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S1. Computational Details 
Proteins are composed of peptide bonds and amino acid residues. The far-ultraviolet 

absorption spectra of proteins predominantly arise from the electronic excitations of their 
peptide backbones. These excitations are highly sensitive to surrounding environmental 
fluctuations, particularly the amino acid residues. A Frenkel exciton model based on a 
divide-and-conquer strategy can provide an effective approach for describing the elec-
tronic excitations [1–3]: 𝐻෡ = ∑ 𝜀௠௔𝐵෠௠௔ற௠௔ 𝐵෠௠௔ + ∑ 𝐽௠௔,௡௕𝐵෠௠௔ற 𝐵෠௡௕௠ஷ௡௠௔,௡௕             (S1) 

Here, m and n represent peptide bonds, while a and b correspond to two electronic 
excitations of the peptide backbones: the n→π* transition at approximately 220 nm and 
the π→π* transition at approximately 190 nm. 𝐵෠௠௔ற   and  𝐵෠௠௔  are the creation and anni-
hilation operators for electronic transitions between the ground and excited states of the 
peptide bonds, respectively. The excitation energy of the peptide bond, ε0, can be ex-
pressed as the sum of the excitation energy of an isolated peptide bond, ε0,ma, and the elec-
trostatic interaction energy with environment fluctuations, primarily the amino acid resi-
dues [4,5]: 𝜀௠௔ = 𝜀଴,௠௔ + ∑ ଵସగఌఌబ ∬ 𝑑𝒓௠𝑑𝒓௟ ቀ[ఘ೅,೘ೌ(𝒓೘)ିఘಸ,೘ೌ(𝒓೘)]∙ఘಸ,೗(𝒓೗)|𝒓೘ି𝒓೗| ቁ௟    (S2) 

Here, 𝜌்,௠௔  and  𝜌ீ,௠௔ represent the transition state and ground-state charge den-
sities of the peptide bond, respectively, while 𝜌ீ,௟  represents the ground-state charge 
density of the amino acid residue. l denotes the amino acid residue. The spatial coordi-
nates are denoted by r, with T and G referring to the transition and ground states. The 
electronic resonance coupling between excited states is given by [6]: 𝐽௠௔,௡௕ = ଵସగఌఌబ ∬ 𝑑𝒓௠𝑑𝒓௡ ఘ೅,೘ೌ(𝒓೘)ఘ೅,೙್(𝒓೙)|𝒓೘ି𝒓೙|             (S3) 

Equations (S2) and (S3) reveal that simulating peptide bonds under environmental 
fluctuations and dynamic structural evolution involves computationally expensive ex-
cited-state calculations and two-electron integrals. Addressing the high structural flexibil-
ity and vast conformational spaces of proteins remains a significant computational bottle-
neck. 

To tackle these challenges, approximate methods based on divide-and-conquer strat-
egies are commonly used. The dipole approximation, a generalized divide-and-conquer 
method, is an effective approach for simplifying electronic interactions [7-9]. Under this 
approximation, the excitation energy ε0,ma of a peptide bond is represented as: 𝜀௠௔=𝜀଴,௠௔+∑ ଵସగఌఌబ ቀ𝝁೅,೘ೌ·𝝁ಸ,೗|𝒓೘೗|య − 3 ൫𝝁೅,೘ೌ·𝒓೘೗൯(𝝁ಸ,೗·𝒓೘೗)|௥೘೗|ఱ ቁ௟           (S4) 

The coupling between excited states is similarly expressed as: 𝐽௠௔,௡௕=∑ ଵସగఌఌబ ቀ𝝁೅,೘ೌ·𝝁೅,೙್|𝒓೘೙|య − 3 ൫𝝁೅,೘ೌ·𝒓೘೙൯(𝝁೅,೙್·𝒓೘೙)|𝒓೘೙|ఱ ቁ௠ஷ௡௠,௡        (S5) 
Here, μT,ma and μG,l represent the transition dipole moment of the peptide bond and 

the ground-state dipole moment of the surrounding amino acid residue, respectively. The 
transition dipole moments μT of peptides include both electric dipole moments μTE and 
magnetic dipole moments μTM , with their interplay being crucial for calculating rotatory 
strength (R = |μTM |·|μTE |·cos θ). 



 

By integrating the geometric structure of a protein, the excitation energies ε0,ma, tran-
sition dipole moments μT,ma, and ground-state dipole moments μG,l, the exciton Hamilto-
nian can be constructed using Equations (S4) and (S5). Diagonalizing the Hamiltonian al-
lows for calculating the one-dimensional and two-dimensional ultraviolet absorption 
spectra (1DUV and 2DUV), which is implemented in the SPECTRON package [10]. 

