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Abstract: Porous carbon materials can serve as effective and versatile adsorbents in water
pollution management. This study presents a cost-effective and environmentally friendly
method to produce porous carbon materials (JFS-PC) by exploiting Jamoya fruit seeds
(JFS) as a precursor using a hydrothermal carbonization (HTC) process. HTC is a thermo-
chemical process for the conversion of high moisture content biomass into carbon-rich
materials. The process is performed in a temperature range of 180–250 ◦C during which
the biomass is submerged in water and heated in a sealed environment under autogenous
pressure. The adsorbents obtained were explored using different techniques viz. XRD,
FTIR, FE-SEM, and surface area analyses to evaluate their characteristics that are beneficial
for the adsorption process. Surface area analysis revealed that the developed activated car-
bon exhibits appreciable surface area (440.8 m2g−1), with a mean pore diameter of 3.97 nm.
Activated carbon was successfully tested on the removal of an azo dye, Carmoisine B (CB),
from water systems. Isothermal and kinetic evaluation demonstrated that the dye adsorp-
tion agrees well with the Langmuir (R2 = 0.993) and pseudo-second-order (R2 = 0.998)
kinetics models. The experiments were designed to investigate the influence of adsorbate
concentration (1 × 10−4 and 2 × 10−4 mol L−1), collision time (5–300 min), pH (2–12) of
the solution, and temperature (25–45 ◦C) on the adsorption of the selected dye. The results
revealed that pH influences the adsorption capacity of CB and showed maximum adsorp-
tion between pH 2 and 5. Experimentally, the CB isotherms showed maximum adsorption
capacities of 169.0 mg g−1, at 45 ◦C. Mechanisms indicate that the surface charge of the
adsorbent, and structures of the adsorbate play key roles in adsorption. Thermodynamic
parameters revealed an endothermic and a physisorption process supported by Van’t
Hoff calculations. The study indicates that the developed porous carbon (JFS-PC) can be
successfully used for the removal of CB from water systems. It also highlights the use of
an inexpensive and renewable precursor for the development of porous carbon materials.
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1. Introduction
The agricultural, industrial, pharmaceutical, and building sectors are actively involved

in the use of a huge amount of natural resources and consequently produce a large amount
of biomass waste that impacts the environment. Inadequate management of biomass
waste has attracted the attention of the scientific community to develop new strategies
for managing it, in order to promote sustainability [1]. The valorization of biomass waste
resources by converting them into porous carbon materials has emerged as an effective
approach for their application in water treatment in the recent years [2–4].

Biomass including agricultural waste [5], apricot stones [6], eucalyptus barks [7],
almond shells [8], bamboo sawdust [9], Tectona grandis sawdust, stubble, fibers from the
Adansonia digitata L. tree, and bamboo flower [10], were used in numerous studies for
the production of porous carbons, mainly activated carbons (ACs). The hydrothermal
conversion of biomass waste into porous materials has become the research focus in recent
years due to its energy efficiency, usage of low temperature, and it not needing pre-drying
features as compared to the pyrolysis, gasification, and torrefaction techniques. Moreover,
water is used as a solvent during HTC which diminishes the use of hazardous chemicals
and is thereby termed as an environmentally friendly process. No hazardous emissions of
gasses are produced during the HTC process, which represents a benefit over other methods.
Additionally, the carbons produced via the hydrothermal route are rich in carboxylic,
ketonic, and phenolic groups [10–12] which are useful for adsorption applications.

Azo dyes have been widely exploited in various industrial processes for coloring
leather, textiles, and as food colorants [13–15]. Due to the low production cost of azo
dyes, they are extensively used and their production reached 8.8 × 103 metric tons in
2023, and is anticipated to reach 11 × 103 metric tons by 2029 [16]. Among these dyes,
Carmoisine B (CB), anionic in nature, is widely used for dyeing purposes and as a food
colorant [17]. However, CB has been reported to cause neurological, allergic, carcinogenic,
and hyperactivity disorders in humans [13] and therefore disposal of untreated water into
the water streams poses a substantial threat to the environment, such as deteriorating water
quality, affecting aquatic life, and potentially posing harm to humans. Various techniques
for the removal of dyes from water have been discussed in the literature, viz. membrane
filtration [18], biological degradation [19], ion exchange [20], reverse osmosis [21], elec-
trochemical oxidation [22], photocatalytic degradation [23], and adsorption [24]. Among
these techniques, adsorption, using diverse adsorbents including low-cost biomass [10,18],
hydrochars, and activated carbons fulfills the effective removal of dyes due to its ease of
operation, lower selectivity towards the pollutants, and simplistic design [25–29].

