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Abstract: Lithology identification is essential for formation evaluation and reservoir char-
acterization, serving as a fundamental basis for assessing the potential value of oil and gas
resources. However, traditional models often struggle with identification accuracy due to
the complexities of nonlinear relationships and class imbalances in well-logging data. This
paper presents an effective multi-model ensemble approach for lithology identification,
integrating one-dimensional multi-scale convolutional neural networks (MCNN1D), Graph
Attention Networks (GAT), and Transformer networks. MCNN1D extracts local features of
lithological changes with varying convolutional kernels, enhancing robustness to complex
geological data. The GAT assigns adaptive weights to adjacent nodes, capturing spatial
relationships among lithological samples and enhancing local interactions. Meanwhile, the
Transformer uses self-attention to capture contextual relationships in lithological sequences,
improving global feature processing and identification. The multi-model fusion effectively
combines the strengths of individual models, enabling comprehensive and efficient mod-
eling of geological features. Experimental results show that the proposed Multi-Model
Fusion Network outperforms other models in accuracy, precision, recall, and F1-score
on the Hugoton–Panoma oilfield dataset, achieving a lithology identification accuracy of
95.06% for adjacent lithologies. This approach mitigates the effects of data imbalance and
enhances identification accuracy, making it a powerful tool for lithology identification in
complex reservoirs.

Keywords: lithology identification; machine learning; blind well

1. Introduction
Lithology identification is a fundamental task in petroleum exploration and geological

analysis, providing critical insights for reservoir characterization and geological mod-
elling [1–3]. While the analysis of core and cutting samples obtained during drilling is
regarded as the most accurate method, it is often costly and time-consuming [4]. Manual
specimen identification, thin section analysis, elemental testing, and mineralogical testing
can yield detailed information but are limited in practical application due to the consid-
erable workforce and specialized expertise required [5,6]. A “blind well” refers to a well
drilled without any prior core samples or geological information [7]. It is typically used
to assess the accuracy of predictions concerning rock properties, stratigraphic features, or
reservoir characteristics. Adjacent blind wells are oil wells located in similar geographical
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areas but with independently distributed logging data, allowing for distinct evaluations
within comparable geologic settings [8]. Traditional lithology identification methods, such
as cross-plotting, curve feature analysis, and logging imaging, often depend on expert judg-
ment, which can be time-consuming, subjective, and expensive [9,10]. These limitations
impede the ability of these methods to meet the increasing demands of modern petroleum
exploration and development.

With the increasing availability of logging data and advancements in computer sci-
ence, machine learning techniques have been widely applied in log interpretation [11].
Machine learning methods can discover correlations between multidimensional data by
integrating and learning feature attributes from logging curves. However, traditional
machine learning methods often struggle to effectively distribute data, resulting in low
accuracy when handling complex, imbalanced multi-label lithology datasets. To overcome
these limitations, this study introduces an ensemble approach that integrates MCNN1D,
GAT, and Transformer models. This framework is designed to address key challenges
such as inter-sample correlation extraction, spatial relationship modeling, and long-range
dependency capture. By leveraging the unique strengths of each model, the proposed
approach not only improves predictive accuracy but also effectively alleviates the issue of
imbalanced lithology data.

2. Related Work
2.1. Machine Learning for Lithology Identification

In recent years, machine learning methods have been extensively applied to lithology
identification tasks, significantly enhancing both accuracy and efficiency in this field [12–17].
Liu et al. (2020) developed a multi-kernel support vector machine method combining
global and local features, improving accuracy and efficiency in lithofacies identification
for complex geological environments [18]. Bressan et al. (2020) evaluated multilayer
perceptron, decision tree, random forest, and support vector machine approaches for
lithology classification, identifying random forest as the best method [19]. Duan et al. (2020)
developed a decision tree method for volcanic rock lithology identification based on logging
data from the Laizhouwan Sag in the Bohai Bay Basin, significantly improving classification
accuracy [20]. Liu et al. (2024) utilized well logging data from the Chengbei Operation Area
of Shengli Oilfield to develop enhanced sampling algorithms combined with a random
forest model, significantly improving lithology discrimination under imbalanced sample
conditions [21]. Chen et al. (2024) proposed a lithology classification method combining the
honey badger optimization algorithm and the extreme gradient boosting tree model, using
logging data from the Hongche Fault Zone in the Junggar Basin to achieve high-accuracy
volcanic rock identification [22]. Ali et al. (2024) evaluated self-organizing maps, multi-
resolution graph-based clustering, k-nearest neighbors, and artificial neural networks for
lithofacies identification, finding multi-resolution graph-based clustering to be the most
accurate and consistent with core data [23].

