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Abstract: Modern industrial control systems (ICSs), which consist of sensor nodes, actuators, and
buses, contribute significantly to the enhancement of production efficiency. Massive node arrange-
ments, security vulnerabilities, and complex operating status characterize ICSs, which lead to a
threat to the industrial processes’ stability. In this work, a condition-monitoring method for ICSs
based on canonical variate analysis with probabilistic principal component analysis is proposed. This
method considers the essential information of the operating data. Firstly, the one-way analysis of
variance method is utilized to select the major variables that affect the operating performance. Then,
a concurrent monitoring model based on probabilistic principal component analysis is established
on both the serially correlated canonical subspace and its residual subspace, which is divided by
canonical variate analysis. After that, monitoring statistics and control limits are constructed. Finally,
the effectiveness and superiority of the proposed method are validated through comparisons with
actual drilling operations. The method has better sensitivity than traditional monitoring methods.
The experimental result reveals that the proposed method can effectively monitor the operating
performance in a drilling process with its highest accuracy of 92.31% and a minimum monitoring
delay of 11 s. The proposed method achieves much better effectiveness through real-world process
scenarios due to its distributed structural division and the characteristic canonical analysis conducted
in this paper.

Keywords: industrial control systems; performance monitoring; canonical variate analysis; principal
component analysis

1. Introduction

Industrial control systems (ICSs) are increasingly critical in modern infrastructure
and significant projects such as the hydraulic facility, transport, energy, and chemical
industries. In this sense, ICS security is also directly linked to the smooth operation of
critical infrastructures [1]. When the ICSs are attacked, it will directly harm the physical
world by causing environmental pollution, power outages, oil leaks, and explosions. With
the acceleration of the digitalization process of ICSs, the integration of industrialization
and informatization has been gradually strengthened. Due to the increasing openness
of industrial control systems, there are a increasing number of threats to the systems.
Hence, timely and accurate anomaly detection in ICSs is essential in reflecting the security
status of the production process and determining the vulnerability of the industrial control
systems. Maintaining secure operation of industrial control networks is increasingly critical
in improving production efficiency and safety [2,3].

ICSs are a series of control systems, which include supervisory control and data
acquisition systems, distributed control systems and programmable logic controllers (PLCs),
and other control systems and control units. An ICS ensures the safe, reliable, and secure
operation of industrial processes. In ICSs, malicious attacks are possible due to the inherent
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loopholes in communication protocols. Recently, industrial control networks have faced
constant threats, such as the Stuxnet virus attacking PLC codes to achieve such an attack,
thereby destroying the centrifuge’s regular operation. Thus, numerous researchers have
devoted themselves to constructing state models for ICSs to enable anomaly detection for
different attacks.

The ICSs’ layers interact and communicate with one another via the network while
carrying out their specific assigned tasks. The ICS is vulnerable in both the network along
physical layers due to its close coupling between cyberspace and physical space. An
attacker may launch a cyberattack, which could result in malicious software and data asset
theft or tampering with the equipment, leading to the loss of crucial control information
and failure of crucial control commands.

The threat of attack has caused worldwide concern about the cyber security of ICSs.
Given the numerous attack threats faced by ICSs, Teixeira et al. proposed an ICS pass-
through attack model based on three-dimensional information and physical space to
characterize the various attack means in different spaces and to illustrate the characteristics
of multiple types of attacks [4]. Accordingly, Adepu et al. proposed a framework for
describing physical attacks, cyberattacks, and other types of attacks by dividing them
into domain, attacker, and attack models [5]. In light of the wide variety of attack types,
complex attack paths, and variable attack strategies facing ICSs, it is challenging to construct
a mathematical model covering all scenarios.

Currently, data-driven methods of extracting information from process data and mod-
eling monitoring have become a hotspot in anomaly detection research. The advancement
of sensor technology has allowed almost all industrial objects to be equipped with various
types of sensors, which has resulted in a great deal of data being collected in industrial pro-
cesses. By merging the data from various sources and examining the correlation between
the information, data-driven anomaly detection methods can detect whether a system is
under attack. A relational model that captures the intruder’s identity, velocity, level of
threat, and target of intrusion was developed, which serves as a foundation for continuous
cyberspace state monitoring [6]. Lu et al. proposed a security monitoring method for indus-
trial control networks based on an improved C-SVC (C-Support Vector Classifier), which
can effectively identify multiple types of abnormal states and form situational awareness
results [7]. A hidden Markov model-based attack detection for Stuxnet has been proposed
in the industrial control system subject to random packet dropouts [6]. Despite being based
on mechanistic models of attack-induced abnormal states, the methods above have inherent
limitations when applied to large-scale complex industrial processes.

Considering the large scale and complexity of the system in question, as opposed to
complex processes mechanisms, researchers have monitored network security status by
analyzing the process data in industrial control networks. Multivariate statistical process
monitoring (MSPM) methods have been widely studied and applied over the past few
decades [8]. Rather than modeling a particular attack model, MSPM depicts the operational
state of the system. Attack detection on ICSs is achieved by comparing the deviations from
the operational state. Among the most well-known representative branches of statistical
process monitoring is principal component analysis (PCA), which is regarded as an effective
means of dimension reduction. PCA identifies the major changes in data by decomposing
multiple related variables into several orthogonal principal components [9,10]. The PCA-
based MSPM approach enables monitoring by modeling the variable space of the system
where two different monitoring statistics, Hotelling T2 and Squared prediction error Q, are
viewed as the monitoring statistics [11,12].