With the rapid development of artificial intelligence (AI), machine learning (ML) has 
become a powerful tool for tackling complex chemical problems, including spectral sim-
ulation, drug discovery, catalysis, and energy prediction. Here, ML was employed to pre-
dict ε0,ma, μT,ma, and μG,l. The training dataset was derived from 1000 structurally diverse 
proteins obtained from the RCSB Protein Data Bank (PDB), as shown in Table S1. These 
proteins were decomposed into peptide bonds and amino acid residues, which were sub-
sequently converted into molecular descriptors to serve as inputs for machine learning 
(ML) models. To enhance diversity, statistical robustness, and to mitigate potential sam-
pling biases, peptide bonds and residues were evenly and randomly sampled from those 
derived from the decomposition. Specifically, approximately equal numbers of peptide 
bonds and residues were randomly selected from each protein, thus ensuring balanced 
representation across the dataset. Each peptide bond was represented as an N-methyla-
cetamide (NMA) molecule. The molecular descriptors used included internal coordinates 
(bond lengths, angles, and dihedral angles), embedded density descriptors (evaluating 
density-like properties as squared linear combinations of Gaussian-type orbitals), and 
Cartesian coordinates (standardized to a common orientation and center). 

A deep neural network protocol was employed for training ε0 for peptides and μG for 
residues. This protocol consisted of three hidden layers containing 32, 64, and 128 neurons, 
respectively, and incorporated L2 regularization to mitigate overfitting. The rectified lin-
ear unit (ReLU) activation function was applied in each hidden layer to prevent gradient 
vanishing and to minimize the impact of noise. The Adam optimizer was utilized for dy-
namically adjusting the learning rate. For the prediction of μT for peptides, embedded 
atomic neural networks (EANNs) were employed, incorporating atom-wise embedded 
density descriptors. A total of 36 descriptors were used to represent the local environment 
of each atom in the NMA molecule, and each EANN consisted of 2 hidden layers with 30 
neurons in each layer. To further enhance model robustness, early stopping was imple-
mented, halting training if the validation loss increased consecutively for six epochs. Ad-
ditionally, the Levenberg–Marquardt algorithm was applied to optimize the training pro-
cess. For the ML training reference outputs, density functional theory (DFT) and time-
dependent density functional theory (TDDFT) calculations were employed: ε0 and μT pep-
tides were computed at the PBE0/cc-pVDZ level, and μT of residues was computed at the 
B3LYP/6-311++G** level. 

To evaluate the accuracy and reliability of the ML model, we employed two key met-
rics: the Pearson correlation coefficient (r) and the mean relative error (MRE). The Pearson 
correlation coefficient, ranging from –1 to 1, measures the linear relationship between the 
ML predicted and DFT/TDDFT calculated reference values, where values close to 1 indi-
cate a strong positive correlation, reflecting the model’s ability to accurately capture the 
relationship between molecular descriptors and target properties. The MRE quantifies the 
average relative deviation between the predicted and reference values, with lower MRE 
values typically indicating higher prediction accuracy. As shown in Tables S2 and S3, the 
model achieved r > 0.95 and MRE < 1.5% for ε0 and μT of peptides, as well as r > 0.98 and 
MRE < 10% for μG of residues, with the majority of residues exhibiting MRE < 5%. These 
results demonstrate the ML model’s high precision and robustness in handling complex 
protein systems. Further details regarding dataset preparation, descriptor calculations, 
and ML protocols are provided in our previous studies [7,9,11]. 

  



 

Table S1. The PDB IDs of the 1000 protein dataset. The dataset comprised 1000 proteins 
downloaded from the RCSB Protein Data Bank (PDB), selected to ensure broad represen-
tation and diversity. These proteins were utilized to extract 50 000 peptide bonds and 200 
000 amino acid residues, representing all 20 residue types, with 10 000 structures sampled 
for each type. The selected proteins encompassed a wide range of categories, including 
fibrous proteins, globular proteins, keratin, collagen, chaperones, myoglobin, hemoglobin, 
and denatured proteins, providing a comprehensive dataset for machine learning model 
development and testing. 

