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Abstract: The dynamic spatial and temporal characteristics of heat transfer within heat-
ing network pipelines are important factors affecting the accuracy of economic dispatch
decision-making results of electro-thermal coupling systems. However, the pipeline heat
transmission process is described by partial differential equations, which makes it difficult
to solve quickly. Therefore, this study introduces a model for calculating the economic
dispatch of the electro-thermal coupling system (EDETCS) that takes into account the
pipeline transmission process. Firstly, based on the implicit upwind difference method,
a two-port model of branch heat transfer dynamics is established. Secondly, the general
term formula of the two-port model is derived. Finally, the established two-port model is
applied to the EDETCS. The findings from the example analysis indicate that, in contrast to
the conventional calculation method, the proposed model improves the calculation speed
while ensuring the accuracy of the solution.

Keywords: electro-thermal coupling system; economic dispatch; heating network; dynamic
process of heat transfer; two-port model

1. Introduction
Compared with thermal plants, combined heat and power (CHP) plants have more

advantages in improving energy efficiency, energy saving and emission reduction [1]. How-
ever, under the new energy situation, CHP units operated in the traditional “determining
electricity by heat” mode can easily reach the minimum rigid technical output of the unit,
which seriously restricts the flexible supply of the power grid [2,3]. By considering the
pipeline transmission process in the EDETCS, we can effectively manage renewable energy
consumption and minimize system operating costs. This is achieved by leveraging the
complementary nature of power and heat demand alongside the ability to store the heat of
the heating network [4,5]. However, the pipeline heat transmission process is described by
partial differential equations, and it is very difficult to solve such optimization problems
with partial differential equation constraints [6–9].

At present, researchers have conducted some research on the pipeline transmission
process. In references [10,11], considering the heat loss effect and ignoring the heat delay
effect, the linear relationship between the inlet and outlet water temperature of the pipeline
is obtained. Reference [12] deduced the partial differential equation of heat transmission
in the pipeline through the law of thermodynamics and solved it by the finite difference
method. However, its accuracy depends on a smaller time and space step; the calculation
amount is large, and the calculation time is long. References [13,14] proposed the node
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method to analyze and model the heating network. The principle is to track the time
when the water body starts from the previous node to the next node and calculate the
temperature at the head of the pipe according to the historical temperature of different
nodes. On this basis, the temperature at the end of the pipe is calculated. The node method
reduces the computing time, but large errors will occur when the selected time resolution
is too large [15].

In addition to the research ideas of the above-simplified mechanism model, the exist-
ing research work has begun to try the analogy circuit method to establish the equivalent
model of heat networks. In [16], an equivalent model of a heat network based on the
Fourier transform is proposed, and the partial differential dynamic model of heat transfer
is mapped to the frequency domain for solution. Reference [17] proposed a heat network
equivalent model based on Laplace transform. This model transforms the partial differ-
ential equation into the s-domain to solve and realizes the simplification of the model
to the algebraic equation. Based on the thermoelectric analogy method, Reference [18]
introduced the power system analysis method to equivalent the loss, energy storage and
temperature influence of each temperature micro-element in the heating network pipeline
through components such as ‘heat resistance’, ‘heat capacity’ and ‘heat source’. Finally,
the functional relationship between the outlet temperature and the initial temperature
and time is obtained by mathematical derivation. References [19,20] proposed the unified
energy path theory. The physical mechanisms involved in gas and heating networks are
similar to those in the power transmission system. In the frequency domain, a unified set
of mathematical equations for power, heat, and gas networks has been developed. Finally,
the linear two-port lumped parameter model in the frequency domain is obtained. In
references [21,22], the distributed parameter circuit model of electric, heat and gas energy
flow is established by the Laplace transform, and then the lumped parameter transmission
model with the branch as a unit is obtained. Although the above method transforms the
time-domain dynamic model of heat transfer described by partial differential equations into
a linear two-port model in the frequency domain or s-domain, it reduces the difficulty of
solving the dynamic model of the pipeline transmission process. However, it is necessary to
carry out a transformation on the actual known initial conditions and boundary conditions
before solving, and after the calculation is completed, the calculation results need to be
inversely transformed back to the time domain, and the transformed link reduces the
solution efficiency.