Although PCAs are widely used to detect anomalies, they do not perform as well
when their assumptions are incorrect. The underlying Gaussian assumption in the calcu-
lation of control limits of monitoring statistics in PCA makes it a poor monitoring tool
for non-Gaussian processes. A variety of PCA variants have been proposed for nonlinear
processes, including probability PCA (PPCA) [13] and kernel PCA (KPCA) [14], in which
the data are projected into a high-dimensional space. In essence, KPCA remains a linear
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dimensionality reduction method, and its effectiveness is heavily influenced by the choice
of kernel function, which is not appropriate for systems with nonlinear or stochastic per-
turbations. Within the maximum likelihood framework, PPCA measures the similarity
between new data points according to their probability density functions [15,16]. Canonical
variate analysis (CVA), which provides a more accurate description of the process by maxi-
mizing the correlation between mainly dependent and quality variables [17,18], is another
valid method for incorporating both static and dynamic process characteristics. Zhang
et al. developed a CVA-based modeling and monitoring method for simultaneous static
and dynamic analysis in three-phase flow processes [19,20]. A fault information-aided
canonical variate analysis and a structured monitoring strategy has been proposed to
improve anomaly detection rate [17]. However, the process is usually assumed to operate
under one condition, whereas industrial processes always operate in multiple modes.

For plant-wide processes, multimodal methods were introduced as a solution to
these problems. Generally, block division is the key step in sub-block modeling. These
methods can be classified into two main categories: data-driven and knowledge-based.
Based on field experience and prior process knowledge, knowledge-based methods usually
divide process variables into blocks. A hierarchical multiblock total projection to latent
structures (T-PLS) based on an operating performance assessment scheme was proposed to
identify the anomalies in operating statuses [21]. Using prior process knowledge, Zhu et al.
proposed the distributed parallel PCA process monitoring framework to decompose the
high-dimensional process variables [22]. When there is a lack of accurate prior knowledge,
monitoring and anomaly detection performance may be less than optimal if the process
variables are not correctly divided.

Data-driven methods have also been extensively used to divide variable blocks in
distributed process monitoring using the process measurements from industrial historians.
The data-driven approach clusters variables into sub-blocks by evaluating the correlations
between variables. For instance, Hu et al. used mutual information (MI) analysis to
extract the complex relationships between each possible process variable and the burn-
through point in the sintering process [23]. Zhang et al. investigated an improved mixture
probability principal component analysis with clustering for nonlinear process monitoring
where the k-means is subsequently utilized as a clustering algorithm to divide the variables
into optimal sub-blocks [24]. Minimal redundancy maximal relevance was used to divide
the most related variables into the same block and form a dynamic multiblock monitoring
framework [25]. With mutual information-spectral clustering, the measured variables were
automatically divided into sub-blocks on which a Bayesian inference-based multiblock
KPCA monitoring model was established [26]. Combining knowledge-based and data-
driven approaches, Cao et al. developed a hierarchical hybrid, distributed PCA for the
plant-wide monitoring of chemical processes with two-layer manner sub-block division.

Although the aforementioned monitoring strategies have been demonstrated as ef-
fective, the monitoring performance may not be optimal when faced with sophisticated
cyberattacks. On the one hand, network layer attacks such as data injection present more
randomness and uncertainty than faults in the system. The above characteristics lead to
traditional monitoring methods failing to identify the dynamic characteristics caused by
attacks when modeling with normal samples. Specifically, PCA-based monitoring methods
cannot fully extract the state-by-state characteristics of the system in the principal metric
space, leading to omissions and false alarms in the monitoring results. Similarly, when con-
fronted with large-scale complex systems, the traditional centralized modeling approach
cannot adequately reconstruct the system’s state characteristics.

Motivated by the above research status, a concurrent distributed monitoring method
was proposed to tackle the ICS attack detection tasks. redUsing a two-stage distributed
modeling approach, we can extract all the state characteristics of the system. By using the
MI method, the decision variables are selected and the distributed structure is realized.
Then, the PPCA models compute both the serially correlated subspace and its residual
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subspace based on canonical variate analysis, which makes a complete interpretation of
process dynamics under ICSs possible.

In the proposed framework, all detection variables were selected into the first layer
by one-way variance analysis, and the detection variables were further divided into sub-
blocks using a combination of general knowledge-based strategies with mutual information.
Then, CVA–PPCA monitoring models were established for each sub-block, in which CVA
was used to explore the serial correlations, and PPCA-based monitoring models were
constructed for the variables of subspace. Finally, Bayesian inference was used to obtain
comprehensive statistical indicators of the ICSs, which can realize plant-wide anomaly
detection. Thus, the dynamic characteristics of the ICSs were restored, allowing for a
deeper understanding of its security status. The main contributions of the present work are
as follows.

1. An adaptive process variable selection and blocking method for distributed moni-
toring was implemented with combined knowledge-based strategies with mutual
information.

2. Both linear and non-linear behaviors were analyzed and monitored, which can provide
a meaningful interpretation for fine-scale identifying ICS attacks.

The rest of this paper is organized as follows. The problem description and monitoring
framework are given in Section 2. Section 3 outlines the proposed concurrent distributed
CVA-PPCA-based monitoring method in detail. Section 4 details a validation of the effec-
tiveness of the proposed method on actual drilling processes. Finally, conclusions are made
in Section 5.