1A00 1A01 1A0U 1A3O 1A4F 1A6G 1A6M 1ABY 1AH6 1AH8 1AJ9 1AMX 
1ANB 1AOX 1B0B 1B86 1B9Q 1BBB 1BF8 1BIJ 1BKV 1BUW 1BUY 1BVC 
1C40 1CBL 1CG5 1CG8 1CH4 1CK7 1CLG 1CMY 1CN4 1CO9 1COH 1CPZ 
1DG4 1DGF 1DGH 1DKE 1DKG 1DKX 1DKY 1DLW 1DM1 1DXU 1DY2 1DZI 
1ECD 1EER 1EZU 1F4J 1FAW 1FCS 1FDH 1FHJ 1FM1 1FSZ 1FUJ 1G08 
1G0A 1G3J 1GCV 1GJN 1GR3 1GVL 1GXD 1GZX 1H1X 1HAB 1HBA 1HBH 
1HBS 1HCO 1HGA 1HGB 1HGC 1HK7 1HX1 1HYL 1I6Z 1I7X 1IBE 1IRD 
1IWH 1J14 1J3Z 1J52 1J7W 1J7Y 1JBK 1JJ9 1JWN 1JY7 1JZK 1JZL 
1JZM 1K0V 1K0Y 1K9O 1KD2 1KHY 1KIU 1KKE 1KR7 1LFL 1LFQ 1LFT 
1LFV 1LI1 1M3D 1M9P 1MBA 1MBD 1MBN 1MBO 1MBS 1MGN 1MKO 1MOH 

1MWB 1MYH 1MYI 1MYM 1MYZ 1MZ0 1N9X 1NEJ 1NIH 1NPF 1NPG 1NQP 
1NWI 1NWN 1O1I 1O1K 1O1N 1O91 1P9H 1PBX 1PMB 1Q5L 1Q7D 1QI8 
1QPW 1QQW 1QUN 1QVR 1QXD 1R1X 1R1Y 1ROC 1RPS 1RTX 1RVW 1S5Y 
1S69 1S6A 1SB6 1SDK 1SDL 1SHR 1SI4 1SLU 1SPG 1SS8 1SWM 1T08 
1T60 1T7S 1THB 1U5M 1U7S 1U97 1UIW 1UMK 1US7 1USU 1UVY 1V4U 

1V4W 1V4X 1V8X 1V9Q 1W09 1W0A 1W0B 1WG3 1WVP 1WXV 1X46 1X9F 
1XUC 1XXT 1XYE 1XZ2 1XZY 1Y01 1Y09 1Y4P 1Y5J 1Y8H 1Y8I 1YCA 
1YDZ 1YEO 1YEQ 1YGF 1YHU 1YIE 1YJP 1YKT 1YMB 1YOU 1YVQ 1YVT 
1YZI 1Z2G 1Z8U 1ZAV 1ZE3 1ZTQ 1ZWH 2A3G 2AA1 2AKP 2AV0 2B7H 
2BPR 2BRC 2BRE 2BW9 2BWH 2C0K 2CG9 2CGE 2D1N 2D2M 2D3E 2D5X 
2D5Z 2D60 2D6C 2DHB 2DN1 2DN2 2DN3 2DXM 2E2D 2E2Y 2E3O 2E3R 
2EKU 2EVP 2F6A 2FAM 2FRF 2FRJ 2FSE 2FXS 2G0S 2G12 2GTL 2H35 
2H8D 2H8F 2HBC 2HBD 2HBF 2HBS 2HCO 2HHB 2HHD 2HHE 2HP8 2HUE 
2HZ1 2IDC 2IN4 2IW2 2IWS 2JHO 2KHO 2LKV 2LLL 2LLP 2LM1 2LWP 
2LYJ 2LYK 2LYL 2LYP 2LYQ 2LYR 2LYS 2M0M 2M6Z 2M8S 2MB5 2MGO 
2MIQ 2MZE 2MZI 2N8R 2NB0 2ND2 2ND3 2ND5 2NRL 2NSR 2NX0 2O5L 
2O5Q 2O5S 2OHB 2OJ5 2OKN 2PEI 2PEO 2PEQ 2PGH 2QIF 2QLS 2QSP 
2QSS 2QU0 2R1H 2R80 2R9Y 2RAO 2SEB 2UUR 2V1E 2V1F 2V1I 2V1K 
2V53 2V7Y 2VLY 2VW5 2W6V 2W6W 2W72 2XD6 2XI6 2XIF 2XIL 2XJ6 
2XKI 2XX4 2YRS 2Z44 2Z46 2Z6S 2Z6T 2Z85 2Z9Y 2Z9Z 2ZLV 2ZLW 
2ZLX 2ZSP 2ZSS 2ZSY 3A0G 3A2G 3A59 3AEH 3AK5 3AQ5 3ASE 3ASW 
3B75 3BJ1 3BWU 3C11 3CIU 3D17 3D1K 3D7O 3DHR 3DLL 3DPO 3DPQ 