On the basis of the above research, considering the timeliness of economic dispatch,
this paper establishes a two-port model of the pipeline heat transmission process, aiming
to reduce the calculation scale of the EDETCS without reducing the accuracy. Firstly, based
on the implicit upwind difference structure, a two-port model of heat transfer dynamics in
the heating network is established to reduce the calculation scale. Secondly, the general
term formula of the two-port model is derived, which makes the model more convenient
and more operable for the modeling of complex heat networks. Then, the proposed
two-port model is embedded in the EDETCS. Finally, the example analysis demonstrates
the effectiveness and advantages of the two-port model.

2. Two-Port Model of Heat Transfer in Pipes
2.1. Dynamic Model of Heat Transfer Based on Implicit Up-Wind Difference Scheme

China’s heating network is generally composed of a two-level network. The
two exchange heat through the heat exchange station. Because the secondary pipe is
very short, we do not consider the secondary heating network; only the primary heating
network is modeled [23].
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The pipeline transmission process in the heat pipe network can be described by
Equation (1) [24]:

∂Tw

∂t
+

m
Aρ

∂Tw

∂x
+

λ

Aρc
(Tw − Ta) =

λ

ρc
∂2Tw

∂x2 (1)

where m is the mass flow, and when the system adopts mass regulation mode, m is constant.
ρ is the water density. A is the pipe’s sectional area, c is the water-specific heat capacity,
λ is the thermal conductivity, Tw is water temperature, and Ta is ambient temperature.

Compared with thermal convection, the heat conduction effect between pipe fluids is
very weak. Therefore, the heat conduction term in Equation (1), that is, the second-order
partial derivative term, can be ignored without obvious error. The pipeline transmission
process in the heating network can be written as [17]:

∂T
∂t

+
m
Aρ

∂T
∂x

+
λ

Aρc
T = 0 (2)

where T is the difference between Tw and Ta.
The heating system in China mainly adopts the mass regulation mode. Therefore, this

paper will derive the model of heat transfer under the premise of known mass flow.
Firstly, the first-order implicit upwind difference quotient [12] is used to approximate

the first-order partial derivative and the difference grid is shown in Figure 1:

∂T
∂t

=
Tn

i − Tn−1
i

τ
(3)

∂T
∂x

=
Tn

i − Tn
i−1

h
(4)

I =
L
h

, N =
P
τ

(5)

where τ is the time step, h is the spatial step, i is the number of spatial nodes, and n is the
number of time nodes. Tn

i are the water temperature at node (n, i).
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( ) ( )
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b
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T T K K T K

a T a T a T

−

=

= +

= + + +
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where: 

Figure 1. Differential grid for the dynamic flow of heat pipeline.

Combining Equation (3), Equation (4) and heat transfer Equation (2), the difference
scheme of pipeline temperature is obtained:

Tn
i = K1Tn−1

i + K2Tn
i−1 (6)
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where K1 and K2 are two parameters defined to simplify the representation:

K1 =
Aρch

Aρch + hτλ + cmτ
(7)

K2 =
cmτ

Aρch + hτλ + cmτ
(8)

Then, the boundary conditions and initial conditions are determined:
Usually, the initial temperature and the inlet water temperature are known, and this

paper assumes that the temperature of each node at the time t = 0 is equal, so the boundary
conditions and initial conditions can be determined as follows:

T0
x = T0

0 , Tt
0 = Tin (9)

where: T0
x is the initial temperature of each node, T0

0 is the initial temperature at the head of
the pipe, Tt

0 is the inlet water temperature at the head of the pipe, and Tin is the temperature
of water at the inlet of the pipe changing with time.

2.2. Two-Port Model of Branch Heat Transfer Dynamics

According to the initial conditions, boundary conditions Equation (9) and the derived
linear model Equation (6), the temperature curve at the end of the pipe can be iteratively
solved. However, this finite difference method will calculate the temperature of each node
for iteration during the calculation process. When selecting a smaller time and space step,
the computation involves a substantial quantity of data and takes a significant amount of
time. To enhance computational efficiency, this section will establish a linear correlation
between the temperatures of various nodes at different timestamps within the difference
grid and the boundary conditions and initial conditions according to the difference equation
of temperature and finally construct the two-port model of branch heat transfer dynamics
to reduce the scale of model calculation.

