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Abstract: With the advancement of Industry 4.0, 3D printing has become a critical technol-
ogy in smart manufacturing; however, challenges remain in the integrated management,
quality control, and remote monitoring of multiple 3D printers. This study proposes an
intelligent cloud monitoring system based on the SharkNet dynamic network, IoT, and
artificial neural networks (ANNs). The system utilizes a SharkNet dynamic network to
integrate low-cost sensors for environmental monitoring to enable low-latency data trans-
mission and deploys ANN models on the cloud for print quality prediction and process
parameter optimization. Next, we experimentally validated the system using the Taguchi
design and ANN-based analysis, focusing on optimizing printing process parameters and
improving surface quality. The main results show that the designed system has a commu-
nication delay of 40–50 ms and 99.8% transmission reliability under moderate load, and the
system reduces the surface roughness prediction error to less than 17.2%. In addition, the
ANN model outperforms conventional methods in capturing the nonlinear relationships
of the variables, and the system can be based on the model to improve print quality and
productivity by enabling real-time parameter adjustments. The system retains a high
degree of scalability in terms of real-time monitoring and parallel or complex control of
multiple devices, which demonstrates its potential for applications in smart manufacturing.

Keywords: multi-device 3D printing; SharkNet; artificial neural network; cloud monitoring
system; surface roughness optimization

1. Introduction
In Industry 4.0 era, smart manufacturing is profoundly reshaping the global manufac-

turing industry by integrating advanced technologies such as the Internet of Things (IoT),
artificial intelligence (AI), and fieldbus into the production process [1,2]. These technologies
enable the construction of smart factories, where machines, systems, and people can com-
municate and collaborate in real time, with increased automation, efficiency, and flexibility
of the production process [3,4], allowing industries to optimize operations, reduce costs,
and respond quickly to market demands.

The Internet of Things (IoT), by integrating sensing, actuation, information exchange,
and data processing, has been widely used in the industrial sector, especially in the In-
dustrial Internet of Things (IIoT), due to its intelligence, scalability, and adaptability of
connected devices. Smart sensor arrays can effectively support equipment fault diagnosis,
and in combination with machine learning (ML) technology, back-end systems can automat-
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ically adjust the processing parameters of the equipment, thereby improving manufacturing
efficiency and simplifying maintenance [5,6].

1.1. Challenges and Needs of Smart Manufacturing Networks

Smart manufacturing networks, especially the IIoT, often rely on a layered control
system [7,8]. In this system, the bottom layer consists of local controllers that are responsible
for directly controlling the subsystems and communicating the results to higher levels for
monitoring and coordination [8]. However, with the diversity of device types in smart
manufacturing networks (e.g., mobile robots, robotic arms, 3D printers, etc.), different
control interfaces and communication protocols make the traditional fieldbus technology
face many challenges. In particular, in meeting the demands for high reliability, real-time
communication, and scalability, existing fieldbus technologies struggle to cope with the
complex demands of modern smart manufacturing systems, such as multi-node data
acquisition, large-scale data transmission, image processing, and dynamic node access.

In order to meet these challenges, the intelligent manufacturing network not only
needs efficient data acquisition and real-time processing capabilities, but also needs to have
flexible dynamic reconfiguration capabilities to support a variety of network topologies,
especially when the dynamic nodes (e.g., mobile robots, robotic arms, etc.) are accessed
and disconnected, the network needs to be able to automatically reconfigure the network
(including complex network topologies, etc.) in order to ensure the system’s stability and
efficiency. In addition, the intelligent manufacturing network must be highly multiplexed
and fault-tolerant to ensure rapid recovery in case of equipment failures to avoid produc-
tion disruptions; low latency is a key cornerstone of real-time control and task response,
especially for high-precision and high-speed equipment; intelligent adaptive capabilities
are also necessary, and the system should have the ability to automatically adjust the
allocation of resources, optimize communication paths, dynamically adjust network poli-
cies, etc., to ensure the stability and efficiency of the system through the integration of AI
and machine learning technologies. The system should have the ability to dynamically
allocate resources, self-optimize communication paths, and dynamically adjust the complex
network topology after integrating machine learning technologies, thus ensuring efficient
system operation.

With the increase in interconnected devices in the network, smart manufacturing net-
works also need to have good interoperability to support seamless collaboration between
different devices and protocols. To this end, the network should adopt standardized proto-
cols and realize effective connectivity between devices through a protocol adaptation layer.
Finally, the smart manufacturing network should be equipped with real-time monitoring,
fault diagnosis and performance optimization to ensure efficient manufacturing processes
and rapid diagnosis of problems.

1.2. Limitations of Existing Methods

To cope with the above requirements of intelligent manufacturing on fieldbus, this
study takes the SharkNet dynamic network as the core network architecture and explores
the application potential of SharkNet in the field of intelligent manufacturing by taking
the manufacturing of high-volume 3D printers in intelligent manufacturing as an exam-
ple [9,10]. Three-dimensional printers have a wide range of applications, but the current
research mainly focuses on the monitoring system of a single printer and there are few
studies on scalable intelligent integrated monitoring systems for multiple devices in large-
scale production environments. Less research has been carried out on scalable intelligent
integrated monitoring systems for multiple devices in mass production environments.
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As a result, the challenges of parallel operation and real-time monitoring of multiple 3D
printers [11,12] in mass production environments are more prominent.