2.2. Deep Learning for Lithology Identification

As lithology types become increasingly complex and data distribution imbalances
intensify, researchers have increasingly turned to deep learning techniques to tackle the
challenges of lithology identification [24–27]. These methods have demonstrated great po-
tential in complex geological environments and under imbalanced data conditions, offering
new directions for lithology analysis. Fu et al. (2022) proposed an improved ResNeSt-50
neural network model combined with transfer learning to achieve automatic classification
of drill core images. The model achieved an impressive 99.60% accuracy on the test set,
providing a reliable and efficient solution for core image classification [28]. Similarly, other
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researchers compared well-log data to image data, exploring the potential of convolutional
neural networks (CNNs) for feature extraction and prediction. Mousavi and Hosseini-
Nasab (2024) introduced a residual convolutional neural network for lithology classification,
achieving 93% accuracy and a 79% F1-score using Iranian gas field well-log data [29]. Due
to the sequential nature of well-log data, which change with depth and resembles text
sequences, researchers have adopted models such as recurrent neural networks (RNNs),
long short-term memory (LSTM) networks [30], and gated recurrent units (GRUs) [31]
for predictive tasks. Imamverdiyev and Sukhostat (2019) developed a one-dimensional
convolutional neural network model (CNN1D) based on well-log data from the Hugoton
Basin. By leveraging the Adagrad optimizer, this model efficiently extracted local features,
significantly improving lithology classification accuracy and F1-scores compared to tra-
ditional methods such as support vector machines (SVMs), k-nearest neighbors (KNNs),
RNNs, and LSTM [32]. To address challenges posed by imbalanced data distributions and
complex lithology characteristics, researchers have explored more advanced deep learning
models. For instance, graph neural networks (GNNs) have gained attention for their ability
to capture spatial relationships between samples [33,34]. Traditional graph convolutional
networks (GCNs) model well log data as graph structures, effectively extracting spatial
dependencies. However, GCN faces limitations in reflecting the importance of individual
nodes, which constrains their performance. To overcome this, Yuan et al. (2022) proposed
graph attention networks (GATs), which use adaptive attention mechanisms to assign
weights to node interactions, precisely capturing inter-node relationships and improving
predictions for minority classes [35]. Zhao et al. (2025) further introduced a Residual
Graph Attention Network (ResGAT), achieving notable improvements in minority class
accuracy [36]. Meanwhile, Transformer models have demonstrated exceptional capabilities
in handling sequential data, particularly in capturing long-range dependencies through self-
attention mechanisms. Compared to GNNs, Transformers excel in extracting long-distance
feature associations from depth-varying well log data, making them particularly effective
for sequence-based feature modeling. Sun et al. (2024) proposed a recurrent Transformer
model combining recursive structures with multi-scale attention mechanisms, achieving an
impressive 97.97% accuracy in lithology identification using well log data from the Tarim
Basin. Similarly, Xie et al. (2024) developed a Transformer–LSTM hybrid model for blind
well lithology prediction, achieving 88% precision and 89% recall by effectively capturing
spatiotemporal features along the depth dimension [37]. In lithology identification tasks,
MCNN1D, GAT, and Transformer each demonstrate unique strengths. MCNN1D excels
in capturing multi-scale information, providing a more comprehensive understanding
of intricate data features. GAT leverages graph-based architectures to effectively model
complex inter-sample relationships and spatial dependencies. Meanwhile, Transformer
stands out with its exceptional ability to capture long-range dependencies, making it par-
ticularly effective for handling sequential and depth-structured data. This study introduces
an ensemble learning framework that integrates MCNN1D, GAT, and Transformer models.
By harnessing the unique strengths of each model, the framework effectively tackles key
challenges, including inter-sample correlation extraction, spatial relationship modeling, and
long-range dependency capture. This approach not only significantly enhances the overall
accuracy of lithology identification but also mitigates issues related to data imbalance.