When t = 1, the difference grid of the pipe temperature is shown in Figure 2. According
to Equation (6), the water temperature at node i (1 ≤ i ≤ I) is:

T1
i = K1T0

i + K2T1
i−1 (10)
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i
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=
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+
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Substituting Equation (9) into Equation (10):

T1
i = K1T0

i + K2T1
i−1 (11)

The temperature at node (1, i) is obtained:

T1
i = T0

0

i
∑

b=1
K1(K2)

b−1 + T1
0 (K2)

i

= a1
i,0T0

0 + a1
i,1T1

0 + · · ·+ a1
i,NTN

0

(12)

⇒ T1
i =

[
a1

i,0, a1
i,1, · · · a1

i,N

]
Tin (13)

where:

a1
i,0 =

i

∑
b=1

K1(K2)
b−1 (14)

a1
i,1 = (K2)

i (15)

a1
i,2 = · · · = a1

i,N = 0 (16)

Tin =
[

T0
0 , T1

0 , · · · , TN
0

]T
(17)

When t = 2, the difference grid of the pipe temperature is shown in Figure 3. According
to Equation (6), the water temperature at node I (1 ≤ i ≤ I) is:

T2
i = K1T1

i + K2T2
i−1 (18)
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Substituting Equation (9) into Equation (18), the temperature of each node is calculated
in turn, and the temperature at node (2, i) is obtained:

T2
i = T0

0 (K1)
2 i

∑
b=1

b(K2)
b−1+

T1
0 iK1(K2)

i + T2
0 (K2)

i

= a2
i,0T0

0 + a2
i,1T1

0 + · · ·+ a2
i,NTN

0

(19)

⇒ T2
i =

[
a2

i,0, a2
i,1, · · · a2

i,N

]
Tin (20)
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where:

a2
i,0 = (K1)

2
i

∑
b=1

b(K2)
b−1 (21)

a2
i,1 = iK1(K2)

i (22)

a2
i,2 = (K2)

i (23)

a2
i,3 = a2

i,4 = · · · = a2
i,N = 0 (24)

Through the above method, it can be obtained that when t = 3, the temperature at
node i (1 ≤ i ≤ I) is:

T3
i = T0

0 (K1)
3 i

∑
b=1

b(b + 1)
2

(K2)
b−1+

T1
0

i(i + 1)
2

(K1)
2(K2)

i+

T2
0 iK1(K2)

i + T3
0 (K2)

i

= a3
i,0T0

0 + a3
i,1T1

0 + · · ·+ a3
i,NTN

0

(25)

⇒ T3
i =

[
a3

i,0, a3
i,1, · · · a3

i,N

]
Tin (26)

where:

a3
i,0 = (K1)

3
i

∑
b=1

b(b + 1)
2

(K2)
b−1 (27)

a3
i,1 =

i(i + 1)
2

(K1)
2(K2)

i (28)

a3
i,2 = iK1(K2)

i (29)

a3
i,3 = (K2)

i (30)

a3
i,4 = a3

i,5 = · · · = a3
i,N = 0 (31)

Through the temperature equation at each moment, the matrix form of the temperature
at node (n, i) can be obtained:

Tn
i = An

i Tin (32)

where An
i =

[
an

i,0, an
i,1, · · · an

i,N

]
.

By merging the temperature expressions at each time point, the temperature at each
time point at node i is obtained, that is, the two-port model of branch heat transfer:

Ti = AiTin (33)

Ti =
[

T1
i , T2

i , · · · , TN
i

]T
(34)

Ai =


a1

i,0 a1
i,1 · · · a1

i,N
a2

i,0 a2
i,1 · · · a1

i,N
...

...
. . .

