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Abstract: Organic solar cells (OSCs) are a promising renewable energy technology due to
their flexibility, lightweight nature, and cost-effectiveness. However, challenges such as
inconsistent efficiency and low stability limit their widespread application. Addressing
these issues requires extensive experimentation to optimize device performance, a process
hindered by the complexity of OSC molecular structures and device architectures. Ma-
chine learning (ML) offers a solution by accelerating material discovery and optimizing
performance through the analysis of large datasets and prediction of outcomes. This review
explores the application of ML in advancing OSC technologies, focusing on predicting criti-
cal parameters such as power conversion efficiency (PCE), energy levels, and absorption
spectra. It emphasizes the importance of supervised, unsupervised, and reinforcement
learning techniques in analyzing molecular descriptors, processing data, and streamlining
experimental workflows. Concludingly, integrating ML with quantum chemical simula-
tions, alongside high-quality datasets and effective feature engineering, enables accurate
predictions that expedite the discovery of efficient and stable OSC materials. By synthesiz-
ing advancements in ML-driven OSC research, the gap between theoretical potential and
practical implementation can be bridged. ML can viably accelerate the transition of OSCs
from laboratory research to commercial adoption, contributing to the global shift toward
sustainable energy solutions.

Keywords: machine learning; organic solar cell; feature selection; photovoltaic parameter;
classification algorithm

1. Introduction
This section briefly explores the exciting advancements and ongoing challenges in

the development of organic solar cells (OSCs), focusing on how machine learning (ML) is
revolutionizing the OSC field. It elaborates on how traditional trial-and-error approaches
are slow and resource-intensive, limiting progress in OSCs. That is where ML comes
in, offering powerful tools to speed up material discovery and device optimization. It
emphasizes the current state of OSC research, the hurdles in adopting ML, and practical
strategies to bridge the gap between material science and artificial intelligence (AI), paving
the way for more efficient, stable, and scalable solar technologies.

A promising avenue for the development of OSCs can be realized via the use of
organic semiconductors. This is due to the unique properties of these materials such as high
synthetic flexibility, which permits remarkable control over the bandgap, energy level, and
carrier mobility of the active layer of OSC devices [1,2]. The active layers are commonly
made of electron donor and acceptor materials. It is worth noting that recent advances in
the synthesis of non-fullerene acceptors have led to significant improvements in power
conversion efficiencies (PCEs) [3]. Some OSC devices have achieved PCEs exceeding 19%.
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The development of OSCs offers significant potential in renewable energy technologies
due to their lightweight, flexible, and semi-transparent nature. However, traditional trial-
and-error methods for discovering and optimizing OSC materials are inefficient and time-
consuming. These approaches are hindered by lengthy processes, complex donor/acceptor
interface morphologies, and strong electron–phonon couplings, making it challenging to
predict key performance metrics like PCE. Despite recent advancements in theoretical
insights and experimental techniques, the expansive space of organic compounds makes
material discovery labor-intensive [4] compared to the perovskite solar cells [5–7].

ML is a discipline within artificial intelligence. It provides a promising alternative to
accelerate OSC research. By leveraging data-driven approaches, ML can streamline the dis-
covery and optimization of materials, significantly reducing the reliance on serendipity and
extensive experimental testing [8]. Despite these advancements, substantial improvement
in PCE and stability is still necessary for OSCs to be competitive with inorganic devices and
to reach market use. The current methodologies are hindered by lengthy time consumption,
tedious purification stages, and strict synthesis methods that plague the trial-and-error
experimental routines [2]. Additionally, predicting the PCE of OSC material components is
challenging due to several obstacles such as the complex donor/acceptor (D/A) interface
morphology, strong electron–phonon couplings, and strong electron–electron interactions.
These features necessitate state-of-the-art theoretical approaches from quantum chemistry,
statistical mechanics, and quantum dynamics for precise OSC simulations. Light-induced
processes such as exciton production, migration, and dissociation, along with charge
transfer to the appropriate electrodes, further complicate the development of a predictive
rule [9].

Scharber’s model was introduced [10] to forecast photovoltaic efficiency using the
limited electronic properties of donor and acceptor materials. Despite its utility, Scharber’s
model struggles to incorporate critical factors like morphology and excited-state dynamics,
limiting its applicability to modern OSCs. Numerous challenges impede its extension, par-
ticularly the difficulty in incorporating additional descriptors such as structural, topological,
and thermodynamic factors [11].

The data-driven paradigm for material discovery is efficient and effective in lever-
aging pertinent information [12]. The methodical approach to this is ML, which derives
insights from historical data to assist in evaluating candidates for laboratory positions. The
identification of superior candidate materials for OSCs can be expedited and rendered
more cost-effectively through multidimensional designs utilizing ML, density functional
theory (DFT) calculations, and the available experimental data survey, as can be seen in
Figure 1.

The application of ML to the complex domain of OSCs has not yet yielded particularly
impressive results. The performance of OSCs is influenced by numerous factors such as
solvent additives, crystallinity, molecule orientation, and processing solvents [13]. Mor-
phological features are crucial for charge separation at the donor/acceptor interface. More
research is required to make effective use of ML with photovoltaic materials.