2. Problem Description and Modeling Framework

In this section, the problems of ICS security monitoring are summarized. Based on
these, a framework of monitoring model was designed.

2.1. Problem Description

ICS is an umbrella term for various network-connected control systems in the indus-
trial field. Over the past few decades, ICSs have greatly enhanced the degree of industrial
process automation and brought certain security risks. Figure 1 shows a typical industrial
control network architecture for the geological drilling processes. A controller employs a
communication network to regulate the operation of the controlled process by measure-
ments from geographically dispersed sensors.

Figure 1. A typical industrial control system structure for the drilling process.
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During the drilling process, the PLC is responsible for controlling the industrial
control system in order to read the data from the field sensors. Additionally, the Profibus
communication protocol was utilized in order to facilitate communication between the
PLC and the industrial control machine. For the purpose of reading the data from the PLC
over the OLE for Process Control (OPC) protocol, the WinCC configuration software was
utilized. MVC (Model–View–Controller) architecture was utilized by the system, which
enables intelligent optimization control, as well as complicated logic operations.

A system failure results from an attacker’s deliberate destruction or manipulation of
actuators, control units, etc., which is another manifestation of the ICS vulnerability in the
physical layer. Network attacks and instrument malfunction both appear as anomalies in
the data sampled by the sensors. The difference is that network attacks cause equipment
failure, so the data usually show a causal relationship between them. Additionally, net-
work attacks tend to maintain the statistical characteristics of the data sparingly, whereas
equipment failures often result in outliers, missing values, and other easily observable
changes. Due to the complexity of physical layer attacks, the attack detection algorithms in
this paper only address attacks suffered at the network layer.

False data injection is a common network layer attack. In the event that sensors
transmit sensing data to the PLC, the data may be tampered with, leading to the instability
of the control system. In this attack, the original correct measurement value zi(t) of moment
t will be tampered with, resulting in the measurement value z̃i(t) deviating from the normal
value zi(t), which causes the feedback control system to perform incorrect responses. The
attack process can be expressed as [7]

zi(t) =
{

0, t /∈ Tatc,
zi(t − 1) + τφt, t ∈ Tatc,

(1)

where τ and φ are the impact index, which is usually a constant; and Tatc is the attack
period. This paper assumed that the anomalous state of the system was caused by fake
data that were imposed by the attacker.

In general, false data injection attacks include the manipulation of system measures
while the attacker is aware of the setup of the system. These attacks are difficult to monitor
directly since they are difficult to detect. The three primary types of attacks that fall under
the category of fake data injection assaults are known as surge attacks, deviation attacks,
and geometry attacks. To varied degrees and at varying rates, the normal operation of
the system is disrupted in each of these instances, and, when it is severe, it is likely to
result in serious accidents. Figure 2 presents histogram plots of the partial variables in the
geological drilling process, such as the rate of permeation (ROP) as an example. Clearly,
the distribution of data that is not ideal (shown by the red area) is mostly contained within
the distribution of data that is optimal (represented by the blue area). Since this is the case,
one of the most important concerns in ICS security monitoring is how to further parse data
features. Monitoring the current status of network security can assist decision makers in
determining whether or not an attacker intends to launch an attack. The operation of the
system will be guaranteed to be stable and secure as a result of this.

In a data tampering attack, the attacker tampers with measured values of a system
since he knows the system configuration and cannot be detected intuitively. Therefore,
the following challenges need to be faced when investigating ICS-oriented attack detec-
tion methods.

1. Complexity: The number of current cyberattacks on ICSs is increasing, with attackers
exploiting ICS vulnerabilities to deliver different types of attacks and threats.

2. Crypticity: There are insufficient means of identifying attack behavior, and the attack
detection false alarm rate is high due to attackers deliberately confusing the attack
with the normal operation of the control system.
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Therefore, an essential component of achieving ICS attack detection involves develop-
ing a monitoring model that accurately captures the dynamic aspects of the attack behavior.

Figure 2. Histograms of the drilling data under optimal and non-optimal modes.

2.2. Modeling Framework

The objective of this study was to detect the abnormalities of ICSs by constructing a
process monitoring model based on the sufficient normal data of related detection variables.
A novel CVA-PPCA-based monitoring method was presented to overcome the shortcom-
ings and improve the performance of network anomaly identification. The framework of
the proposed network condition monitoring scheme is shown in Figure 3.

Figure 3. The framework of the proposed CVA–PPCA-based monitoring method.
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The monitoring model consists of two parts: offline modeling and online monitoring.
According to one-way analysis, the ICS performance quality-related detection variables
were chosen; these were then further divided into reasonable sub-blocks by the MI analysis,
which were added with prior knowledge. Within each sub-block, the CVA method was
used to classify the variables according to their correlation into their correlated canonical
subspace and residual subspace. Then, the PPCA-based monitoring model was established
in canonical subspace. Finally, Bayesian inference was used to obtain comprehensive
statistical indicators of the whole process, which can realize anomaly detection.

For online monitoring, real-time monitoring statistics can be compared with historical
data to determine the overall performance of the integrated monitoring system and to
define the detection thresholds according to attack type. Anomalies can then be detected
by comparing the monitoring statistics to see if the limits have been exceeded.