3DUT 3EDA 3EJH 3ELM 3EOK 3EU1 3FH9 3FP8 3FS4 3FZH 3FZK 3GKV 
3GLN 3GOU 3GQG 3GQP 3GYS 3H0X 3H3T 3HC9 3HF4 3HQV 3IA3 3IC0 
3IC2 3IUC 3K8B 3KEK 3LDL 3LDN 3LDO 3LDP 3LDQ 3LJZ 3LQD 3LR7 

3LW2 3M0B 3M38 3M3B 3MBA 3MJP 3MJU 3MVF 3N3F 3NL7 3NML 3O2X 
3ODQ 3OGB 3OVU 3PEL 3PI8 3PI9 3QJE 3QL1 3QZL 3QZM 3QZN 3QZO 
3RIK 3RJR 3RTL 3RUR 3S48 3S5C 3S5H 3S5K 3SDH 3SZK 3TFB 3TNU 
3TVC 3UHI 3UT2 3V03 3V2V 3VFE 3VM5 3VM9 3VND 3VNW 3VQK 3VQL 
3VQM 3W6L 3WFT 3WHM 3WI8 3WTG 3WV1 3WVL 3WYO 3ZHC 3ZHD 3ZHK 
3ZHL 4A7B 4AIX 4AIZ 4AJ0 4AU2 4B2T 4B9Q 4BB2 4BJ3 4BKL 4BNR 
4C0N 4C44 4CTD 4CUD 4CUE 4CUF 4D0E 4D2U 4D8N 4DC5 4DF3 4DOU 
4EO5 4EZN 4EZO 4EZP 4EZR 4EZW 4EZX 4F01 4F4O 4F68 4FC3 4FCT 
4FCW 4FVL 4FWZ 4GR7 4H32 4HRR 4HRT 4HSE 4HWC 4I0C 4I0Y 4I1E 



 

4I2S 4I37 4I3N 4I96 4IJ2 4JA7 4JA9 4JB0 4JB2 4JSD 4JSO 4K07 
4K5Q 4K6G 4K6H 4K6K 4KJT 4L2A 4L2D 4LJ6 4LJA 4M4B 4M56 4M8U 
4MA7 4MBN 4MKF 4MKG 4MKH 4MPB 4MPR 4MQK 4MTH 4N79 4N7P 4N8W 
4NI0 4NSM 4NWE 4NWH 4O4T 4O4Z 4OF9 4OJ0 4OOD 4OW4 4PNJ 4QBY 
4R1E 4RMB 4RRP 4RX9 4TQL 4TYU 4U3H 4U5T 4U8U 4UOS 4UOT 4UOX 
4UOY 4URG 4URQ 4URS 4UZV 4W68 4W70 4W81 4W94 4WJG 4WUY 4XIF 
4XS0 4Y00 4YU3 4YU4 4Z3V 4ZLY 4ZRY 5AKS 5AO6 5AQG 5AQI 5AQO 
5AQT 5AUY 5AZQ 5B5O 5B85 5BOY 5BX0 5CE5 5CJB 5CMV 5CN5 5CNC 
5CTD 5CTI 5CVA 5CVB 5D0Q 5D5R 5E83 5E84 5E85 5EII 5EIV 5F2R 
5FFO 5FQD 5FWL 5FWP 5FXP 5GHU 5GW4 5GW5 5HCL 5HLY 5HQ3 5HY8 
5IAT 5IAX 5IKS 5ILM 5ILP 5ILR 5J3P 5J3S 5J3Z 5JG9 5JHI 5JI4 
5JOM 5KA0 5KER 5KI0 5KKK 5KRR 5KSI 5KSJ 5KVN 5KWX 5KWZ 5KX0 
5KX1 5KX2 5M4G 5M4J 5M4L 5M9M 5MBY 5MC1 5MU0 5MV3 5MZU 5N30 
5N4H 5NAX 5NI1 5NIR 5NJX 5NRO 5NX3 5O4P 5OBU 5OCX 5OFO 5OMP 
5OMY 5OPW 5OPX 5OU8 5OU9 5OWI 5OWJ 5PKC 5Q5Z 5QEH 5R4J 5SV3 
5SV7 5SXD 5THP 5TU7 5TU8 5TU9 5U2L 5U2U 5UCB 5UCU 5UE2 5UE5 
5UEA 5UEK 5URC 5UT7 5UT9 5UWK 5UYX 5V4M 5V4N 5VPN 5VQP 5VY8 
5VY9 5VZN 5VZO 5VZP 5VZQ 5W0S 5WOG 5X2R 5X2S 5XKV 5Y45 5YAN 
5YCE 5YP8 5YPB 5YUP 5YZF 5Z5O 5ZBA 5ZHB 5ZUI 5ZYK 5ZZF 5ZZG 
5ZZT 5ZZY 6A06 6A0H 6A0V 6A0Y 6A19 6A1W 6A23 6A2U 6A32 6A39 
6A3C 6AHF 6AIT 6ASY 6AXB 6BB5 6BIN 6BJR 6BNR 6BWU 6CD2 6CF0 
6CQG 6CQV 6D45 6D6S 6DDK 6DFM 6DJU 6DL9 6DTC 6E14 6E15 6E0F 
6E0G 6E2J 6E7G 6E7H 6EC0 6ED3 6EOF 6F0Y 6F17 6F25 6FQF 6FSE 
6FZW 6G5A 6G5T 6GCQ 6GZD 6H2P 6H2Q 6HAL 6HBI 6HBW 6HG7 6HV2 
6IHX 6II1 6IWK 6J0A 6J81 6JBX 6JP1 6M8F 6MV0 6N02 6N8V 6N8Z 
6NBC 6NBD 6ND8 6NDH 6O5V 6O69 6OG3 6QFF 6QFH 6QH9 6QI8 6REU 
6S0F 6TSZ 6UUV 6VGK 6W75 6XV4 6Y6W 7ABP 7ACN 7AHL 7AME 7API 

