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Abstract: Most accidents during the construction of nuclear power plants are caused by 
human unsafe behavior. How to scientifically determine the risk management priority of 
human unsafe behaviors is the basis for effectively preventing accidents in under-con-
struction nuclear power plants. Although employees are adopted for control in under-
construction nuclear power plants, the records of unsafe behaviors are mostly recorded 
by inspectors, and the records of behaviors may have missing values. To overcome the 
above problems, this paper applies machine learning algorithms to construct an employee 
behavioral risk assessment model. Firstly, by analyzing the influencing factors of unsafe 
behaviors, the assessment indexes are proposed, then the Random Forest algorithm is 
used to obtain the characteristic importance of the proposed indexes and exclude those 
with smaller characteristic importance. Finally, the harmony search (HS) algorithm is 
used to optimize the back propagation (BP) neural network to construct an assessment 
model and compare with the BP evaluation model. The results show that the HS-BP model 
is more accurate and efficient. The results show that the method can comprehensively and 
effectively analyze workers‘ unsafe behaviors, and the BP neural network is optimized to 
construct the assessment model using the Harmonic Search algorithm, which is more ac-
curate than the original model. The use of the machine learning method to assess workers’ 
behaviors can objectively output the risk level and overcome the one-sidedness and sub-
jectivity of the traditional expert evaluation method. 

Keywords: risk assessment; nuclear power; under construction; machine learning;  
assessment 
 

1. Introduction 
With the rapid development of economic construction, China’s nuclear power devel-

opment strategy has been adjusted from moderate development to active development. 
At present, a number of nuclear power projects have been approved by the state and en-
tered the stage of full-scale construction. As an industry with extremely high safety re-
quirements, nuclear power enterprises must do a good job of their own safety production 
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in accordance with relevant laws and norms. The construction sector is responsible for the 
actual construction of nuclear power plants, which is the base scenario for the occurrence 
of various types of human behavior. Human unsafe behavior also occurs mostly during 
this construction process. As for the control of employees involved in the construction of 
nuclear power plants, and despite the current control measures, there is still the problem 
of unsafe behaviors being recorded by inspectors, leading to the possibility of missing 
values. In recent decades, scholars at home and abroad have conducted plenty of pioneer-
ing and fruitful research on safety behavior, as well as accumulated rich research results 
and research experience. 

After the nuclear power accidents at Three Mile Island and Chernobyl, the im-
portance of human behavior to the safe operation of nuclear power plants has drawn 
widespread attention. Human Factors Engineering (HFE) has become an important factor 
that must be taken into consideration in the design of nuclear power plants [1,2]. The de-
sign process of nuclear power plants involves twelve elements of human factors engineer-
ing, and Human Reliability Analysis (HRA) is an important part among them [3]. Gener-
ally, the HRA method includes two parts, namely, qualitative analysis and quantitative 
analysis. However, in the application process, in the past, more attention was paid to the 
calculation results of quantitative analysis, while qualitative analysis was often over-
looked or merely regarded as a process of quantitative analysis. In fact, qualitative analy-
sis and quantitative analysis play equally important roles in HRA. To emphasize the im-
portance of qualitative analysis, in 2012, O’Hara et al. [4] from the U.S. Nuclear Regulatory 
Commission (NRC) renamed HRA as the “Treatment of Significant Human Actions” in 
the third edition of the “Human Factors Engineering Review Program” (NUREG-0711) 
and emphasized that detailed analysis should be conducted on safety-related human be-
haviors during the design process. 

As a complex large-scale man–machine system, nuclear power plants involve a large 
number of different types of personnel behaviors [5]. At the beginning of the design of 
nuclear power plants, designers need to analyze and process these personnel behaviors 
[6] to ensure the smooth completion of the subsequent design work. The personnel behav-
iors here refer to the behaviors of operators in nuclear power plants [7], because most 
behaviors in nuclear power plants are executed by operators. Different personnel behav-
iors have different impacts on the safe operation of nuclear power plants. Identifying, 
screening, and classifying personnel behaviors and then carrying out corresponding pro-
cessing can not only effectively improve the efficiency of design work but also provide a 
priority ranking for personnel behavior processing to optimize man–machine interaction 
tasks and interfaces. More importantly, it can ensure that important personnel behaviors 
related to the safe operation of nuclear power plants are not overlooked. 

In 2002, Higgins et al. [8] first proposed and established a personnel behavior screen-
ing method, laying the foundation for personnel behavior screening. This method is based 
on the Probabilistic Safety Assessment (PSA) of nuclear power plants, so it is called the 
probabilistic screening method. The probabilistic screening method has been widely used. 
It completes the screening by evaluating the Risk Achievement Worth (RAW) and the 
Fussell-Vesely (FV) of personnel behaviors [7–9]. The advantages of the probabilistic 
screening method lie in its relatively simple screening and good traceability; its disad-
vantage is that it relies on the results of PSA analysis and inherits the uncertainties of PSA 
[10]. Therefore, if only the probabilistic screening method is used to identify and screen 
personnel behaviors, the screening results will not meet the requirement of being fully 
conservative. 

In 2007, Zhao Jun et al. [11] expounded the complementary relationship between the 
PSA method and the deterministic analysis method in the process of equipment classifi-
cation, solving the problem that using a single method in the process of equipment risk 
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classification cannot ensure full conservatism. Although equipment classification and per-
sonnel behavior screening have different implementation objects, they are both derived 
from the same theoretical basis. 