The demand for efficient carbonaceous materials has boomed across the globe due
to their multi-dimensional applications including energy storage, soil remediation, phar-
maceutical delivery, and water treatment. Still, some drawbacks are related to the use
of expensive and non-renewable precursors and high-energy processes in commercial
production. These challenges underscore the need for the development of carbonaceous
materials using energy-saving approaches and low-cost precursors, preferably renewable,
such as biomass waste.

This work addresses the removal of dyes from wastewater by a diversity of adsorbents
in its current state. The scalability of the adsorbent production method, for large-scale
applications, is a limitation that has to be addressed further. Despite these challenges,
the potential applications of the developed porous carbon materials in several water
treatment scenarios, particularly in addressing dye contamination, are promising and
warrant further investigation.

A promising source of waste biomass for porous carbon production and its utilization
in dye removal is JFS. The Jamoya tree (Syzygium cumini), a member of the Myrtaceae
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family, belongs to the Indian sub-continent; however, it is cultivated in the tropical and
sub-tropical regions of the world [30]. Jamoya fruits are abundantly available in the Asian
region, holding commercial value for culinary purposes [31]. Conversely, the fruit seeds
lack utility or commercial value, serving as a source of solid biomass waste. To date,
no study is available on the production of hydrothermally derived porous carbon from
waste biomass (JFS). Being an inexpensive material, the use of Jamoya fruit seeds for
their transformation into ACs contributes to waste management too. The utilization of
HTC as an energy-efficient process contributes to energy conservation. In addition, the
incorporation of Jamoya seeds in a circular economy framework will create environmental
benefits through a reduction in waste and the promotion of sustainable practices [32].
Converting this underutilized biomass into value-added products has significant economic
implications, further opening new prospects for renewable materials toward the broader
goals of sustainability.

This study presents the production of hydrothermally derived JFS powder porous
green carbon (JFS-PC) to remove CB from aqueous solutions, crucial to expand research in
nutrition and the textile industry. An intensive characterization of the prepared materials
was carried out to explore their textural and chemical properties. The role of functional
groups, the substituents groups attached to the dyes, surface area, and surface charge of
the adsorbent was highlighted in the adsorption. Kinetic models, isotherms, and thermody-
namics parameters were performed and calculated to provide insights into the mechanism,
sample nature, and features influencing the adsorption of the selected dyes.

2. Materials and Methods
2.1. Materials

In this study, Jamoya fruit seeds were collected locally. The seeds were washed
several times to remove the adhered dust and impurities and dried in an oven at 60 ◦C
for 24 h. The seeds were then ground and sieved to obtain a 10–30 mesh size and kept
in a sealed plastic vial until its utilization. A Carmoisine B (CB) was purchased from
Tokyo Chemical Industry (TCI), Tokyo, Japan. The NaOH and HCl used for the pH adjust-
ments were supplied by Merck, Darmstadt, Germany. Double distilled water was used for
the preparation of solutions throughout the work.

2.2. Preparation of Porous Green Activated Carbon

Jamoya fruit seeds (JFS) underwent hydrothermal carbonization, at a temperature of
230 ◦C, for 4 h in a PTFE lined hydrothermal reactor (Parr, Moline, Illinois, United States
of America (USA)). The obtained JFS-based porous carbon, named JFS-HC, was stored in
sealed plastic vials for future utilization. Porous green activated carbon was prepared by
exposing 5 g of hydrothermally carbonized JFS (JFS-HC) to a heating rate of 5 ◦C min−1 until
850 ◦C in a tube furnace (Carbolite Gero, Hope Valley, United Kingdom) under CO2 gas flow
(400 mL min−1) for 5 h [33]. The furnace was then cooled to room temperature under N2 flow
(100 mL min−1), giving rise to a porous activated carbon (JFS-PC).

2.3. Proximate Analysis and pH at the Point of Zero Charge Determination

The proximate analysis of the biomass feedstock, derived hydrochar, and activated
carbon provides significant information regarding the amount of volatile matter, ash, and
moisture content. A high moisture content may reduce adsorption efficiency as it can
block adsorption sites and may even interfere with the interactions between adsorbent
and adsorbate. Volatile matter gives an indication of organic compounds decomposition.
High ash indicates the presence of inorganic impurities which reduce adsorption efficiency.
These analyses ensure the development of efficient porous carbon materials for specific ap-
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plications. The volatile matter, ash, and moisture contents of JFS, JFS-HC, and JFS-PC were
determined in accordance with the ASTM standard methods D3175-07 [34], E1755-01 [35],
and D4442-07 [36], respectively. The pHpzc of the samples was determined according to a
method described by Carrott et al. [37].