7BNA 7CA2 7CCP 7CEI 7CEL 7CGT 7DFR 7FAB 7FD1 7GAT 7GCH 7HSC 
7HVP 7ICD 7ICE 7ICF 7ICN 7ICO 7ICQ 7ICR 7ICV 7INS 7KME 7LPR 
7LYZ 7LZM 7MHT 7MSF 7NN9 7NSE 7PAZ 7PCK 7PTD 7R1R 7REQ 7RSA 
7RXN 7STD 7TIM 7TLN 7WGA 7XIM 7YAS 7ZNF 821P 830C 8A3H 8AAT 
8ABP 8ACN 8ADH 8AME 8API 8AT1 8ATC 8BNA 8CA2 8CAT 8CGT 8CHO 
8CPA 8CPP 8DFR 8DRH 8EST 8FAB 8GCH 8GEP 8GPB 8GSS 8HVP 8I1B 
8ICA 8ICZ 8JDW 8KME 8LDH 8LPR 8LYZ 8MHT 8MSI 8NSE 8OHM 8PAZ 
8PCH 8PRK 8PRN 8PSH 8PTI 8RAT 8RNT 8RSA 8RUC 8RXN 8TFV 8TIM 
8TLI 8TLN 8XIA 8XIM 9ABP 9AME 9ANT 9ATC 9CA2 9CGT 9DNA 9EST 

9GAA 9GAC 9GAF 9GPB 9GSS 9HVP 9ICA 9ICC 9ICE 9ICH 9ICJ 9ICK 
9ICM 9ICO 9ICQ 9ICS 9ICU 9ICV 9ICY 9ILB 9INS 9JDW 9LDB 9LDT 
9LPR 9LYZ 9MHT 9MSI 9NSE 9PAI 9PAP 9PCY 9PTI 9RAT 9RNT 9RSA 
9RUB 9WGA 9XIA 9XIM         

  



 

Table S2. The ML prediction results for peptide bonds. 
Name Metrics n→π* π→π* 

ε0 
r 0.9616 0.9512 

MRE/% 0.363 0.252 

μTE 
r 0.9973 0.9590 

MRE 0.191 1.499 

μTM 
r 0.9973 0.9729 

MRE 0.062 0.646 

Table S3. The ML prediction results for 20 residues. 

Residues GLY ALA LEU ILE VAL PRO PHE MET TRP SER 
r 0.9963 0.9974 0.9939 0.9966 0.9984 0.9986 0.9945 0.9932 0.9954 0.9982 

MRE/% 4.095 4.0265 6.0746 4.3792 3.4479 3.0722 6.4502 7.1671 6.1629 3.9615 
Residues GLN THR CYS ASN TYR ASP GLU LYS ARG HIS 

r 0.9942 0.9852 0.9948 0.9979 0.9962 0.997 0.9964 0.9997 0.9996 0.9978 
MRE/% 6.4224 9.3273 6.5005 3.8518 5.1823 4.9678 4.8288 1.6229 1.6891 3.8792 

  



 

S2. Predicted One-Dimensional Ultraviolet (1DUV) Spectra of 18 Proteins 

 

Figure S1. 1DUV spectra of the 18 proteins. 
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