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Abstract: Battery energy storage systems (BESSs) and plug-in hybrid electric vehicles
(PHEVs) are essential for microgrid operations to be financially viable. PHEVs can serve as
mobile storage devices, storing excess energy during times of low demand and delivering
it during times of high demand. By offering reliable on-site energy storage, BESSs improve
cost efficiency by allowing the microgrid to store cheap, off-peak electricity and release
it when prices increase. To minimize generation costs and alleviate grid stress during
periods of high demand, load-shifting policies shift inelastic loads to off-peak hours when
energy prices are lower. When combined, these tactics support dependable, affordable,
and effective microgrid management. A recently developed RIME algorithm is used as
the optimization tool to reduce the total operating cost (TOC) of an MG system for three
cases and three situations. The cases emphasize a modified load demand style influenced
by the optimal load-shifting method (OLSM) and order characteristics load-shifting policy
(OCLSP), whereas the situations refer to the inclusion of ESS in the MG system. The TOC
decreased from $2624 without ESS to $2611 and $2331 with PHEVs and BESSs, respectively.
These costs were further reduced to $1192, $1162, and $1147, respectively, when OLSM
was implemented to restructure the base load demand. Additionally, a balance between
a minimal TOC and carbon emission was obtained when an OLSM-based load demand
model was used with BESSs. The RIME algorithm outperformed many recently developed
algorithms and is consistent and robust, yielding better quality solutions.

Keywords: BESSs; PHEV; OLSM; microgrid; RIME optimization

1. Introduction

Recent years have seen a worldwide grid revolution driven by the increased partici-
pation of renewable integrated distributed generation (DG), the adoption of government
policies, and crucially, the modernization of grid technology. The concept of a microgrid
has been established to enhance the advantages of the electrical utility system by facilitating
energy integration. A hybrid microgrid, capable of operating in either an off-grid or a
grid-connected mode, is formed by integrating several distributed generators (DGs) with
diverse loads that operate near an electrical border. The microgrids may be linked to
either low- or medium-voltage distribution networks. For rural communities, an off-grid
microgrid system is more economically advantageous than a grid-connected operation.
The operation of a grid-connected microgrid as an off-grid may be achieved by isolating
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the microgrid from the main grid during maintenance or times of significant fault. The
off-grid systems provide many benefits like the reliable provision of electricity to the end
user, proper coordination with local communities for the auxiliary power system, and the
efficient utilization of renewable energy-based distributed devices.

1.1. Literature Review

For the effective management of a microgrid, using the concept of multi-agents, a
new coordinated dispatch model has been given [1]. Here, transparency in the data
among the components of the microgrid alleviates the operational issues so the coordinated
management of the load, battery, and power sources can be achieved. A model-based
online optimum control approach [2] can be used to achieve optimal scheduling choices for
energy management systems (EMSs). A unique two-stage distributionally robust model
is proposed [3] for the efficient model and management of islanded microgrid systems,
a subject that has been largely overlooked. To address the variable characteristics of
renewable energy, the project strategy and operational decisions are optimized by reducing
both expenditure and operating expenses. The optimization of battery performance [4]
operations in both stand-alone and grid-connected DC microgrids (MGs) with photo voltaic
generators operating at the maximum power point has been investigated. Study paper [5]
chose several grid involvements and evaluation methodologies, including the impact of
valve point loading and the unpredictability of wind energy, to increase the intricacy and
applicability of the study. The author in [6] proposed a robust methodological approach
for developing optimal patterns of hybrid microgrid systems (HMGs). A new hierarchical
model for dynamic scheduling to wind photovoltaic storage microgrid was proposed in
the research article [7], which used colored Petri nets (CPNs). This technique facilitates
thorough oversight of information flow and optimizes energy management.

It evaluates the impact of variable price elasticity on increasing operation costs for
decentralized producing units and the pricing for utility electricity transactions. In [8], an
efficient economic dispatch approach has been considered for a grid-connected microgrid.
A hybrid intelligence technique was formulated for the development of a DSM method-
ology [9] that minimizes the generation costs and reduces the pollution caused by DERs
inside a grid-connected LV microgrid system. In research article [10], bi-level optimization
was utilized for the minimization of operational costs. This work utilized a novel hybrid
swarm intelligence algorithm, which has been shown to be successful in solving a wide
range of optimization difficulties to optimize power systems.