Human unsafe behavior is the main cause of safety accidents [12]. The main influ-
ences on unsafe behavior include organizational and social factors, managerial safety, 
work safety tension, safety climate and personal safety awareness [13]. As research has 
progressed, it has been found that factors contributing to unsafe behaviors exist in many 
areas. For example, the behavior of leaders and management policies will have an impact 
on the behavior of employees [14]. The lack of safety culture will lead to unsafe behaviors 
of employees [15], and individual perception, environmental support, the experience of 
organizational management systems, and individual psychological stress will also lead to 
unsafe behaviors [16]. 

Based on the individual, production operations, organizational management, four 
dimensions of the social environment, the construction of workers’ unsafe behaviors’ in-
fluencing factors, and the ISM (Interpretive Structural Model), Ye Gui et al. conducted a 
systematic analysis of the role of factors in various dimensions of the effect of the individ-
ual factors for the surface factors and the social environment for the conclusion of the deep 
factors [17]. Based on the perspective of the organizational climate, Cheng Jialei and Qi 
Shenjun constructed a relationship model between the organizational climate, individual 
factors (safety attitude, unsafe motivation, safety ability), and unsafe behaviors [18]. How 
to accurately assess the risk of safety behaviors of field operators is an urgent problem. In 
risk practice, some scholars directly use accident potential data to calculate risk parame-
ters, and the accuracy of risk magnitude is largely affected by the quality of the data [19]. 
Younggi Hong and Jaeho Cho’s study focuses on improving pre-emptive risk identifica-
tion and safety checks to prevent workplace accidents [20]. Human factors are the main 
part of occupational risks, and reducing occupational risks is one of the important meth-
ods of OSH management [21]. Deng et al. determined that, in all industries, safety behav-
iors play a vital role in preventing accidents and injuries [22]. 

Safety behavioral science originates from the behavioral sciences, is a cross-discipline 
of behavioral sciences and safety sciences, and European and American scholars started 
the research in this area earlier [22]. British scholars Gene Earnest and Jim Palmer in 1979, 
for the first time in the name of behavioral safety management (behavior-based safety, 
BBS), put forward the study of safety behavior [23]. At the end of the 1970s, domestic 
scholars began the study of safety behavioral science. Since the 21st century, with the 
rapid development of safety science, the field has achieved many results. At present, the 
more popular basic principles of safety behavior science include the following: Maslow’s 
[24] hierarchy of needs theory; Albert Bandura’s [25] social learning theory; Victor H. 
Vroom’s [26] expectancy theory; and Icek Ajzen’s [27] theory of planned behavior. This 
method is used to prevent and correct unsafe behaviors by observing, measuring, feeding 
back, and reinforcing the behaviors of the observed person. Foreign countries have an 
early start in safe behavior modification research and have accumulated a wealth of expe-
rience and results. The early formation of more famous theories are Greenwood M’s acci-
dent tendency theory [28], Heinrich H W’s accident causal chain reaction [29], Surry J’s 
Thurley model [30], Reason J’s human-caused accident causal model [31] and so on, based 
on the research that scholars conducted on the influence of human unsafe behaviors, the 
formation of the mechanism of in-depth research, and the factors leading to unsafe behav-
iors. It is found that the factors leading to unsafe behaviors are mainly individual, envi-
ronmental, and organizational management factors at three levels. The research and ap-
plication of safe behavior modification in Europe, the United States, and other industrially 
developed countries are more mature, have been successfully applied to a number of in-
dustries, and have achieved significant results. Although domestic research started later, 
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it has also made significant progress in recent years. Cao Qingren and others tried to ex-
plain unsafe behaviors from the perspective of cognitive psychology and put forward the 
‘know-can-do’ model of unsafe behaviors [32]. 

Domestic scholars have conducted a large number of empirical studies on the basis 
of foreign advanced experience, combined with national conditions and industry charac-
teristics, and put forward many safe behavior modification methods and techniques ap-
plicable to the domestic environment. 

In order to conduct a more accurate study of the risk of unsafe behavior of workers 
in nuclear power plants under construction in Zhangzhou, Fujian, this paper introduces 
the BP neural network. 

The BP (back propagation) neural network [33] is a multi-layer feed-forward neural 
network trained according to the error back propagation algorithm, which is the most 
widely used neural network. The BP neural network can make the output error reach the 
preset value within the range through the back propagation of error signals, and the error 
signal back propagation process can be adjusted according to the error gradient descent 
method to achieve the output close to the expected value. As a multi-layer network model, 
the number of hidden layers can be single layer or multi-layer in the BP neural network, 
but the more hidden layers are used, the more complex the calculation of the backward 
propagation process of the BP network error, and it is easier to fall into the local optimal 
situation [34]. The BP neural network is currently the most widely used artificial neural 
network model. It is a black-box model built to simulate the process of information pro-
cessing by the human brain. Since it is not necessary to use sophisticated mathematical 
equations to obtain more accurate predictive values, it is widely used in the prediction of 
various nonlinear relationships [35].The BP neural network algorithm (back propagation, 
BP) is a mathematical model that can deal with complex nonlinear problems [36–38]. 

The BP neural network has the advantages of strong nonlinear ability, fault tolerance, 
and rigorous derivation process; however, the algorithm still has the defects to easily fall 
into local minima and slow convergence speed. In order to solve these problems, in this 
study, the HS-BP assessment model is established by combining the harmonic search al-
gorithm with strong global search capability with the BP neural network, optimizing the 
initial weights and thresholds of the BP neural network. The results of this study can ac-
curately assess the risk level of employee behavior, identify the people who need priority 
control, and provide the basis and theoretical support for the safety management of nu-
clear power plants under construction, which has strong theoretical value and practical 
significance. 