Material degradation in organic materials, particularly non-fullerene acceptors (NFAs)
and polymer donors, exhibits chemical instability when exposed to air or light. This affects
the molecular structure and leads to reduced PCE over time. Thermal and mechanical
instability is the flexible nature of OSCs making them susceptible to mechanical defor-
mation and thermal stress, which can disrupt the active layer morphology and electrode
interfaces. Recent strategies to address these issues include the molecular engineering
of more robust materials, optimizing device architectures to enhance encapsulation, and
developing predictive models for degradation pathways. These approaches aim to achieve
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stable, high-performing OSCs suitable for large-scale applications in building integration
and wearable electronics [14,15].
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ML can be utilized to analyze molecular descriptors, predict material properties, and
optimize device architectures in OSCs. The motivation is to demonstrate how ML can
accelerate the discovery of high-performance materials and optimize OSC designs, leading
to more efficient and cost-effective solar energy solutions.

Despite growing interest in integrating ML into OSC research, progress has been
limited by small datasets, inconsistent data quality, and challenges in adoption in workflow.
The complexity of organic materials and the lack of generalized, explainable ML frame-
works further hinder advancements. This review addresses the limitations by presenting
recent developments and suggesting strategies to overcome these challenges. Additionally,
it outlines the potential for ML to enhance the stability and performance of OSC devices,
paving the way for their large-scale application. Also, it provides actionable insights for re-
searchers in both ML and material sciences, bridging the gap between these disciplines. Key
contributions include highlighting the need for robust ML models tailored to OSC research,
discussing the importance of high-quality data and descriptor selection, and identifying
how ML can significantly enhance predictive accuracy and accelerate material discovery.

2. The Use of ML in OSCs
ML is a branch of artificial intelligence that focuses on building models capable of

predicting outcomes and discovering new materials based on large quantities of reliable
data. These datasets, derived from experiments or computations, describe the materials’
behaviors, qualities, and applications. By analyzing these data, ML techniques can uncover
patterns and relationships that might not be evident through traditional methods [16].

In the context of OSCs, ML involves applying statistical models and computational
methods to analyze, predict, and optimize device performance. This process includes con-
ducting experiments with OSCs, running simulations, and employing theoretical models,
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followed by the application of ML algorithms to interpret the complex relationships within
the datasets. The integration of ML, high-performance computing (HPC), and adequate
data now presents an opportunity to streamline materials discovery [8].

The remarkable achievements of ML in fields such as image identification and transla-
tion have aroused the interest of materials scientists [17]. These advancements demonstrate
the potential of ML to gain insights into the fundamental principles governing material
behavior, offering significant time savings compared to traditional quantum chemistry
computations and experimental methods.

For instance, in a case study involving the design and testing of materials for OSCs,
molecular dynamics simulations combined with ML techniques led to the identification
of promising new material candidates. The process began with collecting data on various
molecular configurations and their properties. ML models were then trained to predict
the performance of these configurations, significantly narrowing down the list of potential
candidates for experimental testing. This approach not only saved time but also reduced
the cost associated with trial-and-error experimentation [17].

However, the success of ML in this domain is heavily dependent on the quality,
size, and form of the dataset. OSCs, like many material science domains, have scattered
and heterogeneous data due to the complexity of their working principles [8]. Effective
data-collection strategies, preprocessing techniques, and feature selection are crucial to
developing robust ML models that can make accurate predictions.

For example, recent research has employed ML algorithms to predict the PCE of OSCs
based on molecular descriptors and device architecture parameters. By analyzing vast
datasets, these models identified key factors influencing PCE and provided insights into
optimizing material properties and device configurations for enhanced performance.

By leveraging ML techniques, researchers can accelerate the discovery of high-
performance materials and optimize OSC designs, paving the way for more efficient
and cost-effective solar energy solutions [8]. Choosing the right ML algorithm is crucial
since it has a major impact on how well the predictions turn out. There are several ML
methods, as shown in Figure 2, so it is not possible for one algorithm to always give the
best prediction in every situation. Choosing the right algorithm, which is often carried out
by trial and error, is vital to producing a highly successful model. Along this line, different
ML algorithms that can be found in the literature were utilized in chemistry and material
science applications [18–20].
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The integration of ML with HPC offers a streamlined approach to materials discovery,
substantially diminishing the time and expenses linked to conventional trial-and-error
experimentation.

3. Steps of ML Applications
ML analysis involves four fundamental steps: sample collection (Section 3.1), data pro-

cessing (Section 3.2), training of the ML algorithm (Section 3.3), and then testing (Section 3.4).
Each step presents unique challenges and requires tailored strategies to ensure effective im-
plementation. Data preprocessing focuses on cleaning, organizing, and preparing raw data
for analysis. Model selection and training involve choosing the most suitable algorithm and
optimizing it using the training data. Model evaluation assesses the model’s performance
using metrics and validation techniques. Finally, deployment integrates the trained model
into real-world applications to generate actionable insights or predictions [21].