3. Implementation of the Monitoring Model

In this section, the ICS security monitoring model is established. Firstly, sub-block
division was carried out using one-way analysis and mutual information analysis. Using
the CVA method, the original variable space was divided, and the PPCA monitoring model
with preset control limits was constructed. To achieve online monitoring, the online data
are used to calculate the monitoring statistics and compare them to the detection threshold.

3.1. Sub-Block Division Based on One-Way Analysis and Mutual Information Analysis

There are usually multiple industrial controls and multiple systems within ICSs.
The whole process contains a number of detection variables. The multi-block modeling
approach is an effective way to deal with the anomaly detection problem of large-scale
processes. To fully extract the correlations between variables, sub-block division is necessary
before offline modeling.

A two-stage delineation method was used in this study to create a multi-sub-block
structure, with one-way analysis of variance being selected in the first stage to determine
the operational state-related decision variables, which was followed by mutual information
analysis and process knowledge for sub-block delineation.

In the first phase, one-way analysis of variance (ANOVA) can be used to determine the
effect of the different operating modes on the distribution of variable data. By measuring
the difference in the variance fluctuations caused by different operating conditions and
random errors, ANOVA determines if changes in the operating conditions are a major
factor in system operation.

There are five normal geological drilling conditions: drill up and down, rotary drilling,
back reaming, hole sweeping, and sliding drilling. Assuming that the number of samples
for each operating condition is selected as n1, n2, n3, n4, and n5, then the drilling data for
each condition is recorded as x1, j, x2 j, . . . , xnj ,j(j = 1, 2, . . . 5). The degree of variation VT

between the drilling data can be calculated as follows:

VT =
5
∑

j=1

nj

∑
i=1

(
xij − x̄

)2,

x̄ = 1
N

h
∑

j=1

nj

∑
i=1

xij =
1
n

5
∑

j=1
nj x̄j,

x̄j =
1
nj

nj

∑
i=1

xij,

(2)

where x̄ is the mean value of data collected for the variable, and x̄j is the mean value of the
variable in a data set for a mode. Furthermore, VT can be decomposed into the sum of its
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error sum of squares and effect sum of squares, which is denoted as VT = VE + VF, and VE
and VF are relative-independent, the details of which can be defined as

VE =
h
∑

j=1

nj

∑
i=1

(
xij − x̄j

)2,

VF =
h
∑

j=1

nj

∑
i=1

(
x̄j − x̄

)2.
(3)

According to the above definition, it is clear that VT measures the distributional
differences within different drilling conditions and also globally. Thus, it is possible to select
the operating status-related variables related to the ICSs effectively. The degree of influence
of a variable is measured by constructing a test statistic FT and its test probability ρ:

FT =
(VF)/(h − 1)
(SE)/(N − h)

∼F(h − 1, N − h), (4)

where FT obeys F-distribution, h = 5, and the test probability is ρ(F(h − 1, N − h) ≥ FT).
The smaller the test probability, the greater the effect of the parameter on the operating
conditions.

Table 1 presents the test probability of each parameter based on 1800 samples of data
collected from the industrial control network in the drilling process. Clearly, the probability
of testing parameters d11 and d12 is significantly higher than those of the other variables,
which is also consistent with the process knowledge. A total of 10 variables can be selected
for ρ ≤ 0.001, i.e., X1, X2, . . . , X10.

Table 1. Results of the one-way analysis of variance.

Parameter Description ρ

d1 Rate of penetration (km/h) 6.27 × 10−8

d2 Weight on bit (kN) 0.43 × 10−10

d3 Rotation speed (r/min) 1.84 × 10−8

d4 Mud flow in (out) (L/s) 3.27 × 10−6

d5 Tank volume (m3) 4.17 × 10−15

d6 Standpipe pressure (Mpa) 9.38 × 10−12

d7 Hookload (kN) 2.86 × 10−14

d8 Hook height (m) 1.22 × 10−18

d9 Rotary torque (kN·m) 8.86 × 10−18

d10 Depth (m) 1.09 × 10−9

d11 Bit dept h (m) 5.36 × 10−2

d12 Bit diameter (mm) 6.25 × 10−3

In the second stage, the detection variable blocking is based on MI combined with prior
knowledge. MI involves determining whether a detection parameter’s data distribution and
a performance indicator’s distribution are interdependent. When several variables interact,
MI is the entropy that was initially contained as it decays. It suggests that information
entropy is not constant but rather varies with the number of events that occur. MI is
commonly interpreted as a metric that quantifies the degree of dependence and strength
between two variables. Specifically, given two random variables x1 and x2, the mutual
information between them is defined as

I(X, Y) = ∑
X

∑
Y

p(X, Y) log
p(X, Y)

p(X)p(Y)
, (5)

where p(x) and p(X) are the marginal probability density functions of X and Y, and p(X, Y)
is the joint probability of X and Y.
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As this equation represents the uncertainty in x2 after removing x1, it confirms the
intuitive meaning of MI as the amount of information one variable provides about another.
By analyzing the physical mechanism of the drilling production, it can be seen that d4,
d5, and d6 are part of the mud system, and d2 and d3 are also one of the d1-influencing
parameters. Then, according to the blocking criterion [13], these variables were divided
into three sub-blocks: [X1, X2, X3, X9], [X4, X5, X6], and [X7, X8, X10].