2. Materials and Methods 
2.1. Advantages of Machine Learning Technology 

In the operation management system of nuclear power plants, an accurate assess-
ment of the risk of unsafe employee behavior is crucial to ensure the safe and stable oper-
ation of nuclear power plants. Current machine learning models used for this assessment 
differ significantly in multiple key dimensions compared to traditional existing models. 

In terms of model construction, the traditional model is based on traditional experi-
ence and simple statistics, with limited factor identification, and its simple linear or rule-
based system architecture is weak in capturing complex nonlinear relationships, whereas 
the machine learning model comprehensively analyzes many influencing factors with the 
help of advanced algorithms such as random forests, filters the key features, and opti-
mizes the model with BP neural networks and HS algorithms, which avoids falling into 
local optimal solutions during the training of BP neural networks and thus more accu-
rately captures the complexity of safety behavior in a more precise way. The model is 
based on the BP neural network and is optimized with the HS algorithm to avoid local 
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optimal solutions during BP neural network training, thus capturing the potential pat-
terns and relationships behind complex data more accurately. In terms of performance, 
the traditional model is not capable of handling complex factor relationships, and its ina-
bility to accurately grasp these relationships leads to poor accuracy of the assessment re-
sults, and it is extremely sensitive to data fluctuations and susceptible to stability, making 
it difficult to continue to provide a reliable assessment; the machine learning model, 
through the well-designed feature screening process and advanced algorithmic optimiza-
tion strategy, achieves a significant increase in accuracy and stability and maintains a high 
level of accuracy under data variations in different time periods and working conditions. 
Machine learning models, on the other hand, have achieved significant improvements in 
accuracy and stability through a carefully designed feature screening process and ad-
vanced algorithm optimization strategies and are able to maintain a high level of assess-
ment under different time periods and working conditions. In data processing, traditional 
models do not make full use of data, are weak in dealing with missing values, and rely on 
complex and scientifically insufficient manual filling or correction methods, which are 
time-consuming, labor-intensive, and introduce bias, thus affecting the accuracy of the 
assessment. Machine learning models, by virtue of their unique algorithmic advantages, 
can effectively deal with multi-dimensional data and are robust to missing values, like the 
random forest algorithm, which can, to a certain extent, ignore the impact of missing val-
ues in calculating the importance of features, and the BP neural network, which can effec-
tively deal with the data from the perspective of the characteristics of the model. The BP 
neural network can learn from the overall data features to reduce the interference of miss-
ing values on the model performance. In terms of application adaptability, the traditional 
model has poor scene adaptability and limited real-time and dynamic assessment capa-
bility, which makes it difficult to adapt to the complex and changing operating environ-
ment of the nuclear power plant and unable to accurately carry out risk assessments in a 
timely manner. The machine learning model, by virtue of its strong learning capability 
and high flexibility, can better adapt to the dynamic changes in different scenes. It is es-
pecially suitable for a real-time risk early warning, and it can be used to quickly analyze 
and provide early warnings based on real-time data when there is an unexpected situation 
or parameter change in the operation of the nuclear power plant. When unexpected con-
ditions or parameter changes occur in the operation of the nuclear power plant, it can be 
quickly analyzed and warned based on real-time data. 

Based on the above discussion, we can learn that machine learning models have sig-
nificant advantages in the risk assessment of unsafe behaviors of nuclear power plant 
workers, which strongly supports the improvement of the safety management level of 
nuclear power plants. Especially in dealing with the risk assessment of unsafe behaviors 
of employees in nuclear power plants under construction, machine learning technology 
has the following outstanding advantages: Firstly, it can automatically deal with the miss-
ing value data by virtue of a unique algorithmic mechanism, overcoming the lack of a 
scientific nature of the traditional manual filling method and the problem of easy intro-
duction of bias. And it optimizes the initial weights and thresholds by constructing the 
HS-BP model, combining with the harmony search algorithm and the back propagation 
neural network, avoiding the local optimums, and fitting the complex nonlinear relation-
ships better, which significantly improve the accuracy and efficiency of the model, provide 
prompt assessment results when dealing with a large amount of data, and offer powerful 
support for risk management. It can provide timely and powerful support for risk man-
agement, fully demonstrating the powerful ability of machine learning technology to op-
timize model performance.The advantages of machine learning are shown in Table 1. 

Table 1. Advantages of machine learning over traditional methods. 
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Comparison Project Traditional BP Models HS—BP Model 

Model optimization ap-
proach 

The use of the back propagation algorithm 
based on a gradient descent to adjust the 

weights and thresholds, easy to fall into the lo-
cal optimal solution, limiting the ability of 

model generalization. 

Strong global search capability to jump out 
of local optimal solutions. 

Convergence speed and 
accuracy 

Dealing with complex problems, long training 
time, limited prediction accuracy due to the ten-

dency to fall into local optima. 

Fits data more accurately, learns nonlinear 
relationships more efficiently when dealing 

with complex problems, better accuracy 
and efficiency. 

Model stability 

Sensitive to initial weights and threshold set-
tings, different initial values can lead to large 
differences in training results and inconsistent 
performance when run multiple times or ap-

plied to different datasets. 

Higher stability and reliability, more con-
sistent performance in different scenarios. 