Research paper [11] communicates a stochastic expert methodology dedicated to cost
reduction in overall operations for designing the optimal energy management strategy of a
grid-connected low-voltage microgrid, accounting for both the charging effect of plug-in
hybrid electric vehicles and the optimum sizing of the battery energy storage systems.
Article [12] provides the ability to study both the internal and the external markets in order
to allow the successful participation of MGs in energy trading, including energy exchanges
between MGs and the utility grid (UG). Energy pricing was analyzed as two competing
objectives: a microgrid’s aspiration for increased economic efficiency by lowering the cost
of purchases and dependency on utility grids and the distribution network operator’s goal
to maximize profit from the applied market. Paper [13]’s necessities are concerned with the
objective of minimizing an MG system’s operating costs via proper energy management
(EM) whilst integrating DG, BSS, and PHEVs, and appropriate EM also determines optimal
BSS size. An energy consumption modeling approach for large-scale consumers was created
in study [14]. This approach included the examination of renewable energy resources,
microturbines, energy storage strategy, and bilateral contracts centered on power exchange.
The demand-side management, reduction in the expense of energy storage, and related
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expertise would primarily benefit larger firms. Study [15] investigated the optimization of
the multi-timescale management of CMES at the power and energy stages, respecting the
interplay between the source and load. Article [16] discusses a reduction in operating costs
and emissions for a daily schedule together with incorporation of load demand, market
pricing, and different renewable energy sources for generating electricity. To address the
complex optimization problem, this paper introduces the slime mold algorithm. Three
scenarios are then tested for SMA, with both operating cost reduction and emission savings
taken into account as two objectives. In [17], the authors discuss a novel IDSM approach
for an energy system that combines a non-cooperative game framework with multi-energy
estimating practices. In study [18], the adjusted loads on both user and system sides
were used by the devices to formulate a model for generalized energy storage (GES). The
comprehensive design integrates electric vehicles, batteries, flexible resources, and a control
system for temperature regulation. Two modifications were implemented in the slime mold
algorithm (SMA) to enhance its capabilities in exploration and exploitation, as detailed in
the publication [19]. A position update mechanism using sine and cosine functions and
opposition theory was utilized.

Conversely, the intricacy of the isolated microgrid may be understood by including
different types of loads such as electric vehicles (EVs) during different charging modes,
which can result in energy imbalance in off-grid systems. Batteries are likely indispensable
for future power transmission networks as very critical components. Considering its
time-dependent energy storage properties and higher power capacity, this technology has
attracted interest in many common applications, including electric vehicles (EVs).

To minimize operational expenses and harmful emissions, this paper [20] proposes an
optimal management system for microgrids that integrate electric vehicles with distributed
power production. The research paper [21] presents a novel viewpoint on the vehicle to
grid (V2G) technology inside a microgrid, which integrates a demand-side response (DSR)
algorithm. An analysis of the microgrid control system deployed on a physical testing
platform is presented. A sustainable approach for the management of the allocation and
scheduling of solar distributed generation (SDG), public fast-charging stations (PFCSs),
and battery energy storage systems (BESSs) has been proposed by the researchers [22].
An optimal solution is achieved by reducing the energy loss, voltage deviation index,
investment, and operation maintenance expenses of SDG, PFCS, and BES and considering
battery degradation.

According to study analysis [23], the radial distribution network is integrated with
the road network to optimize the positioning of electric vehicle charging stations (EVCSs).
The weightage of a site is determined by the charging demand, which is entirely influenced
by factors such as residential areas, traffic intersections, and the strategic placement of
supermarkets. To optimize the integration of electric vehicles (EVs) in the targeted area
while minimizing the financial investment required for their installation, it is crucial to
minimize energy loss, decrease voltage deviations in the power network, and reduce
land costs.

To manage the increase in future demand, the researchers in paper [24] proposed a
reliable and durable approach to determine the capacity and placement of fast-charging
electric vehicle (EV) stations, as well as the best-planned multistage extension of the dis-
tribution network. Research article [25] presents an efficient energy management (EM)
approach for a hybrid AC-DC microgrid (HMG). It is divided into two phases: forecasting
and scheduling. The validity and performance of the suggested framework are tested by
using IEEE standard test systems. The ITLBO algorithm is also used to determine the
generating cost and the optimal power dispatch of the HMG. A new approach to the boost
in energy management and scheduling within a microgrid is proposed in article [26]. An en-
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hanced gradient-based optimization algorithm, IGBQO, is used to optimize the production of
renewable energy resources with the aim of minimizing the operational cost. In article [27],
a detailed technoeconomic analysis is carried out to study the impact of price-dependent
demand response programs on optimum scheduling of microgrids in nonlinear and lin-
ear load models. The DSM strategy in research paper [9] utilizes the hybrid intelligence
technique, proposing an approximate solution between minimized generation cost and
pollutant emissions within a five-unit distribution system and an LV microgrid system.
Study [28] presents comprehensive techno-economic analysis for the clean and efficient
functioning of two differentiated grid-connected low voltage (LV) microgrid (MG) systems.

1.2. Novel Contribution Bridging the Research Gap from Exhaustive Literature Survey

i. Restructuring the base load demand model according to two different types of loads
shifting policies thereafter comparing the MG system efficiency parameters such as
reduction in ultimate load and enhancement in load factors.

ii. Implementing the latest RIME algorithm to evaluate the minimum total operating
cost (TOC) of the MG system without energy storage systems (ESSs), with PHEVs,
and with battery energy storage systems (BESSs).

iii. Reinvestigating point (ii) for various load demand models as mentioned in point
(i) above.

iv. Obtaining a trade-off between minimal TOC and pollutants emitted for the MG
system with PHEVs and BESSs.