3.1. Sample Collection

The initial stage involves gathering data, which can originate from theoretical models
and hands-on experiments. Data cleaning or modification may be necessary to eliminate
inconsistencies and noise. Data splitting for training and testing sets can significantly
impact model performance. Common ratios include 60:40, 70:30, 80:20, and even 90:10.
The simplest approach is to use non-overlapping datasets while maintaining record order,
such as using 70% for training and 30% for testing. However, this may lead to issues if the
response is not uniformly distributed. Random sampling can ensure that answer values
span the whole spectrum from lowest to greatest, reducing the risk of bias [22].

One major challenge emerged while dealing with small datasets, particularly in ma-
terial sciences where obtaining high-quality data can be difficult. A good rule of thumb
is to have a minimum of 50 data points for a decent ML model, but some models, like
neural networks, require much larger datasets. For instance, big datasets were successfully
utilized for ML applications in health informatics and accelerated materials discovery using
deep learning and neural network algorithms [22,23]. The dataset size may vary depending
on the complexity of the model (e.g., neural networks typically require more data than
simpler models like linear regression) and the problem domain.

Addressing this challenge may involve augmenting data through simulations or
utilizing data from scholarly journals and databases [24,25].

3.2. Data Processing

Fresh data can reveal previously unseen patterns of a ML model, but this requires
thorough data cleaning to handle missing data and outliers, enhancing model accuracy.
Normalizing the scales of various descriptors is crucial for consistent analysis and effective
utilization within a single method. Dimensionality reduction techniques, such as principal
component analysis (PCA), discriminant analysis (LDA), and independent component anal-
ysis (ICA), are essential when dealing with more features (descriptors) than observations
or when characteristics have strong correlations. These techniques reduce the feature space
size, helping to identify the most important characteristics and improve visualization [8].

A common pitfall is overlooking the importance of feature engineering, which can
significantly impact the model’s performance. Techniques like feature selection and the
creation of new features based on domain knowledge can enhance the model’s predictive
power. The rise in deep learning reduces reliance on manual feature engineering [22,26]. In
OSCs, inadequate preprocessing of molecular descriptors might lead to poorly performing
predictive models.
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3.3. Model Training

In the context of OSCs, the relationship between performance and parameters is
complex. The choice of algorithm significantly impacts the model’s accuracy and gener-
alizability. Each algorithm has unique benefits and drawbacks. Common ML algorithms
in material sciences include classification, clustering, regression, and probability estima-
tion. Classification and regression are typically used to predict material properties, while
clustering helps group similar materials, and probability estimation aids in discovering
new materials.

Choosing the right algorithm involves understanding the nature of the data and the
specific problem. For example, regression models might be preferred for continuous data
predictions, while classification models are suitable for categorical outcomes. It is crucial to
experiment with multiple algorithms and hyperparameters to identify the best-performing
model [8,27].

Several ML models have been successfully applied to OSC research, which include:

1. Support Vector Machines (SVMs): SVMs have been used for classifying OSC materials
into high- and low-performing categories. For example, they can predict whether a
new donor/acceptor pair will result in a device with high PCE by analyzing molecu-
lar descriptors.

2. Random Forests (RFs): RF models are commonly applied to regression tasks, such
as predicting the PCE of OSCs based on input features like bandgap, chemical
composition, and solvent properties. Their ability to handle high-dimensional
data and provide feature importance rankings makes them valuable for identifying
key parameters.

3. Neural Networks (NNs): Deep learning approaches, including feedforward neural
networks, have been applied to predict OSC performance metrics. These models
can capture non-linear relationships in large datasets but require careful tuning to
avoid overfitting.

4. Gaussian Process Regression (GPR): GPR models are useful for predicting OSC prop-
erties when data are scarce. They provide uncertainty estimates, making them ideal
for guiding experimental design and reducing the number of necessary experiments.

5. k-Means Clustering: This unsupervised learning technique groups materials with sim-
ilar characteristics, which can aid in identifying novel donor/acceptor combinations
or processing conditions.

6. Autoencoders: Autoencoders have been used to extract meaningful latent repre-
sentations of OSC materials, enabling data-driven exploration of the chemical and
morphological design space [8,28].

Selecting the most suitable ML algorithm for OSC research requires a thorough un-
derstanding of the dataset’s characteristics and the problem’s objectives. For instance,
regression models might be preferred for predicting continuous variables like PCE, while
classification models are more suitable for categorical outcomes, such as device stability
(e.g., stable vs. unstable).

In a recent study [28], models of random forests and gradient boosting were employed
to predict PCE and stability in OSCs. The study highlighted the importance of feature
engineering and hyperparameter tuning to enhance the model performance, illustrating
the iterative nature of model building.

By leveraging these ML models, researchers can accelerate the discovery and optimiza-
tion of OSCs, paving the way for more efficient and cost-effective devices. Experimenting
with multiple algorithms, tuning hyperparameters, and employing cross-validation are criti-
cal steps in achieving optimal performance. Additionally, incorporating domain knowledge,
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such as using chemically informed features (e.g., molecular fingerprints or descriptors),
enhances model interpretability and effectiveness.

ML models have shown great promise in accelerating OSC research by reducing trial-
and-error experiments and uncovering hidden patterns in complex datasets. Leveraging
these techniques can significantly contribute to the discovery and development of high-
performance materials and devices [8].