3. Methodology
An ensemble method is proposed to improve prediction accuracy and mitigate the

impact of data imbalance by integrating MCNN1D, GAT, and Transformer models within
a integrated framework, as illustrated in Figure 1. MCNN1D first extracts multi-scale
local features (Feature1) from well-log data, Transformer captures contextual relationships
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in lithological sequences to extract global features (Feature2), and GAT models spatial
relationships between lithological samples to generate Feature3. These features are concate-
nated and passed through a fully connected (FC) layer, with the final lithology predictions
visualized through a Softmax layer. In this study, each data point represents the physical
properties at a specific depth within a well, forming a well-logging dataset {(xi, yi)}n

i=1
with n samples. xi is a d-dimensional vector v = (v1, v2, . . . , vd) in hyperspace, where each
scalar component vi corresponds to a physical property measured by wireline logging, such
as gamma-ray (GR), resistivity (log10 ILD), and average neutron-density porosity (PHIND),
etc. The label yi denotes the lithology category of the i-th sample.

For the implementation, we selected datasets from the Hugoton and Panoma gas fields
in the USA as examples. Each feature vector xi has 7 dimensions. The dataset includes
data from 10 wells, used as the training set, and data from 2 additional wells, used as blind
wells. These blind wells were input into the ensemble model for lithology prediction. The
lithology categories are divided into 9 classes.

Figure 1. Architecture of the proposed hybrid model for lithology identification using MCNN1D,
GAT, and Transformer.

3.1. Data Preprocessing

Before well-log data are used for lithology classification, preprocessing is performed
to remove rows with missing values, updating the dataset accordingly. Subsequently,
normalization is applied after vectorization to map the values of different logging curves
to a range of 0–1 through min–max normalization (see Equation (1)). This normalization
process ensures that different features are compared on the same scale, preventing certain
features with larger value ranges from dominating the model’s training [38,39].

Xnorm =
X − Xmin

Xmax − Xmin
(1)

In this equation, Xnorm refers to the standardized attribute value, while X indicates the
initial attribute value before normalization. The values Xmin and Xmax correspond to the
minimum and maximum limits of a specific attribute within a given well-logging curve.

3.2. MCNN1D

By utilizing a series of convolutional kernels of varying scales to extract multi-level
features from lithological data, the model can simultaneously understand and capture both
the microscopic details and macroscopic structures of the lithological data, enhancing its
ability to recognize complex geological formations. The multi-scale selection allows the
model to adapt to features at different resolutions within geological layers, improving its
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capacity to discern fine-grained details and broader contextual information, ultimately
boosting prediction accuracy [40]. This approach is mathematically represented as follows:

Fi = Conv1D(ji)(X), i = 1, 2, 3, ji ∈ {1, 3, 5} (2)

In this context, Fi represents the feature map obtained using a convolution kernel
size of ji, while Conv(ji) denotes the convolution operation. X is the input feature map,
and each ji corresponds to a specific kernel size, specifically 1 × 1, 1 × 3, and 1 × 5. The
MCNN1D model leverages the introduction of multi-scale convolutional kernels to capture
both local details and global patterns in geological data simultaneously. Specifically, smaller
kernels (j1 = 1) excel at detecting subtle variations in lithological features, medium-sized
kernels (j2 = 3) focus on modeling intermediate structures, and larger kernels (j3 = 5)
effectively capture broader patterns across geological layers. This multi-scale design
enhances the model’s adaptability to diverse feature resolutions, making it particularly
effective in identifying complex lithological structures.

3.3. GAT

GAT incorporates a self-attention mechanism that adaptively assigns different weights
to each node in the graph, effectively capturing relationships between nodes [41,42]. The
GAT formula is presented in Equation (3).

h′i = σ

 ∑
j∈N (i)

αijWhj

 (3)

h′i denotes the updated feature representation of node i, N (i) is the set of neighboring
nodes of node i, W represents the learnable linear transformation matrix, αij is the attention
weight between node i and its neighboring node j, and σ is the non-linear activation
function.