2.4. Instrumental Methods

The ultimate analysis of the samples was performed primarily to confirm the carbona-
ceous nature of the precursor, ensuring the development of porous materials with high
carbon content, which is generally beneficial for adsorption purposes. The analysis was
performed using a CHNS analyzer (Vario Micro, Elementar, New York, NY, USA). Residual
concentrations of CB in the solutions were determined using UV-Vis spectrophotometry
(UV-1800, Shimadzu, Kyoto, Japan) at 518 and 521 nm, respectively. JFS, JFS-HC, and
JFS-PC were evaluated by Fourier transform infrared spectroscopy (Spectrum Two, Perkin
Elmer, Shelton, CT, USA) to evaluate the group functionality on their surface. Analyses
were performed in the spectral region of 4000 to 400 cm−1. N2 adsorption–desorption
measurements of the samples were taken using surface area analyzers at 77K (NOVA II and
Autosorb iQ, Quantachrome, Boynton Beach, FL, USA). BET analysis was undertaken to
determine the surface area, whereas the pore volume and average pore diameter of the sam-
ples were evaluated using the BJH method. X-ray diffraction (XRD) analysis was performed
using a powder X-ray diffractometer (DMax-2200, Rigaku, Tokyo, Japan) equipped with
copper radiation (Cu-Kα) working at 40 kV/40 mA. A 2θ range of 5–80◦, with a scanning
step of 0.02◦, was selected for the analysis. Scanning electron microscopy (SEM) to evaluate
the morphology of the samples was carried out using an EVO 18 Special Edition, Zeiss,
Oberkochen, Germany microscope with an acceleration voltage ranging from 5 to 15 kV.

2.5. Batch Dyes Adsorption Experiments

Adsorption experiments in a one-component system were carried out as follows:
0.01 g adsorbent was added to 10 mL of dyes solution, with varying concentrations at the
natural pH of the dye (5.3). The suspensions were left under agitation to equilibrium in
a water bath shaker (JSGW, Ambala, India) with a temperature control feature at 25 ◦C.
After reaching equilibrium, the mixture was separated using a Whatman filter paper, and
the residual concentration of dyes that remained in the solution was evaluated using a
UV-Vis spectrophotometer. UV-Vis spectrophotometry was used to measure dye concen-
tration, with no sample interference since the solutions were synthetic and contained only
CB dye. The instrument was regularly calibrated and blank (a blank was prepared with the
adsorbent and distillated water) corrections along with replicate measurements minimized
deviations. No significant absorbance variations were observed, ensuring the precision
of dye concentration estimates. The equilibrium adsorption capacity (qe) was calculated
using the following formula:

qe =
Ci − Ce

m
V (1)

2.6. Statistical Analysis

The experimental data for the adsorption models and kinetics of the adsorption
process were analyzed using Microsoft Excel to determine the correlation coefficients (R2),
which describe the goodness of fit. The experiments were performed in triplicate, and the
R2 values were used to assess the accuracy and reliability of the data.
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3. Results and Discussion
3.1. Characterization of JFS, JFS-HC, and JFS-PC

The moisture, ash, and volatile matter contents, presented in Table 1, were found
to be decreased upon hydrothermal carbonization and further activation process. The
low moisture content could be ascribed to the carbonization of JFS at higher temperature
while preparing the JFS-HC. The low volatile matter observed for the JFS-HC indicates the
reduced particle density, which in turn is beneficial for applications in adsorption ultimate
analysis (Table 1), showed a substantial increase in the carbon content of the JFS-PC, indicat-
ing that JFS can be utilized as an effective precursor for the production of porous carbons,
mainly ACs. A comparison of ultimate analysis with other ACs available in the literature is
provided in Table 1, which ensures the efficiency of developed porous carbon. The point of
zero charge was determined in accordance with the method suggested by Carrott et al. [37]
and was found to be 5.2, which reveals that the surface of JFS-PC is positively charged
below pH 5.2, which will be beneficial for the interaction with contaminants anionic in
nature, whereas it attracts cationic contaminants above pH 5.2. Therefore, it can be said that
at pH < pHpzc, anionic pollutants are readily adsorbed by the developed ACs, whereas
they favor the adsorption of cationic pollutants at pH > pHpzc.