3.4. Model Testing

An effective model has strong performance in both training and testing datasets. Sta-
tistical analysis techniques, including mean squared error (MSE)—Equation (1); root mean
squared error (RMSE)—Equation (2); and coefficient of determination (R2)—Equation (3),
are employed to assess model efficacy [8].

MSE = ∑m
i=1

1
m
(xi − yi)

2 (1)

where xi is the predicted value and yi is the target variable. This measures the average
squared difference between the xi and yi values. A smaller MSE indicates that the predic-
tions are closer to the true values, making it a key metric for evaluating model accuracy.

RMSE =
√

MSE (2)

RMSE is simply the square root of the MSE. It provides an error measurement in
the same unit as the original data, making it easier to interpret the magnitude of the
prediction errors.

R2 = 1 − MSE
Var(y)

(3)

where Var(y) is the variance of the sample data. R2 quantifies how well the model explains
the variance of the actual data (y). It ranges from 0 to 1, where a value closer to 1 means the
model captures most of the variability in the data, indicating a good fit.

One challenge is ensuring the model’s generalizability to new, unseen data. Techniques
such as cross-validation and bootstrapping can help assess model stability and robustness,
ensuring that the model performs well beyond the initial test set. By addressing these
practical challenges and implementing detailed strategies at each step, ML can be effectively
utilized to advance research in OSCs, leading to more efficient and innovative solutions.

4. Types of ML Algorithm
In this section, the most important ML algorithms in the field of organic materials and

OSCs are discussed. Also, their implementation strategies along with related parametric
settings for each of the algorithms are elaborated.

The design and synthesis of materials with beneficial, innovative properties is a highly
dynamic field in modern science, fostering considerable research in biomaterials, cell and
tissue engineering, OSCs, light-emitting materials, and nanomaterials for various medical
and non-medical applications. These advancements involve interdisciplinary efforts from
fields including engineering, biology, physics, and chemistry. Although theoretical and
computational science is making some headway, experimental science remains the primary
focus. Material designers would greatly benefit from understanding how to anticipate
the characteristics of new materials before synthesis and how the macroscopic features of
materials relate to the microscopic properties of molecular components [29].
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The development and optimization of materials with advanced and innovative prop-
erties represent a dynamic and rapidly evolving area in modern science. This field encom-
passes a broad range of applications, including biomaterials, cell and tissue engineering,
OSCs, light-emitting materials, and nanomaterials for both medical and non-medical
purposes. These advancements are driven by interdisciplinary collaborations spanning
engineering, biology, physics, and chemistry. While theoretical and computational sciences
have made notable progress in predicting material properties, experimental science remains
at the forefront, often leading the discovery process. A key challenge lies in bridging the
gap between theoretical predictions and experimental validation. To address this, material
scientists seek to anticipate the characteristics of new materials prior to synthesis and estab-
lish clear connections between macroscopic material properties and the molecular-level
structures that define them. This integration of predictive and experimental approaches
holds great promise for accelerating innovation in material design and functionality.

ML offers powerful tools to achieve these goals, especially in material sciences, where
the relationships between structure, properties, and performance are often complex and
non-linear.

1. Supervised Learning: Supervised learning algorithms are trained on labeled data,
meaning each training example is paired with an output label. These algorithms
learn to map inputs to outputs, which is critical for predicting the properties of new
materials [30,31]. They are mostly used to categorize data into predefined classes.
For example, in OSCs, classification algorithms can predict whether a new material
will act as a donor or acceptor based on its molecular structure [32]. In supervised
learning, accuracy is a metric that measures how well a model correctly predicts the
target variable, calculated as the ratio of correct predictions to the total number of
predictions. It is widely used in classification tasks to evaluate performance but can be
misleading for imbalanced datasets, where one class dominates; in such cases, metrics
like precision (the proportion of correct positive predictions), recall (the ability to
identify all actual positives), F1-score (the harmonic mean of precision and recall), or
ROC-AUC (the area under the curve representing true positive versus false positive
rates) are more informative. Below are the key algorithms of supervised learning.

• Support Vector Machines (SVM): SVMs are effective in classifying materials
based on their electronic properties. For instance, they can help determine which
molecular structures are likely to result in high-efficiency donor or acceptor
materials for OSCs [4].

• Decision Trees and Random Forests: These algorithms identify critical structural
features that determine material performance. They can be used to analyze
various molecular descriptors and pinpoint which attributes are most influential
in achieving high PCE [33].

• Linear Regression: Linear regression is often used to model the relationship
between molecular descriptors and PCE. For example, linear regression can help
establish how changes in molecular structure affect the efficiency of OSCs [34].

• Neural Networks: Neural networks can capture more complex, non-linear re-
lationships between structure and efficiency. They are particularly useful in
modeling the intricate dependencies between various molecular features and the
overall performance of OSCs [35].

2. Unsupervised Learning: Unsupervised learning algorithms deal with data without la-
beled responses. They are useful for discovering hidden patterns or intrinsic structures
in the data [36]. Below are the key algorithms of unsupervised learning.
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• Clustering Algorithms: Clustering algorithms, such as k-Means, can group mate-
rials with similar properties, aiding in the identification of promising material
families. For instance, clustering can reveal which sets of molecular structures
consistently yield high-efficiency OSCs [37].