Currently, there is a single method for monitoring the 3D printing process (e.g., physi-
cal sensors or video monitoring [13,14]), and these methods have significant limitations.
Most studies focus on local monitoring and defect detection of a single 3D printer [15,16],
and there is a lack of research on remote monitoring of multiple printers. This not only
affects the flexibility and convenience of monitoring, but also adds additional human and
material resources to the production process.

Traditional wired fieldbus systems (e.g., CAN bus and Modbus) have occupied an
important position in industrial control due to their low latency and high stability [17].
However, these networks exhibit significant limitations in multi-device environments,
such as complex wiring, poor scalability, and an inability to support dynamic network
reconfiguration [18,19], making them inadequate for the flexibility and scalability demands
of smart manufacturing. In contrast, wireless communication networks (e.g., Wi-Fi 6)
offer advantages in terms of flexibility and scalability, making them suitable for dynamic
device access. However, Wi-Fi often faces problems such as increased latency and unsta-
ble transmission in high-density, multi-device parallel operation scenarios (especially in
environments with severe signal interference) [20,21], and the technology still lacks net-
work auto-reconfiguration capabilities. In addition, bandwidth bottlenecks can seriously
affect system performance and productivity when dealing with large-scale data transfers.
Therefore, the application of batch 3D printing in smart manufacturing requires a balance
between latency, reliability, and flexibility to ensure an efficient, accurate, and sustainable
production process. This requires that the communication network system used should
have a strong adaptive capability and the ability to dynamically adjust the communication
network when multiple devices are working together to ensure stable data transmission
and thus accurate synchronization and real-time control of the print jobs.

Existing methods (e.g., traditional regression methods, simple feedback systems, and
basic machine learning techniques [22,23]) show significant limitations in exploring the
complex relationships between variables and outcomes in the 3D printing process. Tra-
ditional regression and simple feedback systems have difficulty in capturing complex
nonlinear relationships between multiple variables and outcomes; secondly, basic ma-
chine learning methods, although more advanced than traditional regression and simple
feedback systems, still have limitations in responding to nonlinear dependencies in the
3D printing process in real time [24,25]. The above methods are unable to effectively
model the nonlinear and multivariate relationships between process parameters and print
quality in dynamic and high-dimensional manufacturing environments, and these limita-
tions hinder the precise control and efficient management of batch 3D printing in smart
manufacturing environments.

1.3. Contributions and Innovations of This Study

To address the above challenges this study proposes an intelligent cloud monitoring
system based on IoT, SharkNet, and ANN, which can monitor multiple 3D printers in real
time and dynamically optimize the relevant parameters. The main features of the system
and the main contributions of this study are as follows:

1. Multi-sensor and video fusion: We integrate multiple sensors, such as temperature and
humidity, with video surveillance to build a composite monitoring sensor network
that provides users with a comprehensive view of the production process. This
monitoring approach improves the accuracy and functionality of the system, and
when the multi-sensor monitoring network is integrated with artificial intelligence
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and other technologies, the network can comprehensively analyze heterogeneous
data and make intelligent adjustments based on the relevant sensors.

2. SharkNet dynamic network: SharkNet has many advantages such as support for
multiple topologies, redundant transmission, and multi-interface adaptation, and
the most important feature of the network is the intelligent reconfiguration of the
network. In addition, the network integrates technologies such as dynamic multipath
scheduling and 5G [26,27], which makes the network more robust to break through
data transmission bottlenecks in multi-device parallel operation. Therefore, the net-
work has the advantages of both wired network’s low latency and wireless network’s
flexibility, which makes it possible to improve the overall performance of the sys-
tem while still ensuring the flexibility of the system, providing a strong real-time,
highly reliable, highly dynamic, highly fault-tolerant, and easy-to-use communication
network solution for the system.

3. Process parameter optimization by ANN: In this study, we adopt the ANN [28] model
to overcome the limitations of traditional methods [29] in dealing with the complex
nonlinear relationship between 3D printing process parameters and print quality [25].
The ANN is based on the real-time training and validation of a variety of sensor
data (e.g., images, temperature, and humidity, etc.) collected by the system, and
then dynamically optimizes the process parameters and performs quality control and
defect detection. Compared with traditional methods, the ANN model significantly
improves prediction accuracy and real-time response capability.

The rest of this paper is organized as follows: Section 2 provides an overview of re-
search related to 3D printing quality monitoring and fieldbus; Section 3 details the design of
the proposed intelligent cloud monitoring system; Section 4 discusses the experiments used
to validate the system’s performance; Section 5 analyzes and discusses the experimental
results and the system’s performance; and finally, Section 6 summarizes the results of the
research and discusses the potential directions of future work.

2. Related Work
Although existing studies have made significant progress in 3D printing process

monitoring, such as Kousiatza et al. using fiber Bragg grating sensors for strain and
temperature monitoring [13], Yang et al. using acoustic emission technology for mate-
rial fracture detection [14], and Kakade et al. solving the problem of material flow by
means of a rotary encoder and a pressure sensor [30], these approaches all rely on a
single monitoring method. In addition, visual monitoring techniques have received ex-
tensive attention from researchers, with Sánchez et al. using a Raspberry Pi for local
video monitoring [31], Liu et al. developing an embedded remote monitoring system [32],
and Nuchitprasitchai et al. utilizing a camera for comprehensive local monitoring [33].
However, it is difficult for a single monitoring method to meet the requirements of dy-
namic sensing, intelligent decision-making, and high-precision control imposed by smart
manufacturing on the printing process.