After preprocessing, the lithology data are reshaped, with each well-log sample treated
as a node in the lithology identification graph. Edges are established based on the Euclidean
distance between node features, connecting nodes within a suitable threshold. Specifically,
the Euclidean distance [43] between node i and node j is defined as shown in Equation (4).
Adaptively assigning different attention weights to each edge enhances the model’s capture
of complex relationships.

Dij =
d

∑
k=1

(xi,k − xj,k)
2 (4)

where xi,k denotes the value of node i in the k-th feature; d represents the number of features.
An edge is established between nodes i and j if Dij is less than a given threshold T and is
not equal to 0. The set of edges E can be represented as shown in Equation (5).

E = {(i, j) | 0 < Dij < T} (5)

This self-attention mechanism, as shown in Equation (3), allows GAT to dynamically
allocate attention weights to the most relevant neighboring nodes, effectively modeling
intricate inter-node dependencies in lithological data. Combined with the graph construc-
tion process outlined in Equations (4) and (5), this enables GAT to handle imbalanced
lithological datasets more effectively, improving its adaptability and classification accuracy
compared to traditional models like GCNs.
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3.4. Transformer

The Transformer model is a deep learning architecture based on the attention mech-
anism, initially applied in natural language processing and now widely adopted across
various fields [44]. Within the Transformer model, the multi-head attention mechanism
is a pivotal component. The core idea of multi-head attention is to compute attention in
parallel across multiple independent “heads”, with each head corresponding to a different
subspace. This allows the model to analyze distinct features from multiple perspectives
rather than being confined to a single viewpoint [45]. Specifically, the model calculates
attention weights separately for each head using the Query, Key, and Value matrices, then
combines these independent attention outputs to form a richer feature representation.
This approach enables the model to simultaneously focus on fine-grained features within
lithological data, providing a comprehensive understanding of variations across depths
and geological layers. Consider a given lithological data input matrix (X ∈ Rn×7), where
the 7 represents the features of Hugoton–Panoma lithological data. The input matrix X
undergoes a linear transformation to generate the query matrix Q, the key matrix K, and the
value matrix V, as shown in Equation (6). The mathematical formulation of the multi-head
attention mechanism is provided in Equation (7).

Q = XWQ, K = XWK, V = XWV (6)

where WQ, WK, and WV are the learnable weight matrices. For each head i , compute the
single-head attention as follows:

headi = Attention(Qi, Ki, Vi) = so f tmax

(
QiKT

i√
dk

)
Vi (7)

Qi, Ki and Vi are the query, key, and value matrices for the i-th head, and dk is the
dimensionality of the key vectors. Concatenate the outputs of all the heads:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (8)

where WO is the linear transformation matrix applied to the concatenated output. The
multi-head attention mechanism adeptly captures intricate dependencies and patterns
within geological data, facilitating a more precise and nuanced comprehension of subsur-
face formations.

The Transformer model demonstrates good performance in lithology identification
due to its ability to simultaneously capture local details and global dependencies within geo-
logical data. The multi-head attention mechanism allows the model to process fine-grained
lithological features while retaining an understanding of broader subsurface patterns. This
characteristic is particularly useful when dealing with complex subsurface formations or
imbalanced data distributions, where certain traditional models may face challenges. Addi-
tionally, the flexibility of the Transformer architecture enables it to adapt to different resolutions
and feature representations, offering a practical solution for geological applications.

4. Data and Model Settings
4.1. Data Overview

The Hugoton and Panoma fields, located in Kansas, USA, are among the most sig-
nificant natural gas-producing regions in the country [46]. These fields feature complex
geology, primarily sandstone and limestone, and are rich in natural gas and oil resources.
This study utilized 4979 log data points from twelve wells in these fields for experimen-
tation. The wells named STUART and CRAWFORD were used as blind wells to predict
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reservoir lithology. The well-logs from these drillings encompass various parameters:
Gamma Ray (GR) is used to measure the natural radioactivity in rocks and is commonly
employed to identify clay content, as clay minerals typically exhibit higher radioactivity.
Deep Induction Log (ILD_log10), which utilizes logarithmic scaling, measures the resistivity
of formations, aiding in the analysis of resistivity variations at different depths; high resis-
tivity is often associated with low porosity or hydrocarbon saturation. The Photoelectric
Effect (PE) measures the photoelectric absorption cross-section of rocks, which is directly
related to their density and composition, making it particularly suitable for distinguishing
between carbonate rocks and sandstones. Neutron Density Porosity Difference (DeltaPHI)
represents the difference between neutron and density porosities, indicating changes in
fluid type and rock properties. Average Neutron Density Porosity (PHIND) is calculated
using neutron and density log data to evaluate the reservoir quality of formations. The
Nonmarine–Marine Indicator (NM_M) is used to differentiate between marine and non-
marine depositional environments, assisting in identifying and interpreting geological
history and its impacts. Relative Position (RELPOS) denotes the relative depth position of a
point within the entire logging curve, helping to standardize the data for easier comparison
and analysis. These parameters provide crucial insights into formation structure, rock
properties, and potential hydrocarbon content.