2.2. Indicators to Be Selected 

The accident chain theory clarifies the various causes of casualties and the relation-
ship between accidents and that each casualty is not an isolated event but is the result of 
a series of events occurring one after the other, even though the injury may occur suddenly 
at a certain moment. The interaction and correlation between many factors makes it im-
possible to fully grasp the direct and indirect causes of unsafe behaviors of workers in 
nuclear power plants under construction. However, through long-term research and work 
experience, we have gained knowledge of the factors affecting employee behavior, which 
makes it possible to find the important influences on employee behavior. 

The human factor is an important cause of unsafe behaviors, and personal character-
istics such as gender, age, education, and years of experience have a significant impact on 
the behavior of employees. Accidents are caused by imperfect safety warning signs; in-
complete or ineffective safety protection equipment and other problems occur from time 
to time. The temperature, noise, and harmful gas concentration of the construction envi-
ronment will have a certain impact on the behavior of construction workers when consid-
ered in conjunction with human sensory perception and the characteristics of the site of 
production activities. In terms of management, the influence of safety supervision and 
inspection, work arrangement, safety education and training, and emergency manage-
ment on safety behavior is mainly considered in construction management. 

The selection of indicators in this paper is based on the theory of accident chaining. 
Through long-term research and work experience, we learned the main reasons that lead 
to the occurrence of unsafe behaviors of employees in nuclear power plants, as a way to 
obtain the relevant factors affecting the behavior of employees. Since the purpose of this 
paper is to use machine learning methods to scientifically and reasonably assess the un-
safe behaviors of workers in nuclear power plants under construction, the indicators that 
we selected need a large amount of actual data as a basis. Considering that the actual data 
of some indicators are not easy to obtain or difficult to quantify, and combining with the 
existing data resources, the indicators initially selected are shown in Table 2. 
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Table 2. Behavioral evaluation-related indicators. 

Dimension  Norm 

indicator personal factors age, length of service, attendance, psychological condition, 
knowledge and skills, safety awareness 

environmental factor noise, temperature, welding fumes, construction dust 

organizational factors 
safety supervision and inspection, work organization, safety educa-

tion, emergency management 
machinery and equipment safety warnings, equipment reliability, protective gears 

2.3. Methodologies 

Machine learning refers to a methodology that can automatically detect patterns in 
data, and these methods can be used to develop predictive models and aid decision mak-
ing under conditions of uncertainty. Machine learning includes research on decision trees, 
random forests, and artificial neural networks. With the rapid development of China’s 
nuclear power business, the ability to obtain information about unsafe worker behavior 
has been greatly improved, but the lack of information processing capability has resulted 
in the information not being used effectively. Therefore, in order to improve the safety 
management of nuclear power plants under construction, it is necessary to apply machine 
learning to safety management. 

When dealing with the risk assessment of employee unsafe behaviors in nuclear 
power plants under construction, the random forest algorithm can calculate the im-
portance of feature variables to achieve feature selection and dimensionality reduction, 
avoiding overfitting, and capturing complex data relationships to enhance model stability; 
the BP algorithm has a powerful nonlinear mapping capability, is widely used and ma-
ture, and has trainability and flexibility; the harmony search algorithm can make up for 
the defects of BP algorithm, which is easy to fall into the local optimization. Its global 
optimization and heuristic search advantages complement the BP algorithm, and the com-
bination of these three algorithms provides powerful support for the effective assessment 
of the risk of unsafe behaviors of workers. 

2.3.1. Random Forest 

Random forest is a general machine learning algorithm that can handle classification 
and regression. It can also complete data dimensionality reduction, outlier processing, 
and data analysis. The main computational steps of random forest designed in this paper 
are as follows: 

(1) The variable importance score is denoted by VIM, the Gini index is denoted by GI, 
and the Gini index score VIM is calculated for each feature Xj by taking m features 
X1, X2, …, Xm. The Gini index is calculated as follows: 

2

1
1''

1 mkmkmkm p
K
K

PPkk
K
K

GI  =
−=≠

=
=  (1)

where k indicates that there are K categories; Pmk indicates the proportion of k in the cate-
gory column in node m. 

(2) The importance of feature Xj in node m, i.e., the amount of change in the Gini index 
before and after the branching of node m. 

rlm
Gini
jm GIGIGIVIM −−=)(  (2)

where GIl and GIr denote the Gini index of the two new nodes after scoring, respectively. 
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(3) If the node where feature Xj appears in decision tree i is in set M, then the importance 
of Xj in the ith tree is 

)(ini Gini
jmMm

G
ij VIMVIM  ∈=）（  (3)

Suppose there are n trees in the RF. 

)(ini

1
Gini
ij

G
j VIM

n
n

VIM  =
=）（  (4)

(4) Simply normalize all the importance scores obtained. 

2.3.2. Differences Between HS-BP and Traditional BP Models 

The HS-BP model was developed to overcome the shortcomings of traditional meth-
ods and simple BP models in dealing with the risk assessment of unsafe behaviors of em-
ployees in nuclear power plants under construction, to achieve a more scientific, accurate, 
and efficient risk assessment and to provide strong support for the prevention of acci-
dents. 

The HS-BP model differs from the traditional BP model in many aspects. 

(1) Model Optimization 
The BP neural network adjusts the weights and thresholds of the network through 

the back propagation algorithm to minimize the error between the predicted output and 
the actual output. However, the traditional BP algorithm has some defects, such as being 
easy to fall into the local optimal solution. This is because its optimization method is based 
on the gradient descent. In the presence of multiple local minima on the error surface, 
once the algorithm converges to a certain local minima, it is difficult to jump out of the 
algorithm to search for the global optimal solution, resulting in the limited ability of the 
model to generalize. 