• Dimensionality Reduction Techniques: Techniques like PCA reduce the complex-
ity of data while retaining essential patterns, which is crucial when dealing with
high-dimensional datasets in material sciences. PCA can help identify the most
influential factors in determining OSC performance, streamlining the design
process [11].

3. Semi-supervised Learning: Semi-supervised learning strikes a balance between su-
pervised and unsupervised methods, making it especially useful when labeled data
are hard to come by but unlabeled data are abundant. Imagine having a small set of
data points with labels and a much larger set without them. Semi-supervised learning
uses the labeled data to guide the learning process and make sense of the unlabeled
data. Techniques like self-training allow a model to start learning with labeled data,
then predict labels for the unlabeled data and improve itself iteratively. Graph-based
approaches also come into play, where relationships between data points are mapped
to spread labels from known points to unknown ones [38].

4. Reinforcement Learning: Reinforcement learning involves training models through
trial and error, using feedback from their actions. This approach can optimize mate-
rial synthesis processes or experimental procedures to maximize efficiency or yield.
For instance, Q-Learning and Deep Q-Networks (DQN) can optimize the sequence
of synthesis steps to produce materials with desired properties efficiently, thereby
refining the fabrication process of OSCs to enhance their stability and efficiency [11].

5. ML Analysis of OSCs
In this section, light is shed on ML contributions in the development of OSCs by help-

ing researchers discover better materials, optimize device performance, and understand
stability issues. Also, elaborations are given on how ML can predict organic molecules
with the right properties for high efficiency, thereby suggesting new designs of materials.
ML accelerates progress and makes it easier to bridge the gap between lab research and
real-world applications, ultimately pushing us closer to more affordable and sustainable
solar energy solutions.

The application of ML analysis significantly improves the effective screening of po-
tential candidates for OSCs. Understanding the relationship between molecular attributes
and PCE is crucial. It is essential to examine the relationship between specific device
performance metrics and molecular characteristics to meet the requirements of diverse
applications, such as high open-circuit voltage of solar cells for energy conversion, elevated
short-circuit current VOC, and solar window applications, as well as JSC.

Successfully screening potential candidates for OSCs requires a thorough understand-
ing of the relationships between molecular properties and PCEs. Equally important is the
study of how molecular properties correlate with specific device performance parameters to
meet the demands of particular applications. For instance, achieving high VOC is critical for
solar-to-fuel energy conversion, while high JSC is essential for solar window applications.
Understanding these correlations enables targeted material optimization tailored to specific
functional requirements.

Because ML can forecast performance based on molecular parameters, it has a broad
use in the field of OSC research. However, the kind of descriptors that are employed has a
significant impact on how accurate an ML model’s predictions can be. Descriptors play a
crucial role in producing accurate predictions by acting as a translator between researchers
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and the database. When the goal property is not well defined, choosing candidate descrip-
tions becomes a substantial task. In general, some aspects affect a material’s properties, so
choosing appropriate descriptors for a certain property is an important step before using
ML. This is particularly true for microscopic descriptors, whose determination can be costly
both computationally and empirically [39,40].

An effective material description must satisfy a minimum of three criteria: (i) it should
provide a unique characterization of the material, (ii) it should be sensitive to the target
property, and (iii) it should be easy to calculate [8]. When the target property is ambiguous,
meeting these criteria becomes challenging, leading to potential setbacks in developing
accurate and trustworthy ML models for OSCs. This highlights the need for a clear
definition of target properties to ensure the selection of relevant and effective descriptors,
ultimately improving the success of ML-driven screening processes in OSC research.

The following sections cover how ML is revolutionizing the development of OSCs. It
starts by discussing how hybrid modeling combines different techniques to link molecular
properties to device performance for better optimization. It then explores how ML and
computational models help predict and improve OSC efficiency. The content also high-
lights the role of ML in discovering and designing new materials, optimizing production
processes, and improving yield and device durability. Finally, it looks at how data analysis
tools like pattern recognition and predictive modeling enhance our understanding of OSC
performance, showcasing ML’s essential role in speeding up innovation in solar technology.

1. Hybrid and Multiscale Modeling: These approaches integrate different modeling
techniques to provide a comprehensive understanding of material behavior across
various scales [11].

• Atomistic or Molecular-Level Models: These models focus on the interactions at
the molecular level, which are crucial for understanding the fundamental proper-
ties of materials. For instance, molecular dynamics simulations can reveal how
molecular vibrations and rotations affect the electronic properties of OSCs [41].

• Continuum or Device-Level Models: These models help in understanding how
molecular-level properties translate to macroscopic device performance. For ex-
ample, continuum models can simulate the charge transport properties in OSCs,
providing insights into how molecular arrangements affect overall efficiency.

Combining these models helps in linking the detailed molecular structure with the
overall performance of OSCs, leading to better optimization strategies. For instance, hybrid
modeling can combine molecular dynamics simulations with device-level models to predict
how changes at the molecular scale impact device performance.

2. Performance Prediction and Optimization: Performance prediction and optimization
involve using computational models, statistical methods, or ML techniques to forecast
and improve the performance of a system, device, or process.