The lithology types include marine siltstone and shale (SiSH), nonmarine sandstone
(SS), nonmarine coarse siltstone (CSiS), nonmarine fine siltstone (FSiS), dolomite (D),
mudstone (MS), wackestone (WS), packstone–grainstone (PS), and phylloid-algal baffle-
stone (BS).

Due to the continuity and similarity of rock properties, certain lithology types are
geologically close and are referred to as “adjacent lithologies”. These types share similar
characteristics, making them more prone to misclassification or confusion during catego-
rization or prediction tasks. For example, Zhao et al. conducted a study based on logging
datasets from the Hugoton and Panoma fields in Kansas, USA, and presented the adjacent
relationships between different lithology types in a clear and intuitive tabular format [8].

In lithology identification research, scatter plot matrices effectively illustrate relation-
ships between various logging variables (e.g., GR, PE, ILD_log10, DeltaPHI, and PHIND)
within the Hugoton–Panoma dataset (see Figure 2). Different colors represent distinct
lithology types, providing a visual means to reveal variations and potential associations in
the distributions of each lithology. In Figure 2, the scatter plots of logging variables show
substantial overlap among different lithology types, indicating similar distribution patterns
and unclear boundaries between classes. This overlap increases classification difficulty, as
the model may struggle to identify distinct features for each lithology, leading to a higher
risk of misclassification.

To present high-dimensional samples more intuitively, we applied t-SNE to reduce
the data to a three-dimensional space, with the visualization results shown in Figure 3.
The distribution of lithofacies categories in the Hugoton–Panoma dataset, as shown in
Figure 4, reveals a significant class imbalance. Categories like CSiS and FSiS have the
highest counts, while BS and D are comparatively less represented. This indicates that
the region’s lithology is characterized by category imbalance and multi-label complexity,
with indistinct boundaries and excessive proximity between different lithologies, making it
challenging to differentiate them.
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Figure 2. Scatter plot matrix of logging variables for lithology types in the Hugoton–Panoma dataset.

Figure 3. 3D t-SNE Visualization of lithology types in the dataset.
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Figure 4. Distribution of lithology types in the Hugoton–Panoma dataset.

4.2. Model Settings

The feature vectors generated by the MCNN1D, GAT, and Transformer modules
are concatenated and fused before being passed into a fully connected layer (FC). This
fusion strategy harnesses the unique strengths and distinct characteristics of each model
component, creating a richer and more comprehensive feature representation. The training
process utilizes the Adam optimizer with a learning rate of 0.002 and optimizes using
the CrossEntropyLoss function. The model is trained over 400 epochs to maximize its
performance across the dataset, leveraging the complementary insights provided by each
module, as detailed in Table 1.

Table 1. Configuration details for each model component.

Component Layer Type Configuration Details

GAT
Graph Attention Layer 1 Input size: 7; Hidden size: 128; Heads: 8; Dropout: 0
Graph Attention Layer 2 Hidden size: 1024; Heads: 1
Activation ReLU

MCNN1D

Convolutional Layer 1 In channels: 1; Out channels; 32, Kernel size; 1, Padding: 0
Convolutional Layer 2 In channels: 1; Out channels: 32; Kernel size: 3; Padding: 1
Convolutional Layer 3 In channels: 1; Out channels: 32; Kernel size: 5; Padding: 2
Linear Layer Input size: 672; Output size: 128
Activation ReLU