The HS-BP model introduced the harmonic search (HS) algorithm to optimize the BP 
neural network on the basis of the traditional BP model. The harmony search algorithm 
simulated the process of music harmony creation and searched for the optimal solution 
by continuously adjusting the parameters of the harmony (corresponding to the weights 
and thresholds of the neural network). The algorithm has a strong global search ability, 
which can help the BP neural network to jump out of the local optimal solution, and is 
more likely to find the global optimal combination of weights and thresholds, so as to 
improve the performance of the model. 

(2) Convergence Speed and Accuracy 
The convergence speed of traditional BP models is relatively slow, especially when 

dealing with complex problems or large-scale datasets, which requires longer training 
time to achieve better performance. Moreover, due to the tendency to fall into local opti-
mality, the accuracy of the final prediction may be limited, and the potential patterns in 
the data cannot be fully explored. 

The HS—BP model takes advantage of the global search property of the harmonic 
search algorithm to find better weights and thresholds in a shorter time, which accelerates 
the convergence speed of the model. Meanwhile, by avoiding the problem of a local opti-
mal solution, the HS—BP model can fit the data more accurately and improve the accu-
racy of prediction. When dealing with complex problems such as the risk assessment of 
unsafe behaviors of employees in nuclear power plants under construction, the HS—BP 
model is able to learn complex nonlinear relationships from a large amount of data more 
efficiently, thus outperforming the traditional BP model in terms of both accuracy and 
efficiency. 
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(3) Model Stability 
Since the traditional BP model is sensitive to the initial weights and thresholds, dif-

ferent initial values may lead to large differences in model training results and poor sta-
bility. This makes the performance of the model inconsistent when the model is run mul-
tiple times or applied to different datasets. 

The HS—BP model reduced the sensitivity of the model to initial values by optimiz-
ing the weights and thresholds with a harmonic search algorithm. The harmonic search 
algorithm searched for the optimal solution globally, which makes the model converge to 
a better result under different initial conditions, improves the stability and reliability of 
the model, and makes its performance more consistent in different scenarios. 

2.3.3. Establishment of the HS-BP Model 

The BP neural network usually consists of an input layer, output layer, and hidden 
layer connected by a set of weight factors. The BP neural network calculated the final net-
work error according to the forward operation of the input data, transmitted the error in 
the opposite direction, and adjusted the weights and thresholds of the corresponding lay-
ers according to certain rule mechanisms when it passed through different layers. After 
training with a large number of data samples, the final algorithmic model that can com-
plete complex nonlinear mapping was constructed. 

The harmony search algorithm analogized instrument i (i = 1, 2, …, m) to the ith de-
sign variable in the optimization problem, the harmony Rj (j = 1, 2, …, M) of each instru-
ment’s voice tone was equivalent to the jth solution vector of the optimization problem, 
and the evaluation analogized to the objective function. The algorithm first generated M 
initial solutions (harmonies) into the HM (harmony memory), searched for new solutions 
within the HM with probability HMCR, and searched in the domain of possible values of 
the variables outside the HM with probability 1-HMCR. The algorithm then generated a 
local perturbation to the new solution with probability PAR. It determined whether the 
new solution objective function value is better than the worst solution within the HM and 
if so, replaces it and then iterates continuously until a predetermined number of iterations, 
Tmax, is reached. 

(1) Initialize algorithm parameters: Set the corresponding parameters in the algorithm 
procedure, HMS represents the memory bank inventory, HMCR represents the cor-
responding probability value, and PAR represents the corresponding audio fre-
quency. Let h represent the step length, and let N be the corresponding number of 
values. 

(2) Initialization of the harmonic memory bank: After random transformation, create a 
new general memory bank containing harmonies. 

(3) Create new harmony: The creation of a new harmony is mainly performed by anal-
ogy in the memory bank and setting a new tone. Learning or randomly creating a 
tone through the harmonic memory bank produces a component. 

(4) Updating the harmonic memory bank. 
(5) Judging the optimal solution: The value derived above determines whether it can be 

the optimal solution. If so, the output is performed. If it is not satisfied that it becomes 
the optimal solution, rounding, repeat the two steps 3 and 4 until the optimal solution 
is obtained, ending the algorithm. 

In the HS algorithm, in order to determine its coding length, it is necessary to deter-
mine its corresponding neural network first, and, through the study of its neural network, 
the target length is obtained. For the HS algorithm, it is necessary to first derive its corre-
sponding threshold value and weight value through the corresponding functional rela-
tionship substitution, select the target value in the memory bank, assign the value to it, 
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and derive the optimal solution by using the functional relationship equation, and, after 
that, improve it to a certain extent by using the BP neural network model, so that the 
optimal solution is projected out on the neural network. The steps to optimize the BP neu-
ral network by the harmonic search algorithm are as follows: 

(1) Construct the BP neural network model: Determine the input, hidden, and output 
layers of the BP neural network according to the corresponding sample features. 

(2) Coding: For the HS algorithm, the coding of its algorithm is usually real number cod-
ing in academic terms, and, in general, the parameters wij and θj are coded so that 
dimension m can be obtained by the algorithm, and the extracted harmonies will 
have the corresponding weights and thresholds. 

(3) Determine the fitness function of the HS algorithm: For the group in the memory 
bank, using the fitness function to calculate it can show the strengths and weaknesses 
of this group in some sense and to some extent. 

(4) HS optimization of BP algorithm: According to the calculation process of the HS al-
gorithm, the initial weights, thresholds, and global extremes of the BP neural network 
structure are subjected to the optimal and acoustic search as well as the optimality 
seeking calculation. 