V. Conducting a performance analysis of RIME algorithms with other recently devel-
oped metaheuristic algorithms.

1.3. Arrangement of the Paper

In Section 2, we define the objective functions and constraints of the problem, which
include the mathematical modeling of BESSs and OLSM. The optimization method is
described in Section 3. The results and discussion, including the validation of the methodol-
ogy and quality assessment of all results, are presented in Section 4. Section 5 concludes by
summarizing important findings and limitations that guide the way forward in furthering
the research endeavor.

2. Objective Function
2.1. Formulation of Objective Function

An expression for the cost function of a microgrid (OF1) linked to the main grid at ¢
hours is given by Equation (1) [5], where X, represents the cost coefficient of the ath unit,
Py represents the power output of the ath at time £, S¢;i4; represents the electricity tariff,
and P,y represents the power output of the main grid. The quantity of pollution-emitting
gases, namely carbon dioxide, discharged into the environment by traditional fossil fuel-
based units (OF2) may be expressed as Equation (2) [5], where Q, represents the quantity of
pollution-emitting gases by unit a, and Qs represents the quantity of pollution-emitting
gases by the main grid. To attain equilibrium between two separate objective functions
with specific objectives, Equations (1) and (2) can be merged into Equation (3) [5]. The
variable can range from O to 1. OF1,,;, and OF2,,;, represent the optimal values derived
from minimizing Equations (1) and (2), respectively. OF3 represents the balanced economic
emission dispatch measure. The values of OF1,,x and OF2,,,y are derived by replacing the
optimum values obtained from minimizing Equations (1) and (2). The optimal values of
OF1 and OF2 may be derived by appropriately taking into account the ideal parameters
for OF1,,;, and OF2,,;, in the two equations. Several constraints on the operation may
be represented as Equations (4)—(7) [5], where LD; is the load demand at time ¢, and
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Uyes t is the power output of the renewable energy source (RES) at time ¢. Estimating the
projected production of renewable energy sources (RESs) requires taking into account their
intermittent nature.

24

OF1 = Z Z (Xu X Pyt + Sgrid,t X Pgrid,t) 1)
t a=1
24 n
OF2 = Z 2 (Qu X Pa,t + Qgrid,t X Pgrid,t) (2)
t a=1
OF1 - OF1,,; OF2 — OF2,,;
OF3 = v x i 1- o 3
U [omm - OFlmiJ A=) X [omm - Oszm] ®
n
Y Pyt =LD; (4)
a=1
n
2 Pa,t + ures,t + Pgrid,t = LDt (5)
a=1
Pa,min S Pa S Pa,max (6)
Pgrid,min < Pgrid < Pgrid,mux @)

2.2. Wind Power Output Modeling

The power output of a wind turbine is contingent upon wind velocity. Given that the
speed of the wind is stochastic inconsistent, the power output of wind turbines is thus an
unpredictable quantity. The power output of the wind turbine is dependent on the speed
of the wind (vy,) [29]:

0, Uy < U

Py = m+ 7/17]1;0/ Ui < Uy SO ®)
r Or < U < Ugo
0, Uy < Vo

m = Prvgi/(vei —vr),n = Pr/ (v — 0) )

The behavior of wind speed may be modeled using the Weibull distribution function,
which is expressed as follows [29]:

Nk k
floy) =1-— exp((vca) ) —i—exp((—vCa)) ), where vy < Vg, Uy > Ueo (10)

floy)=1- exp<—<v;i)k> —exp (—(?)k) where v, < Uy < Veo (11)

The PDF for the WT output can be expressed as follows:

N = N
f(Pw) = k(pWTm> exp [ (PWTm) ], where v < Uy < Uy (12)

c nc nc
Ui k Veo \ K
f(Pw=0)=1—exp (7) +exp| — (T) , where vy < Vo, Uy > Ueo (13)

f(PW =P)= exp(_(?):)") — €XP<— <Ucco>k>/ where vy < vy < Veo (14)
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Tw —1.086
= (%) 1
T
c (16)
r(% + 1)

2.3. PV Solar Power Output Modeling

The PV power output depends on the solar irradiance (si). Meanwhile, solar irradiation
itself is a stochastic unpredictable; the power of photovoltaic systems is, therefore, an
undefined quantity. The stochastic characteristics of solar irradiation are represented in
Equation (17) by employing a beta distribution function [29]:

f(S) = rr(f,zs)iﬁgj)sifs‘l, 0<S <1,a>0ps>0

17)
= 0, Otherwise

«s and Bs are derived with the help of the standard deviation (cs) and the mean (us)
of solar irradiation as follows [29]:

I (“‘j’)” - 1) (18)
1—
Bs = (1—ps) ((U”)” - 1) (19)
_ T(as+Bs) [ Ppy \¥! Py \Ps1
feev) = it () (- ) (20)
= 0, Otherwise