Transformer

Linear Layer (Input) Input size: 7; Hidden size: 128
Transformer Encoder d_model: 128; Heads: 2; Layers: 1; Dropout: 0.5
Layer Normalization Hidden size: 128
Linear Layer (Output) Output size: 128
Activation ReLU
Dropout Rate: 0.5

The hyperparameter selection in this study was based on both a literature review
and grid search results. For instance, the ReLU activation function was chosen for its
efficiency, while the Adam optimizer was selected for its ability to handle sparse gradients
and achieve fast convergence. The learning rate (0.002) was determined through grid
search and validation. The input size and hidden layer size were set based on the feature
dimensions of the Hugoton–Panoma dataset and further refined through experimentation.
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Additionally, the CrossEntropy loss function was utilized for its effectiveness in multi-class
classification tasks.

5. Results
5.1. Model Evaluation Criteria

In the experiments, accuracy, precision, recall, and F1-score are used to evaluate model
performance. Accuracy indicates the overall correct classification rate (refer to Equation (9)),
precision assesses the accuracy of positive predictions (as defined in Equation (10)), and
recall reflects the model’s sensitivity (outlined in Equation (11)). The F1-score, calculated as
the harmonic mean of precision and recall (detailed in Equation (12)), provides a balanced
measure of performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 Score =
2 · Precision · Recall
Precision + Recall

(12)

5.2. Comparison on Adjacent Blind Wells

In this study, we selected ten wells from the Hugoton–Panoma dataset to construct the
training set, leveraging the diverse logging profiles of these wells to capture the variability
in lithology and other geological characteristics. To evaluate the generalizability and
accuracy of the proposed model, two wells (STUART and CRAWFORD) were designated
as blind wells. These blind wells were excluded from the training process, enabling a
rigorous assessment of the model’s performance on unseen data. Incorporating blind wells
as test cases allows us to quantify the model’s predictive accuracy in practical scenarios,
affirming its potential application across neighboring wells. This setup replicates real-world
conditions where a model trained on known wells is applied to predict characteristics in
newly encountered, adjacent wells.

The experimental results, shown in Table 2, demonstrate that the proposed multi-
model fusion approach significantly outperforms other baseline models in terms of accuracy,
precision, recall, and F1-score. On the Hugoton–Panoma dataset, the proposed model
achieved an accuracy of 70.12%, a precision of 74.27%, a recall of 70.12%, and an F1-score of
70.42%. Compared to single models such as Transformer, MCNN1D, or GAT, as well as
traditional machine learning methods like SVM and Random Forest, the proposed model
exhibits comprehensive performance improvements. These results highlight the model’s
ability to more accurately identify lithology types across different wells and effectively
capture the complexity of their geological attributes.

If similar lithologies are grouped into the same category based on the adjacent lithology
relationships described in previous studies, the trends in training accuracy for lithology
and adjacent lithology, as demonstrated by the model proposed in this paper, are shown in
Figure 5. After 400 training epochs, the accuracy for adjacent lithology reaches 95.06%.
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Table 2. Performance comparison of machine learning models for lithology identification on the
Hugoton–Panoma dataset.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 56.51 62.21 56.51 53.77
Decision Tree 56.39 61.96 56.39 56.89
XGBoost 63.25 67.08 63.25 63.14
AdaBoost 56.99 61.22 56.99 58.17
Random Forest 66.02 69.69 66.02 65.52
Transformer 68.67 71.74 68.67 67.41
GCN 61.45 64.67 61.45 60.14
GAT 67.47 69.48 67.47 66.97
MCNN1D 68.92 73.11 68.92 69.29
LSTM 68.55 72.22 68.55 68.67
GRU 68.31 72.08 68.31 68.96
Ours 70.12 74.27 70.12 70.42

Figure 5. Trends in training accuracy for lithology and adjacent lithology classification.

Figures 6 and 7 present the visualization results of lithology prediction for blind wells
in the Hugoton–Panoma dataset based on the proposed Multi-Model Fusion Network.
These visualizations compare the predicted lithofacies (right) with the actual lithofacies
(left), clearly demonstrating the model’s reasonable performance in lithology identification
across various depths.

Figure 6. The visualisation of blind lithology identification results for well STUART.
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Figure 7. The visualisation of blind lithology identification for well CRAWFORD.