• Performance Prediction: In the context of OSCs, performance prediction involves
using models or algorithms to estimate and forecast the characteristics and effi-
ciency of the solar cell based on various factors. This prediction may encompass
the expected PCE, short-circuit current density (Jsc), open-circuit voltage (Voc),
fill factor (FF), or other key metrics that quantify the effectiveness of the solar
cell in converting sunlight into electricity. For example, ML models can predict
how different material compositions and device architectures will perform under
specific operating conditions [42].

• Optimization Strategies: Optimization involves adjusting parameters such as
material composition, device architecture, layer thicknesses, interfaces, or manu-
facturing processes to maximize efficiency, increase stability, or enhance other
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desirable characteristics. ML algorithms can be used to identify the optimal
combinations of these parameters, significantly reducing the need for extensive
trial-and-error experimentation. For instance, genetic algorithms can be em-
ployed to explore a vast parameter space and find the best configuration for
high-efficiency OSCs [11].

3. Materials Discovery and Design: Materials discovery and design involve the system-
atic search, identification, and development of new materials or the optimization of
existing materials with desired properties for specific applications.

• Property Prediction and Screening: ML models can predict the properties of
potential materials, allowing researchers to screen large databases and identify
promising candidates quickly. For example, predictive models can estimate
the electronic properties of new organic molecules, aiding in the discovery of
high-performance materials for OSCs [37,43].

• Database Mining and High-Throughput Screening: ML algorithms can mine
existing databases of materials to identify patterns and correlations that may not
be apparent through traditional analysis. High-throughput screening techniques
can rapidly evaluate a vast number of materials, accelerating the discovery
process [44].

• Structure–Property Relationships: Understanding the relationships between
molecular structure and material properties is crucial for designing new materials.
ML can help elucidate these relationships, guiding the rational design of materials
with desired characteristics.

• Design and Synthesis: Once promising materials are identified, ML can aid
in optimizing the synthesis processes to ensure reproducibility and scalability.
For example, ML models can suggest optimal reaction conditions to synthesize
high-purity materials efficiently.

4. Process and Manufacturing Optimization: Process and manufacturing optimization
in the context of OSCs involves improving and refining the procedures, techniques,
and production methods used in fabricating these photovoltaic devices [31].

• Process Control and Standardization: ML can be used to develop standardized
protocols that ensure consistent quality and performance of OSCs. For exam-
ple, ML algorithms can monitor production processes in real time, adjusting
parameters to maintain optimal conditions.

• Yield Improvement: By analyzing production data, ML can identify factors that
influence yield and suggest modifications to improve it. This can lead to higher
efficiency and lower costs in OSC manufacturing.

• Scaling Production and Cost Reduction: ML techniques can optimize manufac-
turing processes to make them more scalable and cost-effective. For instance,
predictive models can help in planning resource allocation and minimizing waste.

• Robustness and Reliability: ML can enhance the robustness and reliability of
OSCs by identifying and mitigating factors that lead to device degradation. This
can result in longer-lasting and more stable solar cells.

5. Pattern Recognition and Data Analysis: Pattern recognition and data analysis involve
the systematic process of identifying meaningful patterns, structures, or relationships
within datasets, enabling the extraction of valuable insights or information [37].

• Data Collection and Preprocessing: Efficient data collection and preprocessing
are crucial for ensuring high-quality inputs for ML models. This includes clean-
ing data, handling missing values, and normalizing data to make it suitable
for analysis.
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• Exploratory Data Analysis (EDA): EDA techniques help in understanding the
underlying patterns and distributions in the data. Visualization tools can provide
insights into how different variables interact and influence OSC performance.

• Feature Extraction and Selection: Identifying the most relevant features or de-
scriptors is essential for building accurate ML models. Techniques like PCA can
reduce the dimensionality of the data, focusing on the most significant variables.

• Clustering and Classification: Clustering algorithms can group similar data
points, helping to identify patterns in material properties. Classification algo-
rithms can categorize materials based on their predicted performance.

• Regression and Prediction: Regression techniques can model the relationships
between variables, providing predictions for new data points. These predictions
can guide the development of new materials and the optimization of OSCs.

• Anomaly Detection and Outlier Analysis: Identifying anomalies and outliers
in the data can reveal potential issues or novel phenomena that warrant fur-
ther investigation. This can lead to new discoveries and improvements in
OSC technology.

• Correlation and Relationship Analysis: Understanding the correlations and rela-
tionships between different variables helps in identifying key factors that influ-
ence OSC performance. This knowledge can inform the design and optimization
of new materials [44].

It is worth acknowledging the transformative potential of ML in identifying material
properties, optimizing synthesis processes, and predicting device performance metrics.
For instance, the ability to accurately model donor/acceptor interactions using molecular
descriptors has streamlined material discovery. Additionally, advanced algorithms like
neural networks and random forests have shown potential in predicting efficiency metrics
with higher accuracy than traditional methods. Such insights not only clarify the theoretical
capabilities of ML but also demonstrate its pivotal role in accelerating the innovation and
optimization of OSC technologies.