(5) Determination of end conditions: For the conclusion of the output, it is necessary to 
compare it. If it meets the requirements, output the result, and the result is the opti-
mal solution. If it does not meet the requirements, discard the result, which cannot 
be used as the optimal solution, and repeat the HS algorithm until the output of the 
result meets the conditions, and the optimal solution is obtained. 

(6) Output the global optimal solution. 

The specific flow of the improved algorithm is shown in Figure 1: 
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Figure 1. Flowchart of the improved algorithm. 

3. The Application of the HS-BP Model in Workers’ Behavioral  
Risk Assessment 

3.1. Data Collection and Sources 

This paper uses a questionnaire to collect data and questionnaire background infor-
mation. 

Zhangzhou Nuclear Power is currently in the construction stage, with many con-
struction units at the construction site, a wide distribution of construction risk points, and 
more than 20,000 staff in the region. The high social concern and strict safety requirements 
of the nuclear power plant under construction make it specific to both the high safety level 
requirements of a nuclear power plant and the complexity of the types of risks of a con-
struction enterprise. Therefore, a safety supervision grid has been laid out for a number 
of key areas, requiring plenty of effort to work and patrol the monitoring. 
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The questionnaires were sent to managers, technicians, and frontline operators. A 
total of 1500 paper questionnaires were distributed, and 1481 were recovered, with a re-
covery rate of 98.73%. Discounting missing questions and invalid questionnaires that do 
not meet the requirements, the total number of valid questionnaires was 1397, with an 
effective questionnaire rate of 93.13%. 

The questionnaire results and the summary results of the basic information of the 
respondents are shown in Figure 2. 

  

Figure 2. Distribution of respondents by length of service and position. 

Analyzing the statistical characteristics of the basic information of the respondents, 
it can be seen that the group of respondents of this research, i.e., the sample, is reasonably 
structured, and the statistical information of the respondents in terms of their length of 
service, position, etc., is in line with the reality of the enterprise, which effectively ensures 
the objectivity of the survey results. 

When dealing with some large dataset modeling problems, the original data cannot 
be adapted to the modeling needs due to a series of problems such as rich data sources, 
diverse data formats, and a lack of data completeness, so the dataset is generally subjected 
to preprocessing work before the formal model is built. Some of the data for the employee 
behavioral assessment in nuclear power plants under construction are entered manually 
on a daily basis, and there are irregularities or missing data records, so, in order to avoid 
the influence of noise on the final evaluation results, the data need to be preprocessed. In 
addition, in order to ensure the accuracy of the modeling, the collected variables need to 
be screened to select the indicators that have a greater impact on the final results. 

Data pre-processing usually refers to checking the accuracy of the dataset and grasp-
ing its basic situation before formally establishing the model and transforming the raw 
data into a suitable form of data for modeling through a series of operations such as data 
cleansing, data integration and transformation, and a data statute in order to solve the 
problems of invalidity, high concentration, missing values, outliers, and inconsistencies 
of the data. The data in this paper come from the record of unsafe behaviors in the field, 
which is mainly obtained from the risk management platform, examination system, at-
tendance management system, and monitoring and surveillance system. Part of the data 
is through questionnaires, and Table 1 gives some of the data for model training. 

Primary variables: X1 is age; X2 is working age; X3 is education level; X4 is attendance; 
X5 is psychological condition; X6 is knowledge and skills; X7 is safety awareness; X8 is 
noise; X9 is temperature; X10 is the concentration of welding fume; X11 is the concentration 
of construction dust; X12 is supervision and inspection; X13 is work arrangement; X14 is 
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safety education; X15 is emergency management; X16 is safety warnings; X17 for equipment 
reliability; and X18 for protective gear. 

Unlike the risk assessment of mechanical and electrical equipment, the unsafe behav-
iors of operators cannot be directly measured but need to be measured with the help of 
their external manifestations (e.g., unauthorized operation during operation, the violation 
of labor discipline, etc.) Due to the externality of the above behaviors or conditions, it is 
easy to obtain the data, and, therefore, the concept of observing the risk level is proposed. 
The collected records of unsafe behaviors are classified according to the severity of the 
consequences of the unsafe behaviors: they are divided into four categories: general un-
safe behaviors (Ⅰ), more serious unsafe behaviors (Ⅱ), serious unsafe behaviors (III), and 
accidental unsafe behaviors (Ⅳ). The results of the risk assessment of unsafe behaviors of 
employees of nuclear power plants under construction reflect the estimated value of the 
steady state point of the evaluated object during the work period, without taking into 
account the interval estimation of its periodic or transient fluctuations. 

3.2. Indicator Screening 

A total of 19 indicators were selected in the evaluation index fitting, some of which 
may have less influence on unsafe behaviors, and the fitting effect may not be satisfactory 
if 19 variables are used blindly to build the risk assessment model of employees’ unsafe 
behaviors without screening. Therefore, in order to reduce the coupling effect between 
various factors, the important factors affecting unsafe behaviors were extracted through 
the random forest algorithm, and the data in Table 3 were used for analysis and calcula-
tion. 

Table 3. Raw data for the evaluation of staff behavior. 