To address these limitations, multi-source information fusion has become an important
research direction to enhance the monitoring capability of 3D printing process. Integrating
multi-sensor parameters with video data, this approach not only improves the system’s
dynamic perception and precise control of the printing process, but also provides powerful
support for multi-parameter optimization of the printing process species and defect predic-
tion of the printing results. The quantity and quality of multimodal data have a significant
impact on the performance of machine learning-driven intelligent control algorithms. The
integration of sensor networks and video surveillance technologies enables remote moni-
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toring and real-time intelligent decision-making and provides a new research paradigm for
3D printing quality control with important theoretical and practical implications.

Intelligent manufacturing networks place high demands on communication protocols
and fieldbus technologies such as low latency, high reliability, strong scalability, and high
network destruction resistance. However, existing technologies (e.g., EtherCAT, PROFINET,
Ethernet, and Modbus TCP/RTU) exhibit significant limitations in some areas. To clearly
assess the advantages and disadvantages of these technologies and their applicability
in smart manufacturing, we summarize and compare the key performance metrics of
SharkNet with several mainstream fieldbus technologies in Table 1 [34].

Table 1. Comparison of SharkNet with other fieldbuses.

Feature SharkNet Ether CAT PROFINET Ethernet Modbus TCP/RTU

Communication
Latency

1.6 µs/hop
(wired network)

<60 ms
(via 5G network

and cloud server)

150 µs
(256 digital I/O
updates, 10 µs)

1–10 ms 10–100 ms RTU: 10–100 ms
TCP: 2–3 ms

Reliability

Extremely high High High Medium Medium

Protocol
adaptation,

complex topology,
decentralized

network,
intelligent network

reconfiguration

Supports
distributed clocks,

error < 1 µs

Suitable for
large-scale
industrial

automation

Depends on
physical

connection quality

Network
fluctuations have

greater impact

Scalability

High

Up to 65,535
nodes/networks

High High Medium

Decentralized
network, supports

dynamic node
access, various
topologies, and

wireless expansion

Supports various
industrial
topologies

Supports
multi-device
access, but

complex wiring

Device expansion
requires manual

adjustment

Bandwidth

0.01~1 Gbps

100 Mbps–1 Gbps 100 Mbps–1 Gbps

10 Mbps–1 Gbps RTU:
1.2–115.2 kbps

TCP: 10/100 MbpsFuture compatible Depends on
Ethernet standard

Real-Time
Capability

Extremely high Extremely high High Low Medium

Synchronization
error at ns level

Synchronization
error < 1 µs

Real-time Ethernet
supports low

latency

Affected by
network traffic

Depends on
communication

mode

Deployment
Complexity

Low High High Medium Medium

Wired network
configuration

automated,
wireless reduces

cabling needs

Requires complex
network

management

Requires high
technical support

Depends on
physical network

maintenance

Manual
adjustment and

high cabling
complexity

Dynamic Network
Reconfiguration

Capability

Intelligent
dynamic network
reconfiguration

None None None None

Table 1 shows that SharkNet has significant advantages over other communication
networks, such as fieldbus technologies like EtherCAT and PROFINET, in terms of commu-
nication latency, reliability, scalability, and intelligent network reconfiguration. In addition,
SharkNet is deeply integrated with 5G using protocol adaptation techniques, which will



Processes 2025, 13, 282 6 of 23

further enhance the network’s ability to support complex dynamic scenarios. These ad-
vantages make SharkNet well suited for smart manufacturing scenarios with multiple
dynamic nodes and complex operations of multiple devices, thus providing powerful
communication support for smart manufacturing. SharkNet offers solid possibilities for
future smart factories to realize more efficient device collaborations, more precise real-time
control, and more flexible device management.

Multivariate parameter fusion analysis and nonlinear models are inevitably a major
trend in the field of smart manufacturing [23]. Therefore, traditional methods like the
Support Vector Machine (SVM) and Random Forest (RF) are far from adequate in exploring
the complex relationship between various types of process parameters and results in the
field of intelligent manufacturing [23]. The SVM, although effective in some classification
tasks, requires a large number of data preprocessing operations in order to deal with multi-
parameters, and the method is poorly scalable [23,35]. Random Forests, although effective
in dealing with noisy data, do not have capabilities such as real-time adjustment [23,35–37].

Unlike traditional methods, the ANN can accurately capture the complex relationship
between process parameters (e.g., nozzle temperature, bed temperature, and print speed)
and print quality (e.g., surface roughness) through its powerful nonlinear and multivariate
data processing capabilities [35,38]. In addition, the ANN can efficiently process a large
amount of data in the system and dynamically optimize the parameters based on these
data by real-time training and inverse modeling, thus improving the print quality and
productivity of the system. The ANN overcomes the shortcomings of traditional methods
in this area through its ability to dynamically capture the complex relationships among
parameters and provides a reliable technological solution for the optimization of smart
manufacturing scenarios.