2.4. Formulation of PHEVs Charging and Discharging

Plug-in hybrid electric vehicles (PHEVs) have a limited battery capacity. Consequently,
they need charging stations that provide expedited access. As a result, charging stations are
established in public and residential zones to mitigate this problem. The charging demand
for PHEVs is random because it depends on several factors. The proposed regulated and
smart charging method effectively deals with the need of charging PHEVs to reduce peak
load, as illustrated in the following calculation [30]:

Cr.:
Min <G”‘“ x pPHEV(t)) (1)
XPHEV
The coefficient apygy in use currently is the feasibility of supplying PHEVs at a suitable
point of charge. pPHEV (t) is the average kW PHEV charging demand per hour.
The method of controlled charging [30]:

T,
Y pPHEV(t) =E (22)

The sign “E” denotes the total energy need of PHEVs quantified in kilowatt-hours
(kWh). The letter “t” denotes the time index. If the duration of T; to T, lies during the
off-peak period, it is known as the controlled charging of PHEVs. If the duration of T; to
T lies during the period when the electricity price, Cg,ig4, is lower, it is known as the smart
charging mechanism of PHEVs.
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The state of charge (SOC) of the battery in a PHEV must be within its minimum limits
when the PHEV arrives at the charging station and the maximum limit during the PHEV’s
departure from the charging station, as mentioned in Equation (23) [30].

SOCT = SOCppin; SOC™ = SOCpmax (23)

The value of pPHEV(t) is defined to lie between the lowest and maximum limits of
pPHEV and may be articulated as follows [30]:

pPHEV,min < pPHEV (t) < pPHEV,max (24)

pPHEV,min and pPHEV,max denote the minimum and maximum hourly demand for
PHEYV in kilowatts, respectively.

2.5. Battery Energy Storage Systems

The types of operation modes for BESSs include charging, discharging, and idle modes.
This means BESSs can exploit off-peak hours for charging and peak hours for discharge and
seize low and high energy costs for charging and discharge, respectively. It takes advantage
of the lower need for load as well as cheaper electricity during times of storage, but the
stored energy is deployed during peak demand times to serve load needs. Equation (25)
describes the charging or discharging power of the battery energy storage system under
maximum charging and discharging constraints. In this way, it can charge at the peak solar
power availabilities of the day and discharge at the peak loads of the day [31].

0 < Py < PR -

OSUtB’mPt <Pp gmedgteT

B+,m
utB,m + Z)iB,m <LmedteT (26)
(”lgpéam_ 1?7+ o >
SOC]tB m SOC%:; + %At; (27)
’ g B,m
meodgteT

socyr, < SOCh,, < SOCy%,;SOCy, = SOC)

B’ (28)
med;teT

The binary variables, utB,m and UtB,m, inhibit the concurrent charging and discharging
action in Equation (26). The battery’s state of charge may be assessed using Equation (27),
which quantifies the amount of stored energy in the battery. SOC g,m is limited by positive
and negative limits to prevent battery degradation and maximize the life cycle of service.
The battery operating limit associated with the beginning and end state of charge of the
BESSs is provided in Equation (28) [31].

2.6. Optimal Load-Shifting Method (OLSM)

OLSM is an efficient economic mechanism that entails relocating flexible loads to
times when utility bills reduce their rates [32]. The use of OLSM systems may provide
many advantages for the electrical system. Cost reduction, load factor improvement, and
peak demand management may be achieved without affecting the total load demand. An
in-depth examination of the OLSM approach and its mathematical models for optimization
is presented in this part. The load-shifting technology is the most often used among the
six available methods. The load-shifting method integrates the approaches of peak cutting
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and valley filling. Utilizing changeable loads at the end of consumers enables the efficient
transmission of electricity demand. The use of the load-shifting approach allows for a
rational modification in energy usage by transferring regulated loads from periods of high
to low energy availability. In Figure 1, several methods used for load shaping are shown.

a) Peak Clipping d) Flexible Load Shape
-
£ £
: g 7 M-E \
8 2 " ALe
o =\
Hour of Day v v Hour of Day
b) Valley Filling e) Strategic Growth
® osLM *
= °
=1 =
g - < ¢ Optimal Load o > g
5 Shifting Method é
o ©
Hour of Day Hour of Day
» 4
¢) Load Shifting f) Conservation
5 5
Q Q
Hour of Day Hour of Day

Figure 1. OLSM implementation methods [32].

The fundamental components of load modeling using OLSM are as follows:

Step 1. Specify the varying demand across a time interval of T hours.

Step 2. Provide the utility’s time of use (TOU) rate for T hours.

Step 3. When shiftable loads are not expressly indicated, modify the OLSM participa-
tion rate.

Step 4. Identify the loads that are capable of being moved and those that are not,
considering the level of involvement in OLSM. For example, for each time index, x%,
OLSM shows that x% of demand may be moved, while the remaining is a non-shiftable,
load which is (100 — x)%. The optimization of the load shape is achieved by taking into
account the elastic load demand.

Step 5. Obtain the minimum and maximum values, along with the total of the inelastic
load demand. Special attention should be given to the need to optimize the elastic load.