Figure 1 depicts the FTIR spectra of JFS, JFS-HC, and JFS-PC. JFS showed a peak near
3400 cm−1, ascribed to –OH stretching of hydroxyl groups. The band near 2900 cm−1 repre-
sents the C–H stretching vibration in the sample. The peak at 1587 cm−1 is attributed to the
aromatic COOH and C–C groups in JFS. A peak at 1118 cm−1 refers to C–O–C stretching,
confirming the presence of hemicellulose and cellulose in JFS [38]. A peak near 700 cm−1

represents the CH bending vibrations in JFS. JFS-HC showcases all the distinctive peaks
of JFS with minor band shift and decrease in intensity; however, upon hydrothermal car-
bonization, few new peaks between 1600 and 1400 cm−1 emerged which may be attributed
to the increase in the oxygenated functional groups during HTC. Interestingly, JFS-PC
showed a smaller number of peaks which may be a consequence of the submission to a
high temperature during activation. The peaks at 3450 and 2930 are assigned, respectively,
to the OH and C–H stretching in the sample. The peaks at 1635 and 605 cm−1 are imputed
to the aromatic COOH and C–H bending vibrations [39–41].
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Figure 2 shows the XRD patterns of JFS-PC in comparison to JFS-HC and JFS samples.
Two broad peaks at 2θ = 14◦ and 22.1◦, attributed to (101) and (002) plane, were present
in the case of JFS, which are the characteristic peaks of cellulose. A similar pattern was
obtained with JFS-HC, indicating the retention of the original cellulosic structure of JFS
despite undergoing HTC. In the case of JFS-PC, the characteristic peaks of cellulose become
broader, indicating the formation of amorphous carbon material. Another strong peak
seen at 2θ = 43◦ corresponds to (100) plane of graphite crystals, attributed to the interlayer
condensation of graphite layers [42,43].
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Figure 3 shows the SEM micrographs of JFS, JFS-HC, and JFS-PC, indicating that
JFS has a smooth surface which converts to a rough surface with some pores and cracks
upon HTC. Also, the formation of sphere-like structures was seen on the surface of JFS-HC
(Figure 3b). The surface of the JFS-PC showed a porous surface with retention of the
spherical structures (Figure 3c). The spherical structures indicate the hydrophobic nature
of the prepared JFS-PC, which is beneficial for adsorption applications.

The N2 adsorption–desorption isotherm shows a Type I curve with a short plateau
ending at p/p◦ < 1, and an upward deviation is observed in Figure 4, revealing wider
micropores or mesopores contributing to the pore filling. The presence of a H4 hysteresis
loop indicates that the capillary condensation is responsible for pore filling, and slit-
shaped pores have been formed [44]. This is further confirmed by the textural properties
(Table 2), which showed that the average pore diameter of JFS-PC is 3.97 nm, indicating the
development of mesopores or wider micropores, facilitating the molecular diffusion of dye
to the internal sites. Moreover, JFS-PC exhibited a high surface area (440.8 m2 g−1) and pore
volume (0.437 cm3 g−1), both of which enhance the material’s adsorptive performance. The
adsorbent with a higher surface area can enhance the removal potential of JFS-PC owing to
its ample active surface sites. In addition, the mesoporous structure of JFS-PC could give
rise to the capability of adsorbing CB. The surface area of JFS and JFS-HC samples was
also analyzed, and data presented in Table 2 reveals that both materials possess very low
surface area when compared with JFS-PC, hence full isotherm was not given.
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3.2. Adsorption Studies
3.2.1. Effect of Contact Time, Initial Dye Concentration, and Solution pH

Figure 5 shows the adsorption equilibrium time profile for the removal of CB dye
by JFS-PC at different initial dye concentrations (1 × 10−4 and 2 × 10−4 mol dm−3). The
equilibrium time, representing the time span necessary to attain equilibrium, was found to
be 180 min. At this point, the dye desorption from JFS-PC reaches dynamic equilibrium
with the adsorption process. Moreover, the obtained curves level off between 150 and
180 min, indicating monolayer adsorption. It is noteworthy that adsorption occurs rapidly
initially and then slowly attains equilibrium. This may be attributed to the available
vacant sites on JFS-PC initially which become saturated over time, resulting in increased
time period [45]. Figure 5 also reveals that the adsorption of CB increases as its initial
concentration increases. It may be attributed to the increase in collisions between dye and
JFS-PC molecules at higher concentrations. Moreover, an increase in the driving force of
concentration gradient reduced the mass transfer resistance of CB between the liquid and
the JFS-PC adsorbent [46].
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Figure 5. Influence of contact time and initial concentration on the removal of CB by JFS−PC at 25 ◦C.