3. System Design and Method
3.1. Overall System Architecture

Figure 1 shows the overall architectural design of the SharkNet wireless and AI-based
intelligent cloud monitoring system for multiple 3D printers. The main objective of the
system design is to achieve low-latency, high-reliability, and user-friendly remote intelligent
monitoring of multiple 3D printers, and secondly, the system can provide comprehensive
and multifaceted data support for ANN model data analysis and process optimization,
which will improve print quality and productivity. The architecture consists of the following
main modules:

1. Environmental Parameter Monitoring Nodes: A low-cost sensor network continuously
monitors key environmental parameters (e.g., temperature, humidity) in real-time
(<200 ms) and transmits the collected data via SharkNet to the cloud for analysis after
edge processing.

2. Video Monitoring and Remote Control Nodes: The Raspberry Pi controls an HD
camera that continuously acquires real-time video streams of the printing process,
and the module connects to the cloud via SharkNet to support remote monitoring
and control.

3. SharkNet Dynamic Networks: SharkNet 5G provides a high-bandwidth, low-latency
communication network environment to support efficient data transfer between
multiple devices.

4. Cloud Platform: Processes all sensor data and video streams for real-time data analysis
and process optimization through an artificial neural network (ANN) deployed in
the cloud.
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5. Remote Visualization Interface: A visual and user-friendly interactive visualization
interface is deployed on the cloud platform, which allows users to remotely monitor
the 3D printing process.

SharkNet’s deep integration with the cloud platform makes the system not only a lo-
calized device communication network, but a comprehensive monitoring and management
platform. The system can dynamically optimize and adjust multiple 3D printers based
on real-time data analysis in the cloud, ensuring that the production process is always at
its best.
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Specifically, the cloud platform processes data from multiple 3D printers in real time
and automatically identifies potential problems in the printing process (e.g., deterioration in
print accuracy or abnormal temperature fluctuations), and it can send out alerts or perform
automated adjustments to avoid production interruptions as soon as an abnormality is
detected. Additionally, the cloud platform can utilize machine learning to use the historical
data to identify early signs of equipment failures and schedule repairs in advance through
predictive maintenance to ensure that equipment is repaired before failure occurs, thus
avoiding production downtime. Through this intelligent cloud-based monitoring, manu-
facturing productivity will be significantly improved, while human intervention can be
significantly reduced to promote the automation and intelligent production and greatly
optimize the productivity and reliability of the entire production system.

3.2. Environmental Parameters Monitoring Node

Environmental parameters like temperature and humidity can affect significantly the
adhesion of printing materials, curing speed, and the interlayer bonding quality in 3D
printing. Full control of these parameters may be challenging, but real-time monitoring
and adjustments can reduce printing defects and enhance print quality. Figure 2 shows the
design of the environmental parameter monitoring node, a core system component that
collects environmental data through various sensors. The system can also be connected to
some other third-party sensors with strong scalability. The node consists of the following:

1. Sensors: The system incorporates temperature and humidity sensors, light sensors,
and accelerometers. All of them are integrated in the companion Carrier board and
managed via the Arduino MKR WIFI 1010. After edge-level preprocessing, data are
transmitted to the cloud via the SharkNet wireless link.

2. Edge processing: To reduce cloud load and conserve network bandwidth, part of the
data preprocessing is conducted locally, e.g., the system detects abrupt anomalies and
generates rapid alerts via a buzzer, enabling immediate action to prevent potential
defects in real time.
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3.3. Video Monitoring and Remote Control Nodes

Since sensor data alone may not provide an intuitive understanding of the 3D printing
process, we utilized a video monitoring node with a Raspberry Pi 400 (Pi) and a USB
(Universal Serial Bus) high-definition camera, which offers direct visual feedback of the
printing process (Figure 3). The system consists of the following components:

1. Video data collection and transmission: The camera captures video of the printing
process and transmits it to the cloud through SharkNet. The system can dynamically
adjust video resolution according to latency feedback from the SharkNet wireless link,
balancing network bandwidth with image quality requirements.

2. Local and remote control: The 3D printer is accessible for both local and remote control
via its connection to the Pi. This enables users to manage the printer in real-time
from the cloud, e.g., for pausing printing or adjusting parameters. A control system
designed specifically for the 3D printer runs on the Pi, based on a secure, bidirectional
communication link with the cloud. This setup not only transmits real-time video and
sensor data, but also facilitates flexible, efficient remote control of the printer.

3. Process parameter monitoring: The 3D printer’s built-in temperature sensors are
used to monitor the printer’s nozzle temperature and print bed temperature, two key
process parameters; in addition, print speed and layer height are set during the 3D
modeling process prior to the start of the print job.
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3.4. SharkNet Wireless Communication

When managing multiple printers in an integrated manner, where communication
latency and stability are major challenges, SharkNet (including the SharkNet 5G wireless
link) is ideally suited to meet the high demands of smart manufacturing by leveraging its
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significant technological advantages, flexibility, and ease of deployment. The details are as
follows (the network architecture of SharkNet is shown in Figure 4):
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1. Highly reliable and low-latency communications: The SharkNet wired network en-
ables nanosecond synchronization and high-speed reconfiguration in 30 microseconds
to meet the real-time requirements of complex decision-making and parameter adjust-
ment in the printing process. Unlike traditional Wi-Fi, SharkNet utilizes 5G’s Quality
of Service (QoS) mechanisms to prioritize critical packets to achieve instantaneous
control signals. In addition, SharkNet eliminates the need for extensive cabling.