5.1. Molecular Descriptors

Molecular descriptors, which describe a molecule’s physical and chemical character-
istics, are derived from the molecular structure of a compound. They vary in complexity
from more basic properties like charge distribution to more intricate ones like the number of
a particular atom. Thousands of different categories of molecular descriptors exist, ranging
from zero-dimensional (0D) to three-dimensional (3D) ones [45].

Atomic number, atom type, and molecular weight are examples of molecular infor-
mation that is described using 0D descriptors, which do not imply topology or atom
connection. One-dimensional descriptors provide counts and types of chemical fragments.
On the other hand, topological and topo-chemical molecular properties are defined by
2D descriptors. Lastly, geometrical information is captured by 3D descriptors, which also
contain conformational information like partial surface charges and molecule volume. The
majority of the molecule’s properties must be provided by an ideal expression, which
should also be devoid of unnecessary details.

Different representations of the same molecule can capture a wide range of chemical
details, often at varying levels of complexity. Figure 3 showcases some of these different
forms. Molecular descriptors, which are straightforward and quick to compute, enable the
rapid assessment of a large number of materials.
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Figure 3. Different types of molecular representations applied to one molecule, AQDS, which is used
in the construction of organic redox-flow batteries. Clockwise from top: (1) A fingerprint vector that
quantifies presence or absence of molecular environments; (2) SMILES strings that use simplified
text encodings to describe the structure of a chemical species; (3) potential energy functions that
could model interactions or symmetries; (4) a graph with atom and bond weights; (5) Coulomb
matrix; (6) bag of bonds and bag of fragments; (7) 3D geometry with associated atomic charges; and
(8) electronic density. Reproduced with permission from [46].

Pereira et al. created a dataset including 111,000 molecules and trained a ML model
utilizing RF methodology [47]. By using this model, they forecasted the LUMO and HOMO
with an error of less than 0.16 eV, without employing any DFT computations. This can
accelerate the high-throughput screening of organic semiconductors for solar cells. Sui
et al. created a series of innovative acceptors derived from multi-conformational bistricyclic
aromatic (BAE) compounds [48].

They have forecasted their PCEs utilizing a ML model constructed from experimental
data via a cascaded support vector machine (CasSVM). The CasSVM model is an innovative
two-tier network (see Figure 4), comprising three subset SVM models that produce JSC,
VOC, and FF as outputs in the first tier. The second level was employed to determine the
correlation between the outputs of the first level and the final endpoint PCE. The most
established CasSVM model has forecasted the PCE value of OPVs with a mean absolute
error (MAE) of 0.35 (%), representing about 10% (3.89%) of the average PCE. The R2 value
was 0.96. This methodology can be highly beneficial for experimental chemists to evaluate
probable candidates prior to synthesis.
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Molecular descriptors are numerical values derived from the molecular structure of a
compound, describing its physical, chemical, and geometric characteristics. They range
from simple properties like atomic numbers to complex features like molecular topology
and electronic distribution. Thousands of categories of molecular descriptors exist, broadly
classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and
three-dimensional (3D) descriptors.

• Zero-dimensional descriptors provide basic molecular information, such as atomic
number, molecular weight, and atom types, without including topological or connec-
tivity information.

• One-dimensional descriptors capture counts and types of chemical fragments, repre-
senting molecular composition.

• Two-dimensional descriptors include topological and topo-chemical properties, re-
flecting atom connectivity and chemical bonding patterns.

• Three-dimensional descriptors capture geometric and conformational information,
such as molecular volume, surface area, and partial charges.

The choice of molecular descriptors significantly influences the performance of
ML models in predicting molecular properties. Pereira et al. created a dataset of
111,000 molecules and trained an RF model to predict LUMO and HOMO energy lev-
els. By utilizing 2D and 3D molecular descriptors, the model achieved an error of less than
0.16 eV, eliminating the need for computationally intensive DFT calculations [47].

5.2. Comparison of Prediction Accuracies

ML plays a key role in improving the performance of OSCs through the use of molecu-
lar descriptors. By looking at different types of descriptors, researchers are making strides
in predicting energy levels, estimating PCE, and speeding up the screening process for new
materials. The following points outline recent studies that demonstrate how combining
molecular descriptors and ML is unlocking new potential in OSC development.

1. Descriptors for Energy Level Predictions: When predicting LUMO and HOMO,
studies have demonstrated that 3D descriptors generally outperform 2D descriptors
due to their inclusion of geometric information. The RF model achieved an MAE of
0.16 eV using combined 2D and 3D descriptors, whereas models relying solely on 2D
descriptors showed an MAE of approximately 0.24 eV [47].
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2. Descriptors for PCE Predictions: Sui et al. developed a cascaded support vector
machine (CasSVM) model using a combination of 0D, 1D, and 2D descriptors to
predict key device parameters such as JSC, VOC, and FF, which were then correlated to
PCE [48,49]. Their model achieved an MAE of 0.35% for PCE predictions, correspond-
ing to about 10% of the average PCE value (3.89%). In contrast, earlier models that
excluded 2D descriptors showed higher MAE values, often exceeding 0.50%. The R2

value of 0.96 for the CasSVM model highlights its superior predictive capability when
utilizing a diverse set of molecular descriptors.