...
aN

i,0 aN
i,1 · · · a1

i,N

 (35)

2.3. The General Term Formula of Coefficient Matrix of Two-Port Model

In Section 2.2, a two-port model of branch heat transfer dynamics is established.
However, various pipelines exhibit differences in parameters like diameter and length.
Therefore, the coefficient matrix of the model needs to be re-derived, especially in large-
scale heating systems, which will greatly increase the calculation workload. For this reason,
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this section will derive the general term formula of the coefficient matrix to reduce the
calculation workload.

Summarize the coefficients of the differential form of water temperature at each time.
We find that the elements of the coefficient matrix of the temperature expression at node
(n, i) are the linear combination of the Pascal matrix and the parameters K1, K2.

Let M = max{I,N}, let M-order diagonal matrix Q(i) = diag [1,1,. . .,0], and the first
i diagonal elements are 1. Let R(n) = [0,. . .,0,1,0,. . .,0] be an M-order row vector, and its
nth element is 1. Let M-order column vector K = [1,K2,(K2)2,. . .,(K2)M−1]T. Let P(M) be an
M-order Pascal matrix. Then P(M)Q(i) means that the first i column elements of P(M) are
retained, and other elements are set to zero, R(n)P(M)Q(i) represents the nth row element
of the matrix and [P(M)Q(i)]; R(n)P(M)Q(i)R(i) represents the nth row i column element of
the matrix [P(M)Q(i)].

Then, The formula for the general term of the coefficient matrix An
i can be articulated

as follows:

an
i,b =


(K1)

nR(n)P(M)Q(i)K b = 0
(K1)

n−b(K2)
iR(n − b + 1)P(M)Q(i)R(i)

0 < b ≤ N
(36)

By merging the coefficient matrices at each moment, the general term formula of the
coefficient matrix Ai of the model can be obtained.

The establishment of the general term formula makes it unnecessary to derive the
temperature expression of each moment and each node in the initial modeling and only
needs to assign the coefficient matrix Ai through the loop statement. Moreover, for different
pipelines, the elements of the model coefficient matrix Ai are only different in parameters
K1 and K2. It is only necessary to change the parameters and assign them again without re-
derivation, which greatly reduces the calculation scale and makes the model establishment
of large-scale complex heat networks easier.

2.4. Two-Port Model of Heat Transfer Dynamics in Heating Network Pipeline

According to the previous derivation, when the initial conditions and boundary
conditions are the initial temperature of each node of the pipeline and the inlet water
temperature, respectively, the outlet temperature of the pipeline is:

Tout = AITin (37)

Tout =
[

T1
I , T2

I , · · · , TN
I

]T
(38)

AI =


a1

I,0 a1
I,1 · · · a1

I,N
a2

I,0 a2
I,1 · · · a1

I,N
...

...
. . .

...
aN

I,0 aN
I,1 · · · a1

I,N

 (39)

The above two-port model eliminates the intermediate nodes between the source and
the load in the calculation process and further realizes the dimension reduction modeling
and operation of the model. The coefficient matrix can be calculated offline without
online iteration.

3. Formulation of EDETCS
3.1. Objective Function

The objective of the dispatch model is to reduce the system’s operating cost to a minimum:

Fmin = CG + Cchp + Cw (40)
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where CG is the operating cost of thermal units, Cchp is the operation cost of CHP units,
and Cw is the wind curtailment cost.

The three costs are:

CG =
N

∑
t=1

NG

∑
j=1

(aG
j PG

j,t + bG
j ) (41)

Cchp =
N
∑

t=1

Nchp

∑
j=1

[achp
j (Pchp

j,t )
2
+ bchp

j Pchp
j,t +

cchp
j + dchp

j (Hchp
j,t )

2
+ echp

j Hchp
j,t +

f chp
j Hchp

j,t Pchp
j,t ]

(42)

Cw =
N

∑
t=1

NW

∑
j=1

λs
j (Pw,pre

j,t − Pw
j,t) (43)

where NG, Nchp, NW are the set of units’ number. aG
j , bG

j are the cost coefficients of thermal

units. Pchp
j,t , Hchp

j,t are the CHP’s power and heat output. achp
j , bchp

j , cchp
j , dchp

j , echp
j , f chp

j are
the correlation coefficients of the operating costs of CHP units. λs

j is the wind curtailment

cost coefficient. Pw,pre
j,t is the predicted maximum output of wind power. Pw

j,t is the actual
output of wind power.