2. Scalable hybrid network topology and parallel communication: SharkNet’s flexible
hybrid network topology supports parallel communication between multiple print-
ers. Its high bandwidth helps prevent congestion and ensure stable transmission.
Whilst independent links minimize interference, dynamic load balancing allocates
bandwidth intelligently according to the number of devices and communication re-
quirements. SharkNet can then achieve a steady stream of data even under high load
conditions, with a significant advantage compared with Wi-Fi’s limited scalability
and bandwidth contention.

3. Mobility support and enhanced resilience: Equipment in dynamic industrial environ-
ments may need to be moved for various reasons, e.g., maintenance or operational
requirements. Traditional network communication technologies often fail to maintain
stable connections in such situations, suffering possible disconnections or communi-
cation breakdowns. SharkNet’s can provide stable access to the network with a high
degree of flexibility and resilience even when the equipment is on the move and this is
possible because of its use of 5G base station switching and intelligent network auto-
reconfiguration. As a masterless network, SharkNet’s multi-path network allows it to
quickly adapt to equipment relocations and environmental changes, using automatic
switching to the backup path for uninterrupted communication. Its high stability and
flexibility are important in industrial applications, especially in smart manufacturing
with frequent repositioning of equipment or mobile robots.

4. Protocol adaptation for efficiency and flexibility: The robust hardware and advanced
protocol adaptation enable SharkNet to dynamically adjust data frame structures
and communication parameters, with minimized latency and optimized bandwidth.
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This adaptability is important for stable performance during network congestion
or in device-dense environments. SharkNet’s protocol adaptation module supports
integration with various device interfaces including RS-485, LVDS (Low-Voltage
Differential Signaling) and Ethernet. SharkNet can overcome the limitations of Wi-
Fi and Ethernet with better latency, scalability, and mobility, suitable for real-time
management of multiple 3D printers.

3.5. Cloud Server Platform

The design of the cloud server desk includes three main parts: data storage, data
analysis and user interaction for efficient data management, and real-time optimization, as
shown in Figure 5.
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3.5.1. Data Storage

The system collects environmental and video data of the printing process in real
time through sensor and video monitoring modules, with the data stored in the cloud
database to support subsequent data analysis. The cloud database can efficiently handle
simultaneous real-time data storage across multiple devices. These collected data can be
used for fault diagnostics, quality control, and continual improvement.

3.5.2. Applications of Artificial Neural Networks

The cloud platform incorporates artificial neural networks (ANNs) to predict in real
time how process parameters impact print quality (such as surface roughness and dimen-
sional accuracy). Trained to model complex nonlinear relationships, the ANN can also
be used for print parameter optimization. The ANN uses multi-inputs (including nozzle
temperature, bed temperature, layer height, and printing speed) to predict print quality
characteristics (e.g., surface roughness) in real time. The adjustments can be immediately
sent to the printers through the SharkNet wireless link and presented to the user via a
visual interface.

3.5.3. User Interface

The user interface is designed to support intuitive control and comprehensive function-
ality. Through the remote visualization interface, users can access ANN-based predictions
and recommendations from any location, view real-time environmental parameters, as
illustrated in Figure 6a, and monitor the printing status. Users can also directly control
printer functions, such as pausing, resuming, and adjusting speed. In addition, the interface
provides visualization of historical data, and the users can compare print parameters over
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multiple runs. Real-time synchronization with the cloud database helps the users operate
with the latest data, enhancing both accuracy and responsiveness in decision-making.
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3.6. Security and Data Integrity

In industrial applications, data security and integrity are paramount. This system
integrates a multi-layered data protection mechanism to secure information during trans-
mission and operation. First, all sensor data and video streams are encrypted in real-time,
using robust encryption protocols (like sensors’ TLS security protocol, 5G’s AES, etc.). The
system also applies role-based access control, restricting user access based on the role. The
operators are limited to real-time monitoring, but higher-level permissions are required for
parameter adjustments. These security measures ensure operational compliance and data
integrity, providing a secure foundation for intelligent monitoring.

4. Experiment Design and Method
The system we designed supports continuous monitoring, data storage, dynamic con-

trol, and status prediction. To assess the system’s effectiveness and reliability, we conducted
experiments to analyze the real-time responsiveness and stability of the SharkNet-based
wireless communication system during concurrent multi-device operation. In addition, we
employed the Taguchi experimental design and artificial neural networks (ANNs) to study
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the relationship between key process parameters and print quality (surface roughness), in
order to predict and optimize print quality.