X1 39 31 31 31 31 36 35 36 40 30 28 
X2 5 4 3 1 4 2 3 3 2 1 2 
X3 1 1 2 3 1 2 2 1 1 3 2 
X4 28 29 25 27 22 28 25 28 30 28 28 
X5 78.1 81.4 73.8 73.8 95.7 65.4 90.1 81.6 84.5 94.3 96.0 
X6 86 83 86 85 83 81 82 83 82 75 76 
X7 86 82 93 82 84 86 86 89 85 81 89 
X8 81 80 75 89 86 87 80 81 83 84 83 
X9 24.58 22.47 20.53 23.19 25.19 25.52 23.05 22.13 23.26 22.78 23.5 
X10 0.01 0 0 0 0.02 0.03 0 0 0 0 0 
X11 0.92 0.02 0.04 0.06 1.59 2.89 0.11 0.02 0.02 0.18 0.02 
X12 86 89 82 84 81 83 84 85 82 87 88 
X13 88 89 86 84 88 86 85 88 89 91 86 
X14 84 86 71 91 86 83 79 85 88 76 72 
X15 95 94 95 96 95 95 94 96 97 92 93 
X16 81 82 84 81 81 83 84 85 88 83 82 
X17 80 81 83 82 81 85 88 83 82 81 82 
X18 82 84 82 80 86 82 81 80 84 83 79 
X19 82 84 82 80 86 82 81 80 84 83 81 
X20 I II II III Ⅱ Ⅱ Ⅲ Ⅱ Ⅱ Ⅱ Ⅲ 

3.3. Correlation Analysis of Variables 

Before establishing the model, the correlation between the feature variables is also 
verified. If the feature variables have strong correlation, it will have a certain degree of 
impact on the generalization ability of the model. The correlation coefficient heatmap is 
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drawn for each characteristic variable studied in this paper to observe the correlation de-
gree of each characteristic variable. Firstly, the correlation coefficient between each char-
acteristic variable is calculated by using the Corr function, then, the correlation coefficient 
heatmap is drawn by using the heatmap function in the seaborn plotting package in Py-
thon, as shown in Figure 3, and the correlation coefficient is calculated by using the 
heatmap function in the seaborn plotting package in Python. 

Figure 3. The extent to which indicators influence unsafe behavior. 

According to the screening of feature variables of random forest, the final selection 
of age, working age, psychological factors, safety awareness, knowledge and skills, noise, 
temperature, work arrangement, education and training, supervision and inspection, 
safety warning, protective gear, equipment reliability, and the number of nodes deter-
mined in the input layer of the BP neural network is 13. 

3.4. Network Model Setup 

It was shown that a three-layer BP neural network can meet the fitting accuracy of 
any nonlinear function. Therefore, the model for this study was chosen to contain only 
one hidden layer. There exists an optimal number of nodes in the hidden layers, but how 
to determine it mainly depends on empirical formulas and experiments. 

amnk ++=  (5)

where n is the number of nodes in the output layer; m is the number of nodes in the input 
layer; and a is an integer in the range 1–10. 

The optimal number of nodes in the hidden layer is obtained by bringing n = 4 and 
m = 12 into the empirical Equation (5). The calculation results show that the number of 
nodes lies between the interval [5,14], and each integer of the various kinds is tested one 
by one with the BP neural network. The results of the training error are shown in Figure 4. 

As can be seen in Figure 5, the error is minimized when the number of nodes in the 
hidden layer is 13. Therefore, the model in this study has 13 nodes in the input layer, 4 
nodes in the output layer, and 10 nodes in the hidden layer. 
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Figure 4. Correlation coefficient heat map. 

 

Figure 5. Training error of hidden nodes. 

3.5. HS-BP Neural Network 

The weight thresholds of BP neural networks are usually limited to a certain range. 
If the data are not normalized, the input range will be large. The corresponding range of 
the weight threshold adjustment will also become large, increasing the difficulty of ad-
justing the weight threshold. Therefore, in order to improve the convergence of the algo-
rithm, it is necessary to normalize the inputs to [0, 1], and the transformation formula is 
Equation (6). 
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)/()( minmaxmin
' XXXXX ii −−=  (6)

where Xi denotes the input data; Xmax denotes the maximum value in the desired range; 
Xmin denotes the minimum value in the desired range; and Xi′ denotes the transformed 
input data. 

The experiment was carried out using Python programming with a total of 313 da-
tasets, of which 300 were used for training and 13 for testing.The HS-BP neural network 
model parameters are shown in Table 4. 

Table 4. HS-BP neural network model parameters. 

Memory Bank 
Size HMS 

Memory Value 
Probability 

HMCR 

Tuning Proba-
bility PAR 

Tuning 
Step 

Number of Nodes in 
the Hidden Layer of the 

BP Neural Network 

Learning 
Rate 

Number of Iter-
ations 

100 0 0.3 0.2 13 0.01 500 

The two algorithms that model the BP model and HS-BP model use the same network 
structure with 70% of the 300 training samples as training and 30% as validation samples. 
After each round of learning, the network mean square error is obtained, and the maxi-
mum number of learning rounds is set to 500. The training error of both algorithms is 
shown in Figure 6. 

 

Figure 6. Training error plots for both algorithms. 

As can be seen from the error curve, for the HS-BP model, after 203 rounds of data 
learning, the net error is reduced to 0.000805, which reaches the preset error accuracy of 
0.001. Then, the learning stops. Despite the minor fluctuations in the error reduction pro-
cess, the results are still in line with the expected state of the HS algorithm. The algorithm 
is very stable with no error stagnation. For the BP model, the network error decreases with 
significant fluctuations. Error stagnation occurs when the error is 0.2 and 0.03. After 400 
rounds of learning, the average network error fluctuates around 0.017. Even when the 
maximum training number of 500 is reached, the network training error accuracy cannot 
reach the target value of 0.001, and the final error is 0.0172. 
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The remaining 13 data were compared by the advantages of the two algorithmic 
models, as shown in Figure 7. It is clear from this figure that the HS-BP algorithm model 
has the highest fit to the expected output. 