Hence, the detection variables were blocked according to their interrelationships using
the MI combined with prior knowledge, and the CVA-PPCA anomaly detection model is
then applied on a distributed sub-block structure.

3.2. Canonical Subspace Identification Based on CVA

The drilling detection variables d1 ∼ d10 are categorized into distinct sub-blocks based
on current correlations. Then, state monitoring models would be constructed within each
sub-block by parsing the data characteristics to accomplish anomaly detection for various
attack methods.

Canonical variate analysis (CVA) is a dimension reduction algorithm that maximizes
the alignment between two sets of variables. By maximizing the correlation between the
“past” values and the “future” values of the system, the CVA-based approach generates
state-space models from time-related data. Thus, CVA can be used to establish the relation-
ships between process variables and quality variables, and the trained CVA model can be
used for process monitoring related to quality.

In CVA, linear dimension reduction is used to reduce the size of variables so that it
can be used to determine the most significant correlation between qualitative and primary
dependent variables, as well as dynamic processes [20]. This study addresses the auto-
correlation challenge of modeling the operational state of industrial control networks.

The past and future drilling data matrix is constructed using drilling data
xk = [X1, X2, . . . , Xn]T(k = 1, 2, . . . N; n = 12). Assume that, at moment k, the past vector
xp,k, comprising the past data, and the future vector x f ,k, containing the present and future
observations, are defined as

xp,k =
[

xT
(k−1), xT

(k−2), . . . , xT
(t−l)

]T
,

x f ,k =
[

xT
(k), xT

(k+1), . . . , xT
(k+l)

]T
,

(6)

where the two vectors, i.e., xp,k and x f ,k, should first be normalized to a zero mean and
with unit variance. To define the past and future matrices, vectors were arranged in the
following Hankel matrix:

Xp =
[

xp(l+1), xp(l+2), . . . , xp(l+N1)

]
,

X f =
[

x f (l+1), x f (l+2), . . . , x f (l+N1)

]
,

(7)

where N1 = N − 2l + 1 for a dataset with N samples.
The aim of CVA is to reveal the remarkable features of the ICS operating conditions by

identifying the projection matrix L and J in order to identify a linear combination of the
future and past observations that have the optimal linear performance. The problem of
solving the projection matrix is defined as follows:

max
J,L

JTΣp f L,

s.t.JTΣpp J = I,

LT ∑
f f

L = I.
(8)
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The projection matrix J and L can be calculated by singular-value decomposition
(SVD) on the Hankel matrix H as follows:

H = Σ−1/2
f f Σ f pΣ−1/2

pp = UΛVT, (9)

where the sample covariances Σ−1/2
f f and Σ−1/2

pp and the cross-covariance of Σ f p of the past
vector xp,k and the future vector x f ,k are defined as follows:

[
Σpp Σp f
Σ f p Σ f f

]
=

1
N1 − 1

[
XpXT

p XpXT
f

X f XT
p X f XT

f

]
, (10)

where U and V consist of singular vectors that are orthogonal and only pairwise-correlated,
and Λ is a diagonal matrix containing the canonical correlation coefficients. Thus, the
projection matrices J and L can be calculated by taking the first r columns of U and
V, respectively.

For the k moments of the ICS operation, the transformation matrices J and L are
as follows:

Jr = VT
r Σ−1/2

pp ,
Lr = UT

r Σ−1/2
pp .

(11)

The canonical state subspace Z and its residual subspace E of the drilling data matrix
x can be defined as

Z = JrXp ∈ Rr×N1 ,
E = FrXp ∈ Rn1l×N1 ,

(12)

where the residual projection matrix Fr = (I − VrVT
r )Σ−1/2

pp .
Therefore, the space of the primary and dependent variables Z, which are canonically

correlated with the ICSs’ operational performance, is extracted within each sub-block. Then,
a PPCA-based monitoring model is built on it to detect cyberattacks.

3.3. Overall Monitoring Model

According to CVA, the ICS variable space for drilling processes consists of a correlated
canonical and residual subspace. It is necessary to establish a model for monitoring
subspace in order to implement the proposed scheme.

PPCA-based monitoring model: The PPCA method is a representation of PCA in
probability space, where probability density functions measure the degree of the novelty
of new data points. While PCA is a linear down-scaling method, PPCA can take into
account the nonlinear and dynamic characteristics of the system fully. When dealing with
non-linear characteristics, PCA is vastly improved by the incorporation of probability. Data
x is believed to be generated by the latent variable z when viewed from the perspective of
probability. In order to produce the standard PPCA, the following pattern is utilized [15]:

x = f (z, w) + ξ, (13)

where x ∈ Rd is the process observation variable, z ∈ Rp is the vector of latent variables,
w ∈ Rn×q is the associated model parameter vector like loading matrix, ξ is an independent
noise vector, and f (·) describes the unknown function, which can be interpreted by a linear
model in general.

X = WZ + µ + ξ, (14)

where X ∈ Rd×n, Z ∈ Rq×n, and µ is the monitoring delay. The model parameters are then
determined using a maximum-likelihood technique given a set of observational data.