4.1. Experiment Preparation

The experiments were conducted in a laboratory environment designed to closely
simulate realistic industrial conditions, aiming to evaluate system performance in an
industry-grade multi-device setup. We used several Creality Ender-3 3D printers, using
PLA (Polylactic Acid) as the printing material because of its good printability, low cost, and
more stable mechanical properties, suitable for investigating the factors influencing the
print quality (e.g., surface roughness), as a way of ensuring the consistency and reliability
of the results. Each printer was equipped with various sensors to capture critical process
parameters, such as nozzle temperature. The test samples were designed as PLA cubes
with dimensions of 30 × 30 × 10 mm, with a fill density of 20% and a cubic fill structure.
The simplicity of the geometry avoids additional errors due to shape complexity; moreover,
the model provides enough flat area for surface roughness measurements. The test sample
model and actual printed samples are shown in Figure 7.
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In the experiment, a surface roughness tester was used to measure the roughness
of the top and bottom surfaces of the test samples to assess surface quality. As shown
in Figure 8, roughness was measured at five locations on each surface, with the average
roughness values represented by Ra1, Ra2, Ra3, Ra4, and Ra5.
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4.2. Experimental Design
4.2.1. Multi-Device Cooperative Work Experiment

In multi-device collaborative printing, the system must handle concurrent data trans-
missions and control signals to achieve reliable performance essential for managing com-
munication latency and response speed across different printing loads and modes. Trans-
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mission reliability under high-load conditions is also recorded for the feasibility study of
SharkNet wireless communication in large-scale industrial applications.

Our experimental design compares two transmission methods: Ethernet wired trans-
mission and the SharkNet wireless solution. Four device groups were randomly selected
from the network, with each group undergoing four sets of experiments to compare latency
and transmission reliability. The average results from these experiments were used for
final analysis. Real-time responsiveness was measured as the latency between the device
endpoint and the cloud server and was calculated by the timestamp difference between
device and cloud server test nodes. Transmission reliability was assessed by adjusting the
control command transmission interval and calculating the ratio of information received
by the cloud server to that sent by the device.

4.2.2. Printing Process Parameter Optimization Experiments

In order to ensure the accuracy and reliability of the system’s monitoring and predic-
tion, the ANN model was used in this study to model the relationship between process
parameters and print quality, and the results were compared with those obtained using the
traditional Taguchi method. In this case, the ANN model training is based on the various
parameter data collected by the system sensors and the measured surface roughness data.

Due to the small size of the dataset, we chose to use a single hidden layer neural
network. The model consists of 5 input neurons (nozzle temperature, print bed temperature,
print speed, layer height, and ambient temperature), 49 hidden layer neurons, and 1 output
neuron representing surface roughness. The number of neurons in the hidden layer was
determined through multiple trials to avoid overfitting while maintaining prediction
accuracy. Additionally, we used the backpropagation method to train the model, with a
learning rate of 0.01, to achieve stable performance for the research objectives.

The Taguchi method was directly applied to the experimental design, focusing on five
key factors: ambient temperature, nozzle temperature, bed temperature, printing speed,
and layer height, each set at three levels except ambient temperature with two levels. The
ambient temperature was designed with reference to UK outdoor and indoor temperatures,
and the other factor values were referenced to the optimum range of process parameters for
PLA materials. As shown in Tables 2 and 3, an L18 orthogonal array was used to study the
relationship between the 3D printing parameter and print quality, and to further optimize
the process and print quality.

The surface roughness of the samples was measured using a MarSurf PS 10 surface
roughness tester. The probe moves across each sample’s surface to obtain and display
the Ra roughness value for recording and analysis. A flat square iron block was used
as a support platform to ensure accurate positioning of the samples and measurement
repeatability.

Table 2. Experimental factors and their levels.

Factor
Level

Code
1 2 3

Environmental
Temperature 19 ◦C 29 ◦C / A

Nozzle Temperature 190 ◦C 208 ◦C 225 ◦C B
Print bed Temperature 25 ◦C 48 ◦C 70 ◦C C

Print Speed 30 mm/s 60 mm/s 90 mm/s D
Layer Height 0.12 mm 0.24 mm 0.36 mm E
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Table 3. L18 experimental orthogonal array.

Trial
Control Factors

A (◦C) B (◦C) C (◦C) D (mm/s) E (mm)

1 19 190 25 30 0.12
2 19 190 48 60 0.24
3 19 190 70 90 0.36
4 19 208 25 30 0.24
5 19 208 48 60 0.36
6 19 208 70 90 0.12
7 19 225 25 60 0.12
8 19 225 48 90 0.24
9 19 225 70 30 0.36
10 29 190 25 90 0.36
11 29 190 48 30 0.12
12 29 190 70 60 0.24
13 29 208 25 60 0.36
14 29 208 48 90 0.12
15 29 208 70 30 0.24
16 29 225 25 90 0.24
17 29 225 48 30 0.36
18 29 225 70 60 0.12

5. Results’ Analysis and Discussion
5.1. System Performance Assessment

Figure 9 compares the transmission latency of the intelligent monitoring system using
SharkNet wireless communication and traditional Ethernet in a multi-device collaborative
setting. These results allow us to analyze real-time response performance for each method.
As data packet volume rises, the latency for both methods gradually increases due to higher
data flow and network congestion. Ethernet exhibits stable latency under various load
conditions with an average of about 40–50 ms.

