system constraints and DR policies.
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5. Conclusions

The comprehensive results obtained from the multi-objective optimization process
unequivocally demonstrate that the incorporation of demand response strategies, particu-
larly incentive-based programs, leads to a significant increase in the cost-efficacy of power
system operations while also working to minimize voltage deviations. The construction
of the Pareto optimum front is a useful resource for decision makers, providing them
with the framework they need to efficiently balance a slew of objectives inherent in the
complicated realm of power system management. The ability to achieve optimal trade-offs
between voltage stability and significant cost savings is critical for ensuring the long-term
and reliable operation of modern power systems, which are increasingly challenged by
a variety of external and internal factors. The collective insights gained from the ORPD
problem, the detailed analysis of demand response, and the overarching framework of
multi-objective optimization highlight the efficacy of sophisticated optimization algorithms,
in conjunction with demand response strategies, in fostering significant improvements
in the overall performance and reliability of power systems. The use of the Grasshopper
Optimization Algorithm (GOA) in conjunction with the strategic integration of demand
response programs results in robust solutions that effectively work to reduce operational
costs and voltage deviations, ultimately contributing to the improvement in grid stability
and operational efficiency in a highly interconnected electrical network. The findings of
this research provide critical insights that will be extremely beneficial to power system
operators and policymakers alike, providing strategic guidance in the development and im-
plementation of effective methodologies aimed at optimizing power system management
in a complex and dynamic environment.
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