Solution pH directly affects the adsorption of dyes and therefore it is crucial to investi-
gate its impact on the process. Figure 6 displays the experimental results concerning the
effect of the pH of the solution on the adsorption of CB by JFS-PC. It was seen that the
extent of removal of the dye was highly influenced, with varying pH due to its effect on the
binding sites of the adsorbent and the ionization of CB molecules. The adsorption capacity
of JFS-PC decreases with an increase in pH from 2 to 12; however, a minor difference in the
adsorption capacity was observed between pH 2 and 5. Since JFS-PC exhibits enhanced
adsorption of CB under pH levels between 2 and 5, the natural pH (5.3) of the dye solution
was selected as optimum pH for the experimental investigations. In the acidic pH range,
the surface of the JFS-PC is positively charged (pHpzc—5.5), thereby attracting the nega-
tively charged molecules of CB. The higher adsorption of the dye is also supported by the
increased protonation. This promotes the dye’s affinity for active sites and accelerates the
diffusion process. Meanwhile, in an alkaline pH range, protonation is reduced, and the
hydroxyl ion concentration dominates in the solution. The OH¯ ions compete with the dye
molecules for the adsorption sites, thereby retarding and reducing the adsorption of CB.
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The surface of the JFS-PC is also negatively charged in the alkaline pH range, resulting in
reduced adsorption owing to the repulsion of the dye molecules.
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Figure 6. Influence of pH on the removal of CB by JFS−PC at 25 ◦C (Carmoisine B initial concentration:
2 × 10−4 mol dm−3).

3.2.2. Adsorption Isotherms and Thermodynamics Studies

The relationship between the equilibrium concentration of CB and the equilibrium
adsorption capacity of JFS-PC at different temperatures (25, 35, and 45 ◦C) was investigated,
and the experimental data were fitted and analyzed using the Langmuir, Freundlich,
Temkin, and Dubinin–Radushkevich (D-R) models. The associated equations and the
corresponding parameters for the above models are given in Table 3. As depicted in
Figure 7 and Table 4, the adsorption capacity significantly increased and then gradually
reached equilibrium with an increasing concentration of CB at 25, 35, and 45 ◦C. Figure 7
shows that CB adsorption increased with increasing temperature. As shown in Figure 8a–d
and Table 4, the Langmuir adsorption capacity closely related to the experimental values
obtained at 25, 35, and 45 ◦C (0.310, 0.324, and 0.334 mmol g−1, respectively), and the
co-relation coefficient (R2 = 0.993 to 0.998) for the Langmuir model was higher than that of
all the other applied models. This indicates that the JFS-PC surface has uniform adsorption
energy for the modeled dye. The adjustment made with the DR equation was the one that
gave a lower correlation coefficient. Consequently, the dye adsorption process can be best
described through a monolayer adsorption mechanism. A comparison of the adsorption
capacity and best-fitting isotherm model of JFS-PC with other activated carbons, available
in the literature, is provided in Table 5.

Figure 9 presents the Gibb’s free energy (∆G◦), entropy (∆S◦), and enthalpy (∆H◦)
values obtained through the calculation of the Van’t Hoff equation (Table 3), and the
obtained parameters are given in Table 6. The positive ∆H◦ value and negative ∆G◦ value
suggest that the adsorption of CB by JFS-PC is an endothermic and spontaneous process [47].
Meanwhile, the gradual increase in values of free energy with increasing temperature
indicates that high temperatures favor the adsorption of CB by JFS-PC [48]. The positive
∆S◦ value indicates an increase in the degree of disorder at the solid–liquid interface during
the adsorption process.
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Figure 7. Experimental adsorption isotherm for the removal of CB by JFS−PC at different temperatures.
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Figure 8. (a) Langmuir isotherm, (b) Freundlich isotherm, (c) Temkin isotherm, and (d) D-R isotherm
for the removal of CB by JFS-PC at different temperatures.
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Figure 9. Van’t Hoff plot for the removal of CB by JFS-PC.