In contrast, SharkNet wireless communication shows latency close to Ethernet under
low-load conditions, but experiences slightly longer latency as packet volume increases
above the packet of 3000. This fluctuation occurs because the current SharkNet setup
relies on commercial 5G and cloud server relays, and network variations impact real-
time performance. Factors such as commercial 5G congestion, latency uncertainty, and
cloud server forwarding delays can contribute to the longer system latency with potential
challenges for large-scale industrial applications.

SharkNet wireless communication can provide scalable, flexible deployment without
wiring, and is suitable for multi-device operations in industrial settings under low to
moderate loads. To address latency fluctuation under high-load conditions, the SharkNet
protocol adaptation can be used to mitigate cumulative delays through packet scheduling
and priority management. Future upgrades will transmit SharkNet signals from commer-
cial 5G and cloud servers to private base stations using a private core network to meet
increasing demands for high-load applications.

Therefore, the SharkNet wireless link can offer high flexibility and robust real-time
performance for intelligent monitoring of multiple printers using protocol adaptation
technology. The system monitors real-time changes in ambient conditions via integrated
sensors, with updates reflected in the prediction pipeline within 1 s. This capability ensures
that environmental variability is promptly accounted for, and further enhances the system
adaptability in dynamic manufacturing environments.
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Figure 10 shows the transmission reliability of the intelligent monitoring system using
SharkNet wireless communication versus traditional Ethernet in a multi-device collabora-
tive scenario, allowing us to assess suitability for real-time industrial control. As control
cycle intervals lengthen, both transmission methods show significant reliability improve-
ments, although there are differences in the rate of improvement and overall stability.
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For high-frequency control cycles (50 ms), Ethernet achieves a transmission reliability
of 75.34%, while SharkNet surpasses it at 78.99%. This suggests that SharkNet offers reliable,
flexible wireless transmission for high-frequency commands, which is advantageous in
industrial environments with complex wiring or mobile equipment.

As control cycles increase, system reliability will be near saturation. At a 100 ms
control cycle, SharkNet and Ethernet both achieve transmission reliability close to 99%,
with SharkNet at 99.8% and Ethernet at 99.19%. Due to protocol optimization and 5G
network support, SharkNet’s wireless link attains reliability comparable to wired Ethernet,
demonstrating high stability for multi-device coordination and real-time control. This
high reliability, combined with SharkNet’s wireless flexibility, highlights its potential for
intelligent monitoring of 3D printer systems.

Curve fitting also indicates that in the 70–90 ms control cycle range, SharkNet’s
reliability improvement slightly exceeds Ethernet’s, likely due to its protocol adapta-
tion feature, which dynamically adjusts transmission parameters to network conditions.
This adaptability is particularly valuable in industrial applications with frequent net-
work fluctuations, where SharkNet’s adaptability further boosts stability in challenging
industrial environments.

Overall, SharkNet wireless communication demonstrates excellent reliability at
medium to high control cycles, and consistently outperforms the wired Ethernet. Its
wireless configuration provides enhanced scalability and deployment flexibility for multi-
device monitoring systems.

5.2. Surface Roughness
5.2.1. Optimization of Printing Process Parameters by Conventional Methods

Figure 11 shows the main effects of the chosen 3D printing process factors and the
optimal levels to minimize top surface roughness. The best results were observed at
19 ◦C ambient temperature, 225 ◦C nozzle temperature, 25 ◦C bed temperature, 90 mm/s
printing speed, and 0.36 mm layer height. It can be seen that nozzle temperature has
the most significant impacts on surface roughness, highlighting the importance of precise
temperature control in achieving optimal print quality.
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Figure 12 shows the main effects of the process factors and the optimal levels to
minimize bottom surface roughness. The optimal settings were 19 ◦C ambient temperature,
225 ◦C nozzle temperature, 25 ◦C bed temperature, 90 mm/s printing speed, and 0.36 mm
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layer height. The results again highlight the significant impact of nozzle temperature on
surface roughness.
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5.2.2. Linear Regression

In this study, linear regression analysis was performed to predict the impact of process
parameters on surface roughness. The regression equations are as follows:

TSR = 6.09 + 0.0689 × ET − 0.02195 × NT + 0.01096 × PBT − 0.00180 × PS − 2.728 × LH (1)

BSR = 7.56 + 0.0292 × ET − 0.02155 × NT + 0.00946 × PBT − 0.00018 × PS − 0.689 × LH (2)

In Equations (1) and (2), TSR represents top surface roughness, BSR represents bottom
surface roughness, ET is environmental temperature, NT is nozzle temperature, PBT is
print bed temperature, PS is print speed, and LH is layer height.

Table 4 provides the R-squared values, indicating each model’s explained variance in
surface roughness. The R2 value for the top surface model was 81.19%, suggesting a strong
correlation between parameters and surface roughness. The R2 for the bottom surface
model was 67.45%, indicating a significant relationship, though its predictive power is
somewhat lower than that of the top surface model.

Table 4. Means response table for bottom surface roughness.

S R-sq R-sq (adj) R-sq (pred)

Top 0.339217 81.19% 73.35% 59.14%
Bottom 0.330562 67.45% 53.89% 25.93%

5.2.3. ANN Prediction of Printing Quality

As shown in Figure 13, the ANN model’s predictions closely follow the measured
surface roughness trend, closely capturing fluctuations across most sample points. This
demonstrates the ANN model’s predictive accuracy and stability under the complex non-
linear influences of 3D printing process parameters. Such performance is essential for
real-time optimization of the printing process parameters.
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Figure 13. Comparison of surface roughness between ANN model predicted values, Taguchi method
predicted values, and true values.