 

Figure 7. Line graph of two algorithmic models. 

The research methodology system was experimentally applied in Zhangzhou Nu-
clear Power, mainly realizing behavioral risk control and the multi-scenario hidden dan-
ger investigation for 20,000 workers in the under-construction nuclear power plant. The 
application platform is shown in Figure 8, which displays the risk and hidden danger data 
of the whole working area in real time. 

 

Figure 8. Application platform diagram * (Some data sensitive to nuclear power are processed). 

4. Results and Discussion 
In this study, the factors affecting the unsafe behaviors of employees in nuclear 

power plants under construction were identified through the random forest method, and 
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the input variables of the assessment model were determined on this basis. The HS-BP 
model was used to achieve the assessment of the risk of employees’ unsafe behaviors, and, 
by comparing it with the BP model, the HS-BP model has high accuracy and convergence 
speed. The unsafe risk level of the workers in the nuclear power plant under construction 
is determined, and the personnel who need to be focused on supervision are identified, 
which provides a basis for the enterprise personnel management. The established assess-
ment model takes into account the human self-factors, environmental factors, organiza-
tional factors, and mechanical equipment factors, thus reflecting to a certain extent their 
influence on the unsafe behaviors of the workers. The results show that the model has a 
good fitting effect. 

In addition, in screening the importance of the factors influencing unsafe behaviors 
using random forests, we found that safety awareness (0.0832), working age (0.0819), and 
knowledge and skills (0.0797) have a greater influence on unsafe behaviors. The main rea-
son for this is that workers in nuclear power plants under construction need more opera-
tional skills and experience to cope with the complex operating environment. Only by 
improving the safety awareness of workers and continuously strengthening education 
and training can the unsafe behavior of workers be effectively reduced and the occurrence 
of accidents in under-construction nuclear power plants be reduced. Among the factors 
influencing unsafe behaviors, noise has the greatest influence on unsafe behaviors 
(0.0952), and companies should reduce the exposure time of workers to noise and improve 
their awareness of noise prevention. 

Accidental unsafe behaviors are affected by a combination of factors, and some fac-
tors (e.g., safety attitudes and safety culture) were not included in the evaluation system 
because they are not easily accessible or difficult to quantify when screening unsafe be-
havior influencing factors. In future studies, it is planned that appropriate databases will 
be established to store such data. A more detailed evaluation system will then be devel-
oped for a more accurate assessment. 

5. Conclusions 
Based on the BP neural network optimized by the random forest and harmony search 

algorithms, a risk assessment model for unsafe behaviors of employees in nuclear power 
plants under construction was established, and a systematic assessment of unsafe behav-
iors of employees was carried out to determine the level of unsafe behaviors. The main 
research conclusions are as follows: 

(1) The feature variables affecting unsafe behaviors are screened by the random forest 
model, and, then, a BP neural network-based model is constructed to evaluate the 
screened feature variables, which can comprehensively and effectively analyze the 
unsafe behaviors of employees in nuclear power plants under construction. 

(2) The BP neural network is optimized by using the harmonic search algorithm, and an 
assessment model of the unsafe behaviors of employees in nuclear power plants un-
der construction is constructed, which is compared with the BP neural network 
model before optimization, and shows that the optimized model has higher accuracy. 

(3) The employee behavior assessment based on the machine learning method outputs 
the risk level of employee behavior in nuclear power plants under construction more 
objectively and solves the deficiencies of one-sidedness and subjectivity of the tradi-
tional expert evaluation method. 

Focus on key influencing factors, strengthen safety awareness education, and carry 
out differentiated knowledge and skill training for workers of different working ages; con-
trol environmental influencing factors, adopt noise reduction measures and strengthen 
workers’ education on noise prevention; improve the data and assessment system, setup 
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a database for storing data on safety attitudes and other factors that are not easily quanti-
fiable, and build a more detailed assessment system; and combine the management of 
assessment results with the management of risk levels to classify and manage the workers 
according to their risk levels, with high-risk specialized staff to focus on the supervision 
of high-risk workers, and regular reminders to strengthen safety awareness. 

Future work around the risk assessment of unsafe behaviors of employees in nuclear 
power plants under construction can be carried out in many ways. In terms of model op-
timization and expansion, try to combine intelligent algorithms such as particle swarm 
and genetics with BP neural networks to compare performance while optimizing the 
structure of BP neural networks, exploring their advantages of combining them with deep 
learning models such as convolutional and recurrent neural networks and random forests, 
and integrating multi-source data such as employee physiology, operating behaviors, and 
historical accident cases. In terms of data, deep learning data interpolation and other tech-
niques are studied to improve data quality, establish a long-term monitoring mechanism 
to update data regularly, and promote data sharing and comparison with other nuclear 
power plants and related industries. In terms of practical application, formulate and opti-
mize interventions for the personnel of different risk levels, develop a real-time risk warn-
ing system, and extend the model to high-risk industries such as chemicals and mines. 
Theoretical research should deeply analyze the synergistic mechanism of various influ-
encing factors and establish a standard system of risk assessment by combining research 
and application experience, so as to provide a normative reference for the industry. 

This paper identifies personnel with higher behavioral risk levels through the assess-
ment of employee behavior in under-construction nuclear power plants, which provides 
a basis for personnel management and has obvious practical significance and theoretical 
value. In addition, the influencing factors of unsafe behaviors were screened before the 
assessment was conducted, which can provide reference for other studies. 
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