3.2.3. Mechanism

The surface of JFS-PC exhibits ample adsorption sites which facilitate the binding
of CB. Point of zero charge (pHpzc) investigations of JFS-PC revealed that the JFS-PC’s
surface exhibits a positive charge when subjected to acidic pH conditions. Consequently,
this surface with positive charge has the ability to form electrostatic interactions with CB
dye molecules [49], facilitating the binding to JFS-PC. The molecules of CB dye have a
negatively charged structure due to the presence of sulphonate and hydroxyl groups in
its structure which also enhances the extent of binding through electrostatic attraction
of CB with the adsorbent below pH 5.2. The surface of JFS-PC has different functional
groups, including carboxylic and –OH, which can serve as active sites for binding with
SO3

−Na+ and N+ of the CB dye [50]. This binding is supported via different mechanisms
viz. electrostatic interactions and H-bonding. In addition, the contaminants having a
benzene ring generally have strong affinity to adsorb onto the surface of carbon rich
materials owing to the interactions between C=C of JFS-PC and the benzene ring of the CB
via π- π interactions [51].

The porous character of JFS-PC is crucial for the adsorption of the dyes from water.
The high surface area (440.8 m2g−1) of JFS-PC and high porosity (0.437 cm3g−1) allows
the molecules of CB to adsorb on the JFS-PC surface. Therefore, the aforementioned
mechanisms may be attributed to the higher adsorption of CB onto the JFS-PC surface. A
pictorial representation for the possible mechanisms, responsible for the adsorption of CB
onto JFS-PC, is shown in Figure 10.
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3.2.4. Kinetic Investigations

To understand the adsorption mechanism of JFS-PC for CB, an in-depth analysis of
adsorption kinetics was carried out and the details with corresponding parameters for
the applied models (pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich
models) are given in Table 3. As depicted in Figure 11a–c, and Table 7, the experimental
data were fitted using PFO, PSO, and Elovich models. The fitting correlation coefficient
(R2 ≥ 0.9861) of the PSO model was higher than those obtained with the PFO and Elovich
models (R2 ≥ 0.7229), and the experimental adsorption values were similar to the calculated
values. This reveals that the adsorption kinetics of CB on JFS-PC is in close agreement with
the PSO model.

The involved mechanism and the rate governing step were further elucidated by
applying the intraparticle diffusion model (IPD) to the experimental data. The intraparticle
diffusion model in Figure 11d and Table 7 shows the multi-stage sorption of CB onto
developed JFS-PC. The first stage describes the transfer of CB from the bulk of the solution
to the JFS-PC’s surface, whereas the second stage denotes the penetration of CB molecules
into the JFS-PC’s pores. In addition, the line in Figure 11d does not pass by the origin,
affirming that some other mechanism along with IPD is involved in the CB adsorption
by JFS-PC [52]. A comparison of kinetic studies of the current work with the results
obtained on the use of other activated carbons for the removal of dyes is provided in
Table 5. Maximum research works indicate that the pseudo-second-order model is the best
fit to describe the kinetics, which is in line with the findings of our study.
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Figure 11. (a) PFO, (b) PSO, (c) Elovich, and (d) IPD kinetic models for the removal of CB by JFS-PC
at 25 ◦C.

Table 1. Proximate and ultimate analysis of JFS, JFS-HC, and JFS-PC and comparison with the other
activated carbon available in the literature.

Proximate Analysis (%) Moisture Content Ash Content Volatile Matter Reference

JFS 68.32 6.56 2.89 This study
JFS-HC 58.11 6.23 2.43 This study
JFS-PC - 0.51 — This study

Activated carbon from apricot stones - 2.10 - [6]

Activated carbon from almond shell - 0.5 - [8]

Activated carbon from sugarcane baggase - 1.65 - [53]

Activated carbon from thin walnut shell - 5.01 - [54]

Ultimate Analysis (%)
C H N S Reference

JFS 44.12 7.12 0.92 0.87 This study
JFS-HC 62.34 4.32 0.04 0.02 This study
JFS-PC 84.21 1.20 0.02 0.03 This study

Activated carbon from almond shell 58.78 3.26 1.25 0.07 [8]
Activated carbon from apricot stones 82.76 - - - [6]

Activated carbon from Phyllanthus emblica 70.23 2.98 0.64 0.41 [12]
Activated carbon from orange peel 83.9 1.9 0.4 - [33]
Activated carbon from cupuassu 74.16 2.32 0.66 - [50]

Activated carbon from Brazilian nut shell 71.30 2.65 1.03 - [50]
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Table 2. Textural properties of JFS, JFS-HC, JFS-PC.