Although the Taguchi method has offered initial guidance in identifying significant
factors, its linear statistical models fall short in capturing the complex nonlinear and multi-
factor interactions present in 3D printing. In contrast, the ANN model can adaptively fit
complex relationships between multiple factors and the print quality (surface roughness),
offering superior prediction accuracy and robustness. It can be further used for process
parameter optimization.

Figure 14 shows the fitting curve between the ANN model prediction output and
the target surface roughness. Data points cluster around the fitted line, demonstrating
the ANN model’s accurate fit across different parameter combinations. This indicates the
model’s ability to handle complex interactions among process parameters.
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Figure 14. Regression fitting performance of the ANN model.

The Taguchi method’s linear regression model struggles with accuracy when nonlinear
relationships and interaction effects are significant. In contrast, the ANN model can
effectively learn the complex parameter interactions, offering higher fitting accuracy than
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the Taguchi method. This capability is particularly valuable for real-time quality monitoring
and optimization in 3D printing.

Figure 15 shows the error distribution of the ANN model predictions on the training,
validation, and test datasets. Errors are centered around zero and follow an approximately
symmetrical distribution.
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Figure 15. Error distribution of the ANN model with different datasets.

The Taguchi method with limited experimental data and average effects tends to
struggles to achieve good predictive performance under different process conditions.
The resulting prediction errors range from 0.194 to 0.326 µm. In contrast, the ANN
model demonstrates strong generalization ability, as evidenced by its consistently low
error distribution.

5.2.4. ANN Optimization of Printing Process Parameters

To further optimize the 3D printing process parameters, this study uses an ANN
model to explore the application of inverse modeling, taking nozzle temperature as an
example. This is because, as observed in previous experiments, nozzle temperature has a
significant impact on surface roughness. This parameter directly affects material melting,
layer bonding strength, and ultimately the surface roughness of the printed product.
Variations in this parameter during the printing process can lead to unstable quality and
increased material waste. Therefore, controlling the nozzle temperature is important for
maintaining high-quality printing and reducing defects.

In this study, the input and output of the ANN model were reversed. Surface rough-
ness was used as the input, while nozzle temperature was selected as the output. With
other process parameters such as print speed, environmental temperature, and bed tem-
perature kept constant, this approach allowed the model to predict the optimal nozzle
temperature required to achieve the target surface roughness. Figure 16 compares the
predicted and actual nozzle temperatures, showing a high degree of consistency with
minimal prediction error.
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Figure 16. Comparison of predicted and true values of nozzle temperature using the inverse
ANN model.

This inverse modeling approach highlights the ability of the ANN model to go beyond
traditional forward prediction, providing a practical tool for real-time process optimization.
By accurately determining key parameters such as nozzle temperature, the system helps
improve consistency in print quality and minimize trial-and-error adjustments.

6. Conclusions
In this paper, we successfully developed an intelligent cloud monitoring system based

on IoT, SharkNet, and ANN technologies for the smart manufacturing field (multiple
3D printing scenarios as an example). The results show that the system has significant
achievements in real-time, reliability, scalability, and process optimization. The main
contributions are summarized as follows:

1. System performance: Our experimental results show that the 5G wireless link of the
SharkNet network has a latency of 40–50 ms under moderate load (comparable to the
performance of Ethernet, which is widely used today). Secondly, the transmission
reliability is 99.8%. Therefore, the SharkNet network provides a trustable solution for
fieldbus applications in smart manufacturing and Industry 4.0.

2. Prediction accuracy: We found that based on SharkNet, the ANN model performs
better in 3D printing quality monitoring and prediction, with an average prediction
error of surface roughness less than 17.2% and a reduction of 88.5% compared to
the traditional method. By learning the complex relationship between print param-
eters and print results, the model can assist the system to achieve precise dynamic
optimization of parameters and further complex intelligent decision-making.

3. Operational efficiency: The results show that the system is able to adjust process
parameters in a timely manner, which significantly reduces downtime and thus
improves productivity in manufacturing, among other things. This is due to the fact
that multiple sources of data provide solid data support for subsequent real-time
analysis, and the high performance of the SharkNet network allows the system to
react more quickly to abnormal processes.

To further cope with the inevitable high load scenarios in the future, future work
will upgrade the commercial core network currently in use to a dedicated core network to
further reduce SharkNet latency jitter and further improve its other performance metrics,
including reliability. In addition, we will also try to integrate other machine learning models
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to predict network congestion in SharkNet and further enable dynamic optimization of the
performance of the network itself, so that the network can further support more device-
dense and complex smart manufacturing scenarios.

In the long run, this will lay the foundations for a new production model that is
data-driven and intelligently autonomous. A high-performance SharkNet communication
network, together with artificial intelligence and digital twin technology, will drive factories
towards intelligent autonomy. In addition, this will lead to a more efficient use of resources,
a reduction in costly waste, and a further promotion of sustainable production methods, all
of which are in line with the ambitious goals of Industry 4.0.
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3D Three-Dimensional
ANN Artificial Neural Network
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