6. Discussion
This study proposes a multi-model fusion network leveraging the strengths of

MCNN1D, GAT, and Transformer. MCNN1D extracts local and global features, GAT
models spatial dependencies to detect subtle lithological variations, and Transformer cap-
tures sequential patterns to enhance classification of complex lithologies. The confusion
matrices (Figures 8–11) clearly illustrate the performance improvements achieved by the
proposed method on the Hugoton–Panoma dataset, validating its effectiveness in lithology
identification tasks. Compared to traditional machine learning models such as SVM and
Random Forest, as well as standalone models like MCNN1D, GAT, or Transformer, the
proposed multi-model fusion approach demonstrates significant advancements across key
metrics, including accuracy, precision, recall, and F1-score. Notably, the model excels in
identifying minority lithology classes, a strength attributed to its integration of multi-scale
convolutional layers, graph attention mechanisms, and Transformer-based architecture.
Furthermore, as illustrated in Figures 8–11, all models tend to frequently misclassify FSiS
as D, while rarely misclassifying D as FSiS. This asymmetrical misclassification pattern
is likely attributed to feature overlap and class imbalance. To address this issue, future
research could leverage geological prior knowledge (e.g., depositional sequences or ad-
jacency relationships) and implement attention mechanisms or a two-stage classification
framework to enhance classification accuracy and minimize misclassification.

Although the proposed method excels in improving the accuracy of minority class
identification, several limitations remain that warrant further attention. First, the reliance
on a single data source may constrain the model’s generalizability and adaptability to
different geological environments. Incorporating diverse data sources, such as well-logs
from multiple oilfields, could significantly enhance the model’s robustness and applicabil-
ity. Furthermore, the model’s performance under high-data-diversity scenarios requires
further optimization, which is crucial for broader application in complex geological settings.
Second, the computational complexity of the ensemble framework poses challenges for
deployment in resource-constrained environments. Addressing this issue could involve
exploring model compression techniques such as pruning and quantization to reduce pa-
rameter size and computational demands. Optimizing the framework design to minimize
computational redundancy and resource consumption, as well as developing lightweight
sub-models tailored for resource-limited environments, could substantially reduce complex-
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ity while maintaining predictive accuracy. Finally, enhancing the model’s robustness and
adaptability remains a key area for future research. Addressing class imbalance through
advanced data augmentation techniques (e.g., SMOTE and GAN) and utilizing transfer
learning to improve generalization across diverse geological environments will allow the
model to adapt more effectively to complex and varied data distributions. These optimiza-
tion strategies are expected to address the challenges of computational complexity and
significantly enhance the model’s practical applicability across various geological scenarios,
providing more substantial support for lithology identification tasks.

Figure 8. Confusion matrix for lithology identification using MCNN1D.

Figure 9. Confusion matrix for lithology identification using GAT.
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Figure 10. Confusion matrix for lithology identification using Transformer encoder.

Figure 11. Confusion matrix for lithology identification using the proposed model.

7. Conclusions
This study proposed a multi-model fusion network that combines MCNN1D, GAT,

and Transformer to improve lithology identification. The model addresses challenges such
as class imbalance, feature overlap, and adjacent lithology misclassification by integrat-
ing multi-scale feature extraction, spatial dependency modelling, and sequential pattern
learning. Experimental results on the Hugoton–Panoma dataset indicate that the model
performs well in blind well predictions (e.g., STUART and CRAWFORD) and demonstrates
improvements in accuracy and minority lithology identification compared to traditional
methods, highlighting its potential for practical geological applications. However, some
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limitations remain. Reliance on a single dataset may affect the model’s generalizability,
and future work could incorporate more diverse geological datasets to improve robustness.
Additionally, the model’s computational complexity poses challenges for deployment in
resource-constrained environments, which could be addressed through model compression
and optimization techniques. Leveraging geological prior knowledge and advanced data
augmentation strategies may further enhance the model’s adaptability to complex geologi-
cal conditions. In the future, we aim to optimize the model architecture further and explore
its application in other well-log interpretation tasks, such as porosity, permeability, and
hydrocarbon saturation predictions, thereby extending its utility in geological data analysis.
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