3.2. Constraints

(1) Heat transfer dynamics constraints:
The end temperature of the pipe k satisfies:

Tout
k = AI(k)T

in
k (44)

where Tout
k is the outlet temperature matrix. k represents the pipe number.

(2) Temperature mixing constraints:

∑
k∈Spipe−

n

mkTout
k,t = Tin

l,t ∑
l∈Spipe+

n

ml (45)

where Spipe+
n , Spipe−

n are the set of pipes starting at node n and ending at node n.
(3) Heat exchange station constraints:

HLN
j,t = cmLN

j (TLN,s
j,t − TLN,r

j,t ) (46)

TLN,r
j ≤ TLN,r

j,t ≤ TLN,r
j (47)

TLN,s
j ≤ TLN,s

j,t ≤ TLN,s
j,t (48)

where mLN
j is the mass flow at the entrance of heat substations, HLN

j,t is the heat consumed

by the heat substations. TLN,s
j,t is the supply and TLN,r

j,t is the return temperature from heat

substations. TLN,r
j is the upper and TLN,r

j is the lower limits of the return temperature,

TLN,s
j,t is the upper and TLN,s

j is the lower limits of the supply temperature.
(4) CHP unit constraints:

Hchp
j,t = cmchp

j (Tchp,s
j,t − Tchp,r

j,t ) (49)

where Hchp
j,t is the CHP heat output. mchp

j is the mass flow at the entrance of CHP units,

Tchp,r
j,t is the return and Tchp,s

j,t is the supply temperature from the heat source.



Processes 2025, 13, 175 9 of 17

(5) power balance constraints:

NG

∑
j=1

PG
j,t +

Nchp

∑
j=1

Pchp
j,t +

NW

∑
j=1

Pw
j,t = PLN

t (50)

where PLN
t is the active load.

(6) CHP unit constraints:

Pchp
j − cv

j Hchp
j,t ≤ Pchp

j,t ≤ Pchp
j − cc

j Hchp
j,t (51)

Pco
j + cm

j Hchp
j,t ≤ Pchp

j,t ≤ Pchp
j − cc

j Hchp
j,t (52)

Hchp
j ≤ Hchp

j,t ≤ Hchp
j (53)

where Pchp
j is the maximum and Pchp

j is the minimum power output of CHP units.

cv
j , cc

j cm
j Pco

j are the feasible region boundary coefficient of CHP units. Hchp
j is the upper

and Hchp
j is the lower limits of the heat power of CHP units.

(7) Ramping constraints:

DG
j ≤ PG

j,t − PG
j,t−1 ≤ DG

j (54)

where DG
j is upward and DG

j is the downward ramping capability of thermal units.
(8) Thermal unit constraint:

PG
j ≤ PG

j,t ≤ PG
j (55)

where PG
j is the upper and PG

j is the lower limits of the thermal unit output.
(9) Wind power output constraints:

0 ≤ Pw
j,t ≤ Pw,pre

j,t (56)

4. Case Study
4.1. Double Pipe Heating System

A heating system consisting of a supply pipe, a return pipe, a heat source, and a heat
substation has been chosen to validate the proposed two-port model. Figure 4 shows the
system topology diagram. The accuracy and superiority of the two-port model are verified
by comparing the calculation results with the implicit upwind difference method [12].
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Table 1 lists the pipe parameters. The system works in the quality regulation mode,
and the heat load is constant power operation. Set the time step τ = 10 s, space step
h = 10 m; heat load is 5 MW.

Table 1. Parameters of Double pipe heating pipeline.