Step 6. Minimize employing Equation (29), using the optimization technique [32],

T

Minimizez {cé X (elstipaq at " hour + enelst;y,g at t" hour)} (29)
=1

where

0 < elstjy,q at " hour < maxmium elastic load

T

Y (elstload at " hour + enelst;p,y at £ hour)

T
t _
Z Ploud -
t=1 t=1
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Step 7. Obtain the modified load model developed from the OLSM by adding the
non-shiftable load at all time indices to the optimum forecasted values of the demand for
the shiftable load.

The OLSM level is established by the proportion of a regulated or elastic load relative
to the overall load demand. The OLSM level may range from 0% to 100%, depending upon
the elastic load. The anticipated load demand is the load demand that results in minimal
operational expenses. To achieve the projected load, it is anticipated that the total load need
is either elastic or regulated. Despite its lack of reality, it is used to evaluate the robustness
of a work or plan.

3. RIME Optimization Algorithm

Rime ice occurs when water vapor in the atmosphere collects, shrinks, and freezes
at a certain temperature onto various surfaces like tree branches [33]. Figure 2 illustrates
that sections of this area face annual landscape changes where rime ice is developed due to
specific climatic features and geography.

Figure 2. (a,b) Hard-rime puncturing [33].

In this part, the impacts of the freezing coefficient, wind speed, growth time, and
cross-sectional areas of linked materials are investigated, and the growth process of every
single rime strip is simulated. RIME has four different stages of operation: initializing
the RIME mass, formulating a policy for soft rime exploration, executing a process for a
hard rime puncture, and lastly, refining the greedy selection procedure. The initial phase
involves setting up the entire rime population R. As per Equation (30) [33], the population
consists of n rime agents Si, each having d rime particles x;;, where j runs from 1 up to an
ordinal number for the rime particle, and i generally denotes the ordinal number of the
rime representative.

X111 X120 0 Xy
X21 X2 v Xpj

R=1. . . (30)
Xit Xigoocc Xjj

As is clear from Equation (31) [33], the position of the rime particles is obtained by
temporarily modeling the process of condensation of rime particles and subsequently
converting the rime particles keen on soft rime agents, which satisfy the five moving
criteria for rime particles.

Rgew = Rbest,j + 11 cos Q‘B(I’l(UbZ] — Lbi]‘) + Lbz‘j), rp < E (31)

Here, i and j signify the jth element of the ith rime agent, whereas R;}ew is used to
represent the new position of the updated particle. R is the rime population, and Ry, ; is the
jth particle of the optimal rime agent. The value r; is a stochastic variable within the range
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(=1, 1) and, along with cosf, influences the trajectory of particle movement depending
upon the number of repetitions, as shown in Equation (32). The environmental variable
ensures that an algorithm will converge because it monitors the number of iterations in
order to find the repeated external influences as indicated by Equation (33) [33]. The
adhesion coefficient “h” is a stochastic variable in the range from 0 to 1. The distance
between the centers of two rime particles is controlled by this “h”.

t

=X I0%T

(32)

In this context, “t” denotes the latest number of iterations, whereas “T” signifies the
algorithm’s maximum iteration capacity.

ﬁzl{w?t]/w (33)

Within the context of this scenario, the step function serves as the mathematical
simulation, p signifies rounding, and the conventional choice of w is 5 to determine the
maximum number of segments in the step function. UBij and LBij represent the upper and
lower limits of the escape place, correspondingly, and are managed to restrict the successful
region of element migration. This is accomplished by referencing Equation (31) [33]. As
per Equation (34), the quantity E, indicative of the degree of connection, directly influences
the possibility of condensation of an agent. This quantity escalates with an increase in the
number of repetitions.

E=\/(t/T) (34)

1 is a stochastic number in the period [33] that works with E, which oversees managing
particle condensation. It is an indicator of whether the locations of the particles have or
have not been changed.

The formation processes of hard rime are more direct and uniform with extreme
gale conditions than soft rime. The process of condensation and transformation of a rime
particle into solid rime indicates an initiation point of the puncturing phenomena and
signifies a procedure for puncturing the solid rime. This can be applied to revise the
algorithm amongst agents, thus allowing algorithmic particles to exchange and enhance
both the rate of convergence of the algorithm as well as its ability to escape local optima.
Figure 3 illustrates the puncture phenomenon, and Equation (35) gives the formula for
particle replacement.

R = Ryest,j 13 < " (S)) (35)
_ N
L
L
. $3
& ¢
(' D,
o 9 o
L5 ‘\\_-_\"\

Figure 3. Hard rime puncturing [33].
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4. Results and Discussion

4.1. Preliminary Elaboration for the Test System, Software Environment Studied in Varying
Situations and Cases

The MG features three microturbines, a fuel cell, two wind turbines, and a solar power
system, all integrated with the grid. Three cases and three situations, as mentioned in
Table 1 were studied wherein minimum fuel and electricity costs, carbon emissions, and
a trade-off between minimal cost and emission were obtained using the RIME algorithm.
A single-line diagram of the same is shown in Figure A1 of the Appendix A section. The
limits of the fuel cell, microturbine, and grid along with the cost and carbon emission
constant are tabulated in Table 2. The electricity tariff and load demand of the system are
depicted in Figure 4. Figure 5 represents the likely hourly productivity of RES in a day
considering hostile weather conditions. Tables 3 and 4 display the permissible operating
constants of the PHEVs and BESSs, respectively. The study is executed in MATLAB 2017a
environment in a laptop with an Intel i5 processor and 8GB RAM. The recently developed
RIME algorithm [33] is used as the optimization tool for the work due to its simplicity
of execution and swift and robust nature. The population size was 80, and the stopping
criteria were 1000 iterations.