According to the canonical subspace Z ∈ Rn×m acquired in the previous section. The
PPCA algorithm seeks the projection matrix W ∈ Rm to further reveal both the static and
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dynamic process variations in which the linear transformation Zc = ZW has the maximal
variance. Like PCA, the problem of matrix projection can be expressed mathematically as

arg max
W

1
n − 1

Zc
TZc = arg max

W

1
n − 1

WTZTZW. (15)

The transformed goal of the PPCA is to map the original m-dimensional data into a
d-dimensional space, whose principal element model T can be expressed as

Z =
p

∑
i=1

zc,iw
T
i +

m

∑
i=p+1

zc,iw
T
i = ZcWT + Ec, (16)

where W is the load matrix; Zc is the scoring matrix; P is the number of principal com-
ponents retained, which is commonly determined by a rule known as the cumulative
percentage variance (CPV) [27]; and Ec = Z − Zc is the residual matrix, which represents
process noise interference.

In general, the principal element is associated with a multivariate standard–normal
distribution, while the noise residual is associated with a multivariate normal distribution,
where Zc ∼ N (0, I), Ec ∼ N

(
0, σ2 I

)
and σ2 is the noise variance. Then, the distribution

of sample Z with respect to principal element Zc is Z|Zc ∼ G(ZcWT, σ2 I). According to
Bayes’ theorem, the distribution of the sample data X is X ∼ G(0, C), and C = WWT + σ2 I.

Thus, the problem solved by the PPCA algorithm can be seen as forming observations
Z from the distribution G(0, C) by the hidden variable Zc. The problem to be addressed
translates into the estimation of the distribution parameters W and σ from the measurement
samples [24]. This paper solves the probability distribution using the maximum-likelihood
estimation problem. Expectation maximization (EM) is a powerful method for estimat-
ing the parameters of hidden variable models, which uses an expectation maximization
algorithm that iterates repeatedly to find the parameters.

Online attack detection: To monitor the state of the ICSs online, the monitoring
threshold must first be determined. Traditionally, PCA-based monitoring methods calculate
two types of statistics, T2 and Q, as well as the corresponding control charts. Specifically,
the T2 statistic is designed to monitor the data variations in the principal component
space (PCS), while the Q statistic is used to monitor the data changes in the residual space.
Observations of large deviations in the monitoring statistics may indicate an abnormal
state of the industrial control network.

On the basis of the PPCA algorithm, the principal component space Zc, contains
systematic variation information and will be used to construct the T2 statistic, while the
residual Ec will form the Q statistic. The monitoring statistics are defined as

T2 = zT
c Λ−1zc,

Q = ∥z − zc∥2 = (z − wzc)
T(z − wzc).

(17)

In the case of a multivariate normal distribution for the process variables, the detection
threshold for T2 can be obtained using the F-distribution with α as the significance factor:

T2 ∼
r
(
n2 − 1

)
n(n − p)

Fr,n−p,α, (18)

where p is the number of PCSs. As with the residual subspace, a weighted Chi-squared
distribution can approximate the confidence limit of Q, such as

Q ∼ dχ2
g,a, (19)

where d = vc/2mq and g = 2mq
2/vc, in which mq is the mean value of Q, and vc is the

corresponding variance.
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As the PPCA exclusively employs the Martensian paradigm for the detection of
principal elements and noise [28], the comprehensive monitoring statistics, which consist
of T2 and Q, can be directly generated from the whitened values of the statistics. The
following formats were used to calculate the comprehensive monitoring statistic S:

S =

∥∥∥∥(WWT + σ2 I
)−0.5

z
∥∥∥∥2

= zT
c

(
σ2

i I + WWT
)−1

zc. (20)

As a result of the proposed monitoring model, which effectively detects the data
injection attacks on the ICSs, Slim is the threshold determined by kernel density estimation
(KDE) [29], which is the measurement of the degree of deviation from the normal operating
conditions. Additionally, S is the monitoring statistic based on the PPCA, and Slim is
the threshold determined by the kernel density estimation (KDE). The threshold Slim is
given by

P(S ≤ Slim) =
∫ Slim

ϕ̂(s|W, σ)ds = 1 − α, (21)

where ϕ̂(s|W, σ) is the probability density function of S estimated by KDE. If the corre-
sponding detection logic satisfies, for example, S ≤ Slim, the operating performance is
optimal; otherwise, it is non-optimal.

According to the previous discussion, there are several sub-blocks formed here. There
is a need to integrate local statistics to construct comprehensive surveillance indicators for
the whole process. This study used Bayesian inference to integrate the monitoring results
of multiple sub-blocks into the overall monitoring results due to its excellent performance
in sub-block decision fusion. Conceptually, the probability of each sub-model being under
attack can be expressed as

PS(F|xi ) =
PS(xi|F )PS(F)

PQ(xi)
, (22)

where the prior probability of xi is calculated as

PS(xi) = PS(xi|N )PS(N) + PS(xi|F )PS(F), (23)

and the conditional probabilities PS(xi|N ) and PS(xi | F) are defined as

PS(xi|N ) = e−Si/Si,lim , (24)

PS(xi | F) = e−Si,lim/Si , (25)

where Si represents the statistic in the i-th sub-block and Si,lim represents the control
limits in the i-th mode blocks; N and F denote the optimal and non-optimal operating
performance, respectively; PS(N) and PS(F) represent the prior probabilities under the
confidence level α and 1-α; and PS(N) + PS(F) = 1. The intuitive interpretation is that
the operating status expressed by sampling data is either normal or non-optimal in the
drilling process.

After that, in the modeling phase, it is possible to obtain comprehensive monitoring
indicators by integrating the PPCA sub-models for various operating modes based on
Bayesian inference.