Materials Surface Area Average Pore Size Total Pore Volume
(m2 g−1) (nm) (cm3 g−1)

JFS 2.40 6.05 0.004
JFS-HC 10 3.40 0.027
JFS-PC 440.8 3.97 0.437

Table 3. Isotherm models, kinetics, and thermodynamics equations.

Models Mathematical Expression Plot Axis Evaluated
Parameters Description Reference

Isotherm Models

Langmuir 1/qe = 1/qmax+1/qmaxbCe RL =
1/1+bCo

1/qe vs.1/Ce qmax and b

Ce; adsorbate concentration at equilibrium
qe (mmol g−1); amount of pollutant
adsorbed at Ce qmax (mmol g−1); Monolayer
adsorption capacity of JFS-PC. b (L mol−1);
Langmuir adsorption coefficient

[55]

Freundlich log qe = logKf + (1/n) log Ce logqe vs.logCe Kf and n

Ce; adsorbate concentration at
equilibrium qe(mmol g−1); amount
adsorbed at Ce
KF (mmol g−1) and n; Freundlich constant
affiliated to the adsorption capacity and
heterogeneity, respectively.

[56]

Temkin qe = BT ln KT + BT lnCe BT = RT/ bT qe vs. lnCe KT and BT

BT; heat of adsorption bT (J mol−1); constant
related to the heat of
adsorption KT (L mg−1); Temkin constant

[57]

D-R ln qe = lnqm−βDRε
2 ε = RT ln(1+1/Ce) ln qe vs. ε2 Qm and βDR

qm (mg g−1); D-R monolayer capacity
βDR (mol2 kJ−2); constant related to the
adsorption energy ε; Polanyi potential

[58]

Kinetic Models

PFO log ( qe − qt ) = log qe − K1
2.303 t log (qe − qt) vs. t Qe and k1

qe and qt (mmol g−1); adsorbed amount of
CB at equilibrium and at time t, respectively.
k1; PFO rate constant of adsorption

[59]

PSO t
qt

= 1
k2q2

e
+ 1

qe
t t

qt
vs. t Qe and k2

qe and qt (mmol g−1); adsorbed amount of
CB at equilibrium and at time t, respectively.
k2; PSO rate constant of adsorption

[60]

Elovich qt = 1/β ln(αβ) + 1/β ln(t) qt vs. ln(t) α and β

β (g mmol−1); desorption rate constant α
(mmol g−1 min−1); initial adsorption rate
constant qt (mmol g−1); adsorption capacity
at time t

[61]

Intraparticle
Diffusion Model qt = Kid.

√
t + C qt vs.

√
t Kid and C

qt (mmol g−1); adsorption capacity
at time t Kid; rate constant of intraparticle
diffusion C; intercept of intra
particle diffusion

[62]

Thermodynamics Equations

Gibb’s Free
Energy ∆ G◦ = −R T ln (b) ∆G◦

T; temperature, b (L mol−1) and R are the
Langmuir adsorption and universal gas
constants, respectively, ∆G◦ ; change in free
energy of the adsorption system

Van’t Hoff ln b = −∆H◦/RT + ∆S◦/R lnb vs.1/T ∆H◦ and ∆S◦

T; temperature, b (L mol−1), and R are the
Langmuir adsorption and universal gas
constants, respectively, ∆H◦ ; change in
enthalpy, ∆S◦ ; change in entropy

[63]

Table 4. Parameters of Langmuir, Freundlich, D-R, and Temkin isotherm models at different tempera-
tures for CB dye adsorption onto JFS-PC surface.

Adsorbate/
Temperature Experimental Langmuir Freundlich D-R Temkin

qexp
(mg g−1)

qexp
(mmolg−1)

qmax
(mmol g−1)

qmax
(mg g−1)

b
(L mol−1) R2 Kf

(mmol g−1)
n R2 qm

(mg g−1)
E

(kJ mol−1) R2 At
(L mg−1)

b
(kJ mol−1) R2

CB/25 ◦C 153 0.291 0.310 156 2.21 × 10−4 0.993 30.7 1.82 0.953 74.8 0.492 0.814 0.662 0.091 0.990
CB/35 ◦C 162 0.305 0.324 163 2.40 × 10−4 0.995 51.9 1.69 0.972 78.7 0.538 0.787 0.646 0.079 0.975
CB/45 ◦C 169 0.329 0.334 168 2.62 × 10−4 0.998 63.1 1.66 0.975 81.1 0.584 0.777 0.689 0.076 0.973
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Table 5. Comparison of JFS-PC with other ACs available in the literature for the removal of dyes.