Table 1. Studying cases and situations.

Cases Situations
1 For base load profile Without energy storage systems
2 OCLSP-based load profiles With PHEVs
Optimal load-shifting method .
3 (OLSM) load profile With BESSs

Table 2. DER parameters associated with the MG system.

DER Lower Bound (kW) [25] Higher Bound (kW) [25]  Bids (€ct/kW) [25] = Carbon Emission (gm/kW)
FC 9 60 0.294 0.1033
MT1 9 60 0.269 0.7620
MT2 50 250 0.215 0.7620
MT3 65 250 0.275 0.7826
Utility —80 80 Figure 4 0.5546

Load Demand and Electricity Price Over Time
900 T T T

T
=—&—Load Demand
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Figure 4. Load demand and electricity price for the subject MG system [25].
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Figure 5. Forecasted power output from renewable energy sources [25].

Table 3. Description of PHEV parameters.

Parameters

Numerical Values

Default Arrival Time
Default Departure Time
Arrival SOC
Departure SOC
Battery Capacity
Charging/Discharging Power
Charging/Discharging Rate

0900 HRS
1700 HRS
20%
90%
47.4 kWh
+12.5 kW
Same as Electricity Price (Figure 2)

Table 4. Description of BESS parameters.

Parameters Numerical Values
Battery Capacity (kWh) 100
Initial SOC 50% of Battery Capacity
SOChin 10% of Battery Capacity
SOCrnax 90% of Battery Capacity

Charging/Discharging Efficiency
Charging/Discharging Power
Charging/Discharging Rate

90%
+20 kW
0.38 €ct/kW

4.2. Case Studies for Different Situations

Case 1: For the base load profile, the fuel and electricity costs were minimized for all
three situations using the RIME algorithm. The minimum fuel and electricity costs were
$2624, $2611, and $2331 for Situations 1, 2, and 3, respectively. Due to the involvement
of energy storage systems, the TOC is seen to be decreasing in the latter two situations.
However, PHEVs serve as an additional source of energy storage, which charges and
discharges exchanging power as per the G2V and V2G strategy during its limited time in
the charging station (from the 9th to the 17th hour in this work). BESSs, on the other hand,
are a part of the MG system that contributes to the total load demand and is operational
throughout the day. Hence, the TOC is lesser for Situation 3 compared to Situation 2.
Figures 6-8 show the hourly output of DERs without ESS, with PHEV, and with BESSs,
respectively. PHEVs can be seen operating between the 9th and 17th hour, whereas BESSs
operate throughout the day. Figure 9 shows that the SOC constraints, as mentioned in
Tables 3 and 4, were maintained by the PHEVs and BESSs, respectively.
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Figure 6. Hourly output of DERs for minimum TOC in Case 1, Situation 1.
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Figure 7. Hourly output of DERs for minimum TOC in Case 1, Situation 2.
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Figure 8. Hourly output of DERs for minimum TOC in Case 1, Situation 3.
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Figure 9. SOC for PHEV and BESSs in Case 1.

Case 2: A recently developed OCLSP [32] employs straightforward procedures to
restructure the predicted load demand and create four distinct and independent modified
load demands based on the ordered arrangement of the base load, in contrast to the
other DSM and DR policies, which use laborious and complicated methodologies and
even specialized optimization tools to shift or curtail load demand. The nicest thing
about OCLSP is that, although there are observable increases in the load factor (PAR)
and a decrease in the system’s peak demand, the overall and average load demand at
the end of the day stays the same. Assuming that 30% of the loads are elastic in nature,
OCLSP was implemented to obtain four different load profiles, as shown in Figure 10.
Table 5 shows a 5% decrement in the peak load from 821 kW to 776 kW. There was a
significant improvement in the load factor as well. The TOC was found to be lower for
the descending load profile among the four for all the situations examined, as depicted in
Table 5. Figures 11 and 12 show the hourly output of DERs when the TOC was $2039 and
$1758 for Situations 2 and 3, respectively.