Parameter A/m2 λ/(W/(m·◦C) m/(kg/s) L/km Ta/◦C

Value 0.05 0.25 36 5 0

Figure 5 illustrates the computed water temperature profiles. The water temperature
of the water supply pipeline tends to be stable and close to the heating temperature curve
after 115 min of cooling. This is consistent with the time that the hot water flows through
5000 m at a mass flow rate of 36 kg/s, reflecting the “heat loss” and “delay” phenomena in
the pipeline heat transmission process. This shows that the two-port model of heat transfer
dynamics can truly reflect the pipeline transmission process in the heat network pipeline.
Moreover, compared with the calculation results of the difference method, the temperature
curves obtained by the two calculation methods are almost completely coincident, and
the mean relative error of water supply pipe outlet temperature and return pipe outlet
temperature are 0.15% and 0.23%, respectively, which further verifies the accuracy of
describing the pipeline transmission process.
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The duration of the calculations is presented in Table 2. The solution time of the
two-port model is only 0.012 s, while the calculation time of the difference method is 0.22 s,
and the speed is increased by more than 18 times, which verifies the superiority of the
two-port model in calculation speed.

Table 2. Time of calculation.

Model Time/s

The two-port model 0.012
The implicit upwind difference method 0.22

4.2. District Heating Network (DHN)

The DHN shown in Figure 6 is used to illustrate the two-port model’s effectiveness,
and the calculation time is compared with the different method used in Reference [12]. The
heating network comprises three water supply lines, three return lines, a heat source, and
three heat substations. The system works in the quality regulation mode, and the heat
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load is constant power operation. Table 3 lists the pipe parameters. The heat load is set to
2.5 MW, 1 MW and 1 MW, respectively.

Processes 2025, 13, x FOR PEER REVIEW 11 of 17 
 

 

 

Figure 5. Calculation results of pipe temperature. 

4.2. District Heating Network (DHN) 

The DHN shown in Figure 6 is used to illustrate the two-port model�s effectiveness, 
and the calculation time is compared with the different method used in Reference [12]. 
The heating network comprises three water supply lines, three return lines, a heat source, 
and three heat substations. The system works in the quality regulation mode, and the heat 
load is constant power operation. Table 3 lists the pipe parameters. The heat load is set to 
2.5 MW, 1 MW and 1 MW, respectively. 

Heat 
source

Heat 
exchange 
station1

Supply pipe Return pipe

node1

Pipe1

node2

node3Pipe3

Pipe2

Heat 
exchange 
station2

Heat 
exchange 
station3

node6
node5

node4node7 Pipe6 Pipe5
Pipe4

 

Figure 6. Structure diagram of the DHN. 

Table 3. Pipe parameters. 

Pipe A/m2 λ/(W/(m∙°C) m/(kg/s) L/km Ta/°C 

1, 6 0.05 0.25 36 5 0 
2, 5 0.05 0.25 14 3.5 0 
3, 4 0.05 0.25 7 2.5 0 

Figures 7 and 8 show the calculated water temperature curves of each node under 
the two methods. The results show that the temperature curves of the two models are 
almost the same, and the maximum relative errors of water supply pipe end temperature 
and return pipe end temperature are 0.23% and 0.41%, respectively, which indicates that 
the precision of both methods in calculations is comparable. 

Figure 6. Structure diagram of the DHN.

Table 3. Pipe parameters.

Pipe A/m2 λ/(W/(m·◦C) m/(kg/s) L/km Ta/◦C

1, 6 0.05 0.25 36 5 0
2, 5 0.05 0.25 14 3.5 0
3, 4 0.05 0.25 7 2.5 0

Figures 7 and 8 show the calculated water temperature curves of each node under the
two methods. The results show that the temperature curves of the two models are almost
the same, and the maximum relative errors of water supply pipe end temperature and
return pipe end temperature are 0.23% and 0.41%, respectively, which indicates that the
precision of both methods in calculations is comparable.

Table 4 shows the time it takes to calculate the two models. We can find that the
calculation time of the two-port model is much lower than that of the difference method.
Compared with the calculation time in 4.1, the calculation time of the difference method
is increased by more than 10 times, while the calculation time of the two-port model is
only increased by less than 5 times. This is because, in systems with more heating network
pipelines, the finite difference method will introduce state variables that are proportional
to the number of spatial nodes. The two-port model only needs to introduce variables that
are proportional to the number of pipelines, which reduces the total number of variables
and reduces the calculation scale.
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Table 4. Time of calculation.

Model Time/s

The two-port model 0.057
The implicit upwind difference method 2.68

The above analysis shows that the two-port model can greatly reduce the solution
time, and it has more significant advantages in the calculation speed when the heating
system structure is more complex.