BICS =
m

∑
i=1


PS(xi | F)PS(F | xi)

m
∑

i=1
PS(xi | F)

. (26)

During the actual monitoring process, it can be determined that the ICSs have received
an attack when the monitoring indicator exceeds the preset threshold.
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4. Experimental Results and Analysis

This section verifies the validity of the methodology through practical examples, which
are derived from the geological drilling process, and is divided into processes.

4.1. Geological Drilling Process

Geological exploration and resource extraction are contingent upon the successful
completion of a geological drilling project. The drilling process is primarily conducted by
drill rigs that are equipped with alternative current frequency conversion electric motors.
Figure 4 illustrates the schematic of a typical geological drilling process. A few of the
components that were used in the drilling process included the crown blocks, moving
blocks, derrick, driller’s residence, rotary table, drilling control system, mud pump, mud
pit, sedimentation pit, drill string, bottom hole assembly, and drill bit. Figure 5 shows a
geothermal well construction site with an on-site industrial control system.

Drill bit

Annular with

Drill mud
Drill string

Mud Pump

Draw-works

Traveling 

Block

Crown 

Block

Derrick

Formation

Figure 4. Schematic of a geological drilling process.

Figure 5. The drilling system of a real geological exploration well.
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4.2. Overall Results of the ICS Attack Detection

In this paper, real-life case studies with drilling data from a geothermal well demon-
strated the effectiveness and superiority of the proposed operating performance monitoring
method. The selected running data contains the 12 process variables mentioned in Table 1
from 1052 m to 1058 m, with an interval of 1 s, totaling 2826 data samples. Figure 6 demon-
strates time-series data of the actual running process of the ICSs during drilling. Despite the
fact that the data injection attack on the network began at 160 s, no significant change was
observed in the data curves of the detected variables. Therefore, more in-depth analyses of
the data generated in the ICSs are needed to obtain a more accurate portrayal of the ICS
operating state.

0 100 200 300 400 500 600 700 800 900

Time (s)

9

9.2

9.4

9.6

0 100 200 300 400 500 600 700 800 900

Time (s)

0.2

0.25

0.3

0 100 200 300 400 500 600 700 800 900

Time (s)

76

77

78

0 100 200 300 400 500 600 700 800 900

Time (s)

48

50

52

Figure 6. Time series plots of the drilling process under production.

Before constructing the ICS monitoring model, the data set under normal operations
was obtained. A standard data matrix was created by selecting 10 decision variables
based on a one-way analysis (ANOVA), i.e., X1, X2, . . . , X10. According to the blocking
MI-based criterion, these variables were divided into three sub-blocks, [X1, X2, X3, X9],
[X4, X5, X6], and [X7, X8, X10]. For each sub-block, the CVA-PPCA offline monitoring
model is established on their canonical subspace, and the calculation of the composite
discriminatory indicators and discriminatory thresholds are performed.

During the online monitoring phase, online data are collected according to a window
of 20 min, and the monitoring statistic Snew is calculated to identify the attack conditions in
comparison with the detection threshold. The length of the monitoring window has some
effect on the quality of the monitoring. A long window may not detect the fluctuations
caused by dual-use attacks, such as, for instance, when there is too short of a window,
which may cause frequent alarms and may interfere with the driller’s normal operation.
Using the industrial control system at the drilling site and manual experience, this study
specified a 20-min monitoring window, leading to better results.

Specifically, the principal components of the variables with CPV = 98.2% were selected
to construct the monitoring model. In all of the monitoring charts, the KDE algorithm was
adopted to preset the control limits at a confidence level of α = 0.05 and monitoring statics
Slim = 1.2961.
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In this paper, the anomalous state of the ICSs was the result of two categories of data
tampering: surge attacks and biased attacks [30,31]. During a surge attack, a single piece
of data is manipulated in order to provide the greatest amount of damage in the shortest
amount of time, and it exhibits a step change. Contrary to this, a biased attacker adds
non-zero constants to numerous parts of data in a sequence and shows a slow process of
change. The monitoring model in this paper was intended to detect the assaults that the
system has received by analyzing the monitoring statistics that had been generated by the
attacks relevant to the change. Figure 7 illustrates the ICS attack detection results obtained
through the proposed method.
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Figure 7. Condition monitoring results based on the proposed method: (a) surge attacks; (b) biased
attacks; and (c) the normal conditions.

As shown in Figure 7, the red dashed line indicates the preset control limits, whereas
the blue line represents the monitoring statistics calculated from the online data. The
surge attack and deviation attack were performed at the 110th seconds of each experiment,
as shown in Figure 7a and Figure 7b, respectively. In addition, Figure 7c shows the
monitoring results under normal operating conditions. Based on the attacking records, the
model successfully identified the impact of the step-wise and slowly varying deviations
from the normal operating state. The experimental results revealed that the proposed
method can effectively identify anomalies due to attacks with 92.31% accuracy and 12 s
monitoring delay.