OCLSP based Load Profiles

900
Base Load Profile
L - — - = Ascending Profile
800 Descending Profile
Mirror Profile
700 - Average Profile
= 600 -
=
o
8
S 500 -
400 -
300 -
200 1 1 L 1 I
0 5 10 15 20 25

Hours

Figure 10. OCLSP-based load demand curves.
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Table 5. Load profile characteristics for Case 2 and corresponding TOC.
Ascending Descending . . .
Base Load Profile Profile Mirror Profile Average Profile
Total Load (kW) 12,846.92 12,846.92 12,846.92 12,846.92 12,846.92
Average Load (kW) 535.2883 535.2883 535.2883 535.2883 535.2883
Peak Load (kW) 821.5 776.0793 793.3375 804.6625 791.3598
Load Factor 0.6516 0.6894 0.6747 0.6653 0.6764
TOC Situation 1 ($) 2624 2058 2050 2505 2203
TOC Situation 2 ($) 2611 2045 2039 2493 2190
TOC Situation 3 ($) 2331 1795 1758 2214 1908
700 r T T T T T
I Fc
L I MT1 |
600 [ M2
T3
500 - [ Grid |
—~ [ PHEV
2 00} 1
s
=2
5 300 1l
O
£
T
0
-100 - : ‘ : ; :
0 5 10 15 20 25
Hours
Figure 11. Hourly output of DERs for minimum TOC in Case 2, Situation 2.
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Figure 12. Hourly output of DERs for minimum TOC in Case 2, Situation 3.

Case 3: Assuming that 30% of the load every hour is shiftable in nature, OLSM was
performed as mentioned in detail in Section 2.6 above. OLSM is an optimization-based

load-shifting method that is entirely dependent on the hourly electricity market price set

by the utility. Hence, Case 3 is a bi-level optimization framework wherein the optimal
load-shifting is performed in the first level by the RIME algorithm, and thereafter, the
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minimization of TOC is performed. Table 6 shows improvement both in TOC and the
system performance of the MG. A 16% decline in the peak load was observed, which
also resulted in a 19% improvement in the load factor of the MG system when the load
demand was modified using OLSM. Figure 13 shows the base load demand and the
modified load demand as per OLSM. There was also a major decline, in the range of
50-58%, in the TOC for all three scenarios, as seen in Table 6. Figures 14-16 depict the
hourly outputs of DERs when the minimum TOC was obtained using the RIME algorithm
for Situations 1, 2, and 3, respectively.

Table 6. Load profile characteristics for Case 3 and corresponding TOC.

Parameters Base Load OLSM Percentage
Improvement
Total Load (kW) 12,846.92 12,846.92 NA
Average Load (kW) 535.2883 535.2883 NA
Peak Load (kW) 821.5 689.7169 16.06% J.
Load Factor 0.6516 0.7760 19.09% T
TOC Situation 1 ($) 2624 1192 58% |
TOC Situation 2 ($) 2611 1162 55.5% |
TOC Situation 3 ($) 2331 1147 50.79% |
900
800
i 700
©
E 600
o 500
a
® 400
S
300
200

1234567 8 9101112131415161718192021222324

Hours
=== Base load == @== OLSM

Figure 13. Modified load demand according to OLSM.
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Figure 14. Hourly output of DERs for minimum TOC in Case 3, Situation 1.
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Hourly Output (kW)

Figure 15. Hourly output of DERs for minimum TOC in Case 3, Situation 2.

Hourly Output (kW)

Figure 16. Hourly output of DERs for minimum TOC in Case 3, Situation 3.
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The trade-off between minimum generation cost and pollutant emissions: The initial

step to obtain a trade-off balance between minimum TOC and emission is to minimize the

fitness function, which corresponds to the total carbon emission of the MG system which

is represented by Equation (2). Upon minimizing the same using the RIME algorithm for

Case 1, Situations 2 and 3, the minimum carbon emission was found to be 7555 g and

7568 g with PHEVs and with BESSs, respectively. Figures 17 and 18 represent the figures

that correspond to the hourly output for DERs with minimum emissions. It can be seen

that DERs with lower carbon coefficients, for example, the grid and FC, as mentioned in

Table 2, are utilized to the fullest to deliver power, and hence, the grid is always positive in

this case. Although there is no carbon coefficient associated with the ESS, their negative

values are only to fulfill their SOC constraints.
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Figure 17. Hourly output of DERs for minimum emission in Case 1, Situation 2.
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Figure 18. Hourly output of DERs for minimum emission in Case 1, Situation 3.