Precursor
Activation

Temperature
(◦C)

Surface Area
(m2 g−1) Target Adsorbate

Adsorption
Capacity
(mg g−1)

Isotherm
Model

Applied

Kinetic Model Applied with
Rate Constant and Mechanism Reference

Factory-
rejected tea

waste
800 368.92 Methylene Blue 487.4 Langmuir

Pseudo-second-order
K2—0.214 g. mg−1min−1

Contact time—0.5–25 h
Mechanism–film and
intraparticle diffusion

[64]

Pine needle - - Malachite Green 97.08 Langmuir

Pseudo-second-order
K2—2.21 × 10−3 g. mg−1min−1

Contact time—180 min
Mechanism–intraparticle

Diffusion, film diffusion, and
boundary layer control

[65]

Chickpea stem 600 455 Methylene Blue 887 Langmuir - [66]

Carnauba
leaves 500 402.43 Rhodamine B 35.06 Freundlich

Pseudo-second-order
K2—0.236 g. mg−1min−1

Contact time—120 min
[67]

Pine nut shells 500 296.01 Rhodamine B 29.62 Freundlich
Pseudo-second-order

K2—0.299 g. mg−1min−1

Contact time—120 min
[67]

Apricot stone 700 359.40 Methylene Blue 36.68 Langmuir

Pseudo-second-order
K2—0.721 g. mg−1min−1

Contact time—130 min
Mechanism–chemisorption and

intraparticle diffusion

[6]

Almond shell 450 733 2,4,6-
trinitrophenol 74.03 Sips

Pseudo-second-order
K2—0.016 g. mg−1h−1

Mechanism–chemical sorption
[8]

Jamoya fruit
seeds 850 440.8 Carmoisine B 153 Langmuir Pseudo-second-order This study

Table 6. Thermodynamic parameters for CB dye adsorption onto JFS-PC surface.

Dye Temperature
(◦C)

∆G◦

(kJ mol−1)
∆S◦

(J mol−1 K−1)
∆H◦

(kJ mol−1)

CB
25
35
45

−24.8
−25.8
−26.9

105.6 6.69

Table 7. Parameters of PFO, PSO, Elovich, and Intraparticle diffusion model for CB dye adsorption
onto JFS-PC surface.

Kinetic Model Parameters Conc. (2 × 10−4)

Experimental qe (mmol g−1) 0.147

PFO
qe (cal) (mmol g−1) 0.0592

K1 (min−1) 0.0128
R2 0.855

PSO
qe (cal) (mmol g−1) 0.1526

K2 (g mmol−1 min−1) 0.477
R2 0.998

Elovich
α (mmol g−1min−1) 0.0273

β (g mmol−1) 35.09
R2 0.923

IPD

Kp1 0.022
C1 0.013
R2 0.975
Kp2 0.0022
C2 0.112
R2 0.794

4. Conclusions
In summary, an effective adsorbent from an inexpensive and sustainable precursor,

Jamoya fruit seeds, using hydrothermal carbonization and physical activation has been
successfully developed for efficiency and tested for the removal of CB dye from the aqueous
phase. Characterization of the prepared adsorbent along with the precursor and hydrochar
was performed. Elemental composition showed that the prepared adsorbent was rich in
carbon. The textural and chemical characteristics determined by means of FTIR, XRD, SEM,
and BET analysis indicate that JFS-PC can be efficiently used for adsorption applications.
pH analysis showed that the adsorption was enhanced in an acidic pH range as the
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surface of the adsorbent holds positive charge below pH 5.2 (pHpzc—5.2). It achieves a
maximum Langmuir adsorption capacity of 168 mg g−1 for CB at 45 ◦C. Mechanism analysis
revealed that pore diffusion, electrostatic interactions, H-bonding, and π- π interactions
governed the adsorption process. Thermodynamics findings revealed the endothermic and
physisorption nature of the process. Kinetic adsorption of Carmoisine B followed a pseudo-
second-order model. A hydrothermal route for the development of porous carbons was
found to be energy efficient as mild temperature was used during the process. The fact that
no hazardous gases are emitted during HTC makes it environmentally friendly compared
to the conventional methods. This work not only provides an alternative for environmental
remediation, through the treatment of dye-contaminated water, but it paves the way for
the management of organic solid waste too. The potential of the developed material
for the removal of different pollutants, such as emerging contaminants, pharmaceutical
contaminants, and fertilizers, can be explored in future works.
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