For greater clarity, the PCA-based process monitoring method was chosen to perform
the comparative experiments as a monitoring strategy [32]. To realize the comparison, the
integrated monitoring statistics of St, achieved by combining T2 and Q, ere adopted in the
attack detection task [33]. The control limit was set as St = 7.9127. It can be seen from
Figure 8 that the PCA failed to detect the attacks because there was no significant change
in the monitoring statistics. In both cases, the PCA method was less susceptible to the
operational instability caused by assaults. As a result of the initial data structure being
altered, the anomalies caused by data injection-type attacks did not rapidly accumulate
and did not significantly affect the detection data. Consequently, the original PCA method
was unable to extract the features that were related to operating conditions, resulting in
unsatisfactory monitoring results. The monitoring process also suffered from more misses,
false alarms, and longer anomaly detection delays than the method proposed in this study.
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To effectively showcase the effectiveness of the proposed method in the monitoring
processes, there were some sophisticated process monitoring methods that were selected
for comparison such as the original PPCA [15] and mRMR-PCA [32]. The monitoring delay
(µ) refers to the period between the incidence of attack performance and the detection of its
reasons. Evaluating the performance monitoring involves assessing the non-detection rate
(η) and false alarm rate (γ) according to specific criteria. The following matrix proves the
definitions of the above indicators

η=
nFP

nTN+nFP
× 100%, (27)

γ=
nFN

nTP+nFN
× 100%. (28)

The variable nFN represents the count of samples that are incorrectly classified into
non-optimal modes when they should have been classified into optimal modes. The
variable nTP represents the count of samples that were correctly classified into optimal
modes. The variable nFP represents the count of samples that are incorrectly classified into
optimal modes when they should have been classified into non-optimal modes. Lastly, the
variable nTN represents the count of samples that are correctly classified into non-optimal
modes. Lower values for η and γ suggest a superior monitoring performance.
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Figure 8. Condition monitoring results based on the PCA method: (a) surge attacks; (b) biased attacks;
(c) the normal conditions.

The detection results of the different methods for monitoring data injection attacks
are shown in Tables 2 and 3. It is essential to clarify that the typical PCA approach failed
to detect both attacks because of its γ for the two statistics, which went up to 74.31%
and 83.34%. The PPCA method is inadequate due to its failure to include the non-linear
attributes of the data, rendering it unsuccessful in detecting abnormalities. The η of the Q-
statistic calculated by mRMR-PCA was 6.05%, but it was 90.64% for the T2-statistic in Case
1, which did not meet the needs of field applications. The mRNR-PCA based-monitoring
method utilizes a distributed architecture, and, while it did not successfully identify the
local attacks, its efficacy was attributed to the singular PCA model. The results show that
our method has a comparatively better monitoring performance than the other methods.
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In terms of statistical metrics, the maximum enhancement of η and γ reached 69.17 % and
9.67%, respectively, and the shortest detection delays of 11 s and 20 s were achieved in
both cases.

Table 2. Attack detection for the different methods.

Type Indexes
PCA [32] PPCA [15] mRMR-PCA [32] Proposed Method

T2 Q T2
s T2 Q S

η (%) 74.31 21.43 15.2 90.64 6.05 5.14
Case 1 γ (%) 3.02 8.21 9.67 14.74 1.93 5.07

µ (s) 64 42 35 - 40 11

η (%) 72.16 83.34 5.14 75.13 5.84 7.76
Case 2 γ (%) 2.76 11.13 8.22 3.66 6.16 5.77

µ (s) - 48 20 - 104 21

Table 3. Attack detection results obtained with PCA, the original PPCA, mRMR-PCA, and the
proposed method.

Type Indexes
PCA [32] PPCA [15] mRMR-PCA [32] Proposed Method

T2 Q T2
s T2 Q S

False Alarms 252 71 51 306 20 18
Case 1 Missed Alarms 10 27 31 48 7 17

Accuracy(s) 5.33 10.08 77.65 4.41 80.33 90.35

False Alarms 245 282 17 255 17 26
Case 2 Missed Alarms 7 37 27 10 21 20

Accuracy(s) 5.21 4.87 83.55 5.67 85.86 94.3

In intuitive terms, the distributed structure ensures that the monitoring model can
effectively extract the local and global features with finer-grained precision. In contrast, the
typical correlation space combined with the data feature approach captures the latent data
features of the ICSs and more accurately portrays the operational state of the process as
a whole.

In summary, the proposed approach takes into account the relationship between
variable spaces and residual spaces for online monitoring, whereas PCA just evaluates the
interaction between variables. The findings suggest that an enhancement in performance
monitoring can be achieved by partitioning the initial dataset using PPCA and CVA-based
variable reconstruction.

5. Conclusions

This paper proposed a concurrent distributed ICS monitoring method for network
attack detection using prior knowledge-based mutual information (MI) and canonical
variate analysis with probabilistic principal component analysis (CVA-PPCA). While other
centralized process monitoring methods treat all variables as a uniform modeling space, MI-
based variable division is capable of probing the underlying local and global characteristics
of ICSs comprehensively. Additionally, the CVA-PPCA method established in each sub-
block can then more closely reflect and detect the external attack from different aspects.

Due to the complexity and variability of the stratum during geological drilling, as well
as the randomness of the network attacks, it was necessary to improve the method’s adapt-
ability further by, for example, setting control limits and selecting monitoring windows.
Aspects of anomaly tracing and small sample modeling are also important to consider for
ICS security when dealing with unknown attack backgrounds. As the study progresses, it
will be applied to a variety of industrial processes and recommendations will be provided
in the decision-making phase. Further research will also focus on developing a monitoring
scheme that takes into account the dynamic nature of variables.
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