Thereafter, Equation (3), which is a normalized equation for minimum TOC and
emission was minimized by fixing the weightage factor value at 0.5. This means that equal
importance was distributed between TOC and emission while minimizing Equation (3)
with the RIME algorithm. The same was done for Situations 2 and 3 and Cases 1 and 3.
The results can be seen in Table 7. The balanced cost emission pair considering PHEV
was ($2793, 7694 gms) for base load and ($1495, 7780 gms) for OLSM-based load profiles.
Figure 19 depicts the hourly output of DERs when a balanced minimum cost and emissions
were obtained for Situation 2, Case 3 (with PHEV for OLSM-based load). Likewise, the
balanced cost emission pair considering BESSs was ($2544, 7719 gms) for base load and
($1556, 7790 gms) for OLSM-based load profiles. Figure 20 depicts the hourly output of
DERs when a balanced minimum cost and emissions were obtained for Situation 3, Case 3
(with BESSs for OLSM-based load).
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Table 7. Fitness functions evaluation using RIME for different cases and scenarios.
Objective Function 1 Objective Function 2 Objective Function 3
(OF1) (OF2) (OF3)
Minimum 1\}’3[;)(11;:11;? Maximum l\élllnnlls?ll:: Balanced EB:riiasI:i:gi
Cost ($) Cost ($) Cost ($)
(gms.) (gms.) (gms.)
Situation 2 (with  Case 1 2611 8331 4697 7555 2793 7694
PHEV) Case 3 1162 8336 4540 7549 1495 7780
Situation 3 (with  Case 1 2331 8317 4642 7568 2544 7719
BESSs) Case 3 1147 8317 4617 7560 1556 7790
700 | : ‘ :
[ Fc
L = = I MTH
600 ] CmT2
[ T3
500 - = = [ Grid
= [ PHEV
5 400
2
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@]
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2 200+ I I I I I I I
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-100 U ‘ — = ‘ :
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Figure 19. Hourly output of DERs for balanced cost and emission Case 3, Situation 2.
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Figure 20. Hourly output of DERs for balanced cost and emission Case 3, Situation 3.

Non-parametric statistical analysis for RIME algorithm: RIME was executed 30 in-
dividual times while minimizing TOC during Case 1, Situation 1 along with five other
optimization algorithms and the results were recorded with elapsed time for attaining the
stopping criteria. Table 8 presents the minimum, maximum, and average values of TOC
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obtained with diverse algorithms. The minimum value of standard deviation indicates
the robustness of the proposed algorithm in minimum elapsed time. Figure 21 shows
the convergence curve characteristics when TOC was minimized for Case 1, Situation 1.
Figure 22 shows the box plot figure prepared with the statistical data from Table 8.

Table 8. Minimum, maximum, and average values of TOC obtained with diverse algorithms.

1\811) Algorithm M1n(1$1;1um Max(1$1;1um Average ($) STD Hits Time (s)
1 RIME [33] 2624.75 2624.94 2624.77 0.032 22 3.25
2 Seagull [34] 2626.99 2633.27 2629.73 1.6573 23 3.99
3 Rat [35] 2665.43 2786.2 2718.08 29.61 25 7.66
4 Reptile Search [36] 2704.71 2957.47 2831.21 64.42 24 8.44
5 Parrot [37] 3027 3265.24 3140.62 60.22 25 8.88
6 Aquila [38] 3077.61 3347.55 3183.69 67.2003 26 9.2
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Figure 21. Convergence curve characteristics when TOC was minimized for Case 1, Situation 1.
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Figure 22. Box plot based on the statistical data for minimum cost of various algorithms.
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5. Conclusions

The importance of energy storage systems for the cost-effective functioning of a low-
voltage MG system is examined in this work. Two energy storage systems, namely BESSs
and PHEVs, are involved in turns in the subject MG system. The involvement of energy
storage systems reduced both the costs and the carbon emissions of the MG system since
they have negligible carbon footprints. Between the two, PHEVs were involved only during
their limited duration of stay in the charging station, whereas BESSs operated throughout
the day. Also, PHEVs served as an additional load and relaxation in load demand during
V2G and G2V operations whereas BESSs were an integral part of the MG system and
operated throughout the day. Hence, cost and emission were simultaneously reduced more
in the case of PHEVs than BESSs. The optimal LSM was seen to be more cost-effective than
OCLSP in all the cases studied. RIME outperformed many recently developed algorithms
in robustness, efficiency, and consistency for delivering better quality solutions.

Limitations of the work and future scope: Future research on microgrid systems
may concentrate on many critical domains to improve their efficiency and flexibility. One
approach is to tackle the uncertainty in renewable energy production by using stochastic
models to reduce the unpredictability and intermittency of renewable energy sources inside
the microgrid. Moreover, integrating dynamic consumer behaviors, including demand-side
flexibility and incentives for load reduction, might enhance demand-side management
(DSM) tactics. Creating sophisticated control algorithms to manage uncertainties in the
state of charge (SOC) of plug-in hybrid electric vehicles (PHEVs), as well as their arrival
and departure timings and renewable energy inputs, is a viable avenue. The concurrent
use of PHEVs and battery energy storage systems (BESSs) as hybrid storage solutions
may be investigated to optimize storage capacity and operating efficiency. Moreover, the
implementation of load-curtailing policies and the evaluation of their efficacy against
current load-shifting procedures might reveal the most economical and consumer-oriented
demand-side management methods. Ultimately, including traditional distribution network
restrictions, voltage profiles, and power quality metrics would enhance the relevance of
these results to real-world situations, therefore reconciling theoretical models with actual
microgrid management.
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BESSs  Battery energy storage systems
PHEV  Plug-in Hybrid Electric Vehicles
OSLM  Optimal Load-shifting Method
TOC Total Operating Cost
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HMg Hybrid Microgrid

LV Low Voltage

DER Distributed Energy Sources
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