4.3. EDETCS

In this section, two models are applied to the EDETCS, considering the pipeline
transmission process.

Model 1: A steady-state model of heating network used in Reference [10];
Model 2: The two-port model of heat transfer dynamics.
Figure 9 depicts the layout of the testing system, which includes two thermal units,

G1 and G2, alongside a wind farm designated as W. The CHP unit serves as the system’s
heat source. Relevant system details can be found in Tables 5 and 6, while Table 7 provides
information on pipeline specifications. Figure 10 displays the electric load, heat load, and
projected peak output from wind power.
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Table 5. Thermal power unit parameters.

Unit Pmin/MW Pmax/MW
Cost Coefficients

aG/Yuan bG/(Yuan/MW)

G1 100 220 13.5 177
G2 10 100 40 130

Table 6. CHP unit parameters.

Output
of CHP

Pmin/
MW

Pmax/
MW

Cost Coefficients

achp/(Yuan/MW2), bchp/(Yuan/MW),
cchp/Yuan, dchp/(Yuan/MW2),

echp/(Yuan/MW), f chp/(Yuan/MW2),

electric power 45 125 0.0032, 17.7, 181, 0.00085, 4.2, 0.00125

Table 7. Pipe parameters.

Node Node A/m2 λ/(W/(m·◦C) m/(kg/s) L/km Ta/◦C

1 2 0.5 0.25 360 3.5 0
2 3 0.5 0.25 150 1.75 0
3 4 0.5 0.25 100 1.75 0
2 5 0.5 0.25 210 1.75 0
3 6 0.5 0.25 50 0.75 0
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The operating costs and wind curtailment costs of the two models are shown in Table 8.
The operating costs of model 1 and model 2 are 97,408 yuan and 10,1596 yuan, respectively.
Compared with model 1, the system applying model 2 can reduce the cost by 4188 yuan.

Table 8. Operation cost.

Model Operation Cost/Yuan Wind Curtailment Cost/Yuan

Model 1 101,596 10,303
Model 2 97,408 4379
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Figure 11 shows the wind power scheduling decisions under the two models. The
results show that the wind curtailment phenomenon occurs in model 1 at 1:00–3:00 and
5:00–6:00. The reason is that the CHP heat power corresponds to the heat load and cannot
be flexibly adjusted. Compared with model 1, model 2 consumes more wind power. The
reason is that model 2 does not need to follow the heat load and can reduce the CHP power
of the unit at 1:00–3:00 and 5:00–6:00 to absorb wind power.
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Figures 12 and 13 show the system’s thermal scheduling and power scheduling results
using the two models. In model 1, the results show that the CHP heat output changes
with the heat load. As a result, the CHP power dispatch is also limited by the heat output.
However, in model 2, CHP heat output and heat load do not correspond, and the two are
decoupled so that the system can make full use of CHP units for economic optimization
and increase wind power consumption.
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Since the generation cost of G2 is the highest, the G2 scheduling strategies of the
two models are maintained at the minimum output of 10 MW. Figure 14 shows the schedul-
ing decision of thermal power unit G1. The results show that compared with model 1,
the thermal power unit G1 of model 2 increases its output at 6:00–14:00 and 21:00–24:00
because G1 has the lowest power generation cost. This shows that the model considering
the pipeline transmission process can enhance the operational flexibility and economy of
the system operation.
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5. Conclusions
To enhance the efficiency of addressing the power optimization challenges involving

partial differential equation constraints—like the EDETCS, which factors in the dynamic
aspects of heat transfer—this paper presents a two-port heat transfer model utilizing
implicit upwind differences. The key findings are as follows:

(1) Compared with the implicit upwind difference method, the heat transfer two-port
model can greatly reduce the computational model complexity and improve the computa-
tional efficiency while ensuring accuracy.
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(2) Implementing this two-port model within the EDETCS allows for precise rep-
resentation of the pipeline heat transmission process, effectively leverages the heat stor-
age capabilities of the network, boosts wind energy utilization, and lowers the system’s
operational costs.

In the future, we will try to apply the two-port model to the simulation analysis and
real-time control of the actual electro-heat integrated energy system.
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