3. High-Throughput Screening: Omar et al. compared 0D and 3D descriptors for high-
throughput screening of organic semiconductors [50]. They found that 3D descriptors,
incorporating molecular volume and partial charges, improved the classification
accuracy of high- versus low-performing materials by 15% compared to 0D descrip-
tors alone.

5.3. Efficiency Versus Complexity

While 3D descriptors generally provide higher predictive accuracy, they are compu-
tationally more expensive to calculate. In contrast, 0D and 1D descriptors are faster to
compute and are sufficient for initial screening. An ideal molecular descriptor balances
informativeness and computational efficiency, capturing essential molecular properties
without introducing extraneous details.

Molecular descriptors enable rapid assessment of large libraries of materials, accelerat-
ing the identification of promising candidates for OSCs. By leveraging diverse descriptors,
experimental chemists can better evaluate potential compounds before synthesis, thereby
optimizing the design process.

5.4. Molecular Fingerprints

Molecular fingerprints are computerized representations of chemical structures that
exclude precise structural features such as coordinates. They are utilized to query databases
and discern similarities among compounds. Multiple methodologies are available for trans-
forming a molecular structure into a digital representation, such as key-based fingerprints,
circular fingerprints, and topological or path-based fingerprints, each encompassing addi-
tional subtypes. This review provides a broad overview of molecular fingerprints and their
applications in OSCs, so readers who are interested in exploring detailed methodologies or
specific implementations may refer to these references [51,52], which delve deeper into the
technical aspects of fingerprint generation and their computational frameworks.

In recent years, organic photovoltaics have seen widespread use of non-fullerene ac-
ceptors [53–56]. In 2017, Aspuru-Guzik and his team compiled a dataset of over 51,000 non-
fullerene acceptors. These acceptors were based on various compounds, including benzoth-
iadiazole (BT), diketopyrrolopyrroles (DPPs), perylene diimides (PDIs), tetraazabenzodiflu-
oranthenes (BFIs), and fluoranthene-fused imides, sourced from the Harvard Clean Energy
Project (HCEP) [57].

To regulate the DFT methods for calculating the HOMO and LUMO values of new
non-fullerene acceptors, a dataset of 94 experimentally reported molecules was used.
Instead of the commonly used linear regression, they opted for Gaussian process re-
gression due to the lack of a linear trend. They applied the Scharber model to esti-
mate the PCE of OSCs, focusing on non-fullerene acceptors and the standard electron
donor material, poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl 20,10,30-
benzothiadiazole)] (PCDTBT). The DFT-calculated HOMO and LUMO values of the ac-
ceptors, along with the experimentally reported values for PCDTBT, were inputs for the
Scharber model. To validate the PCE predictions of the Scharber model, they compared
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them with 49 experimentally reported values, finding only a weak correlation (r = 0.43 and
R2 = 0.11) [57].

Predicting the PCE and specific device properties is crucial. To enhance a particular
property, it is essential to understand the relationship between that property and the
molecular descriptors. This connection helps identify which molecular features influence
the property, allowing for targeted improvements [58]. For instance, most high-performing
OSC devices exhibit lower open-circuit voltages (VOC). In bulk heterojunction (BHJ) OSCs,
charge separation is generally associated with considerable voltage losses due to the
additional energy necessary to dissociate excitons into free carriers.

This voltage loss in high-performance OSCs is generally around 0.6 V, which is ap-
proximately 0.2–0.3 V higher than the losses observed in silicon (c-Si) and gallium arsenide
(GaAs) solar cells [59]. Non-fullerene acceptors exhibiting extended thin-film absorption
and appropriate energy levels can facilitate an optimal balance between VOC and JSC [60].
Their structural adaptability enables significant modulation of absorption and molecular
energy levels. ML can markedly expedite the identification of appropriate materials.

By predicting specific parameters, it can further enhance the (PCE). Aspuru-Guzik and
his team calibrated the open-circuit voltage (VOC) and short-circuit current density (JSC)
values, which were calculated using the Scharber model and available experimental data,
based on structural similarity. They derived information from the molecular graph utilizing
enhanced connectivity fingerprints and employed a Gaussian process. This calibration
technique reduced the functional dependence of the computed properties, enabling high-
throughput virtual screening.

In 2019, Sun et al. collected a dataset of 1719 donor materials [39]. The researchers
experimented with various inputs, including seven types of molecular fingerprints, two
types of descriptors, ASCII strings, and images. They classified donor materials into two
categories based on their PCE: “low” and “high”. The models developed using fingerprints
exhibited the best performance, achieving an 86.76% accuracy in predicting the PCE class.
To validate the ML results, they synthesized ten donor materials, and the model accurately
classified eight of these molecules. The experimental results closely matched the predicted
outcomes. However, this study’s practical value is limited because categorizing PCE into
just two broad categories (0–2.9% and 3–14.6%) is much simpler than predicting the PCE of
individual semiconductors with precision.

In the same year, Nagasawa et al. extracted 2.3 million molecules from the Harvard
Clean Energy Project database [40]. Out of the dataset, 1000 molecules were initially chosen
based on their calculated PCE. The researchers used MACCS fingerprints and the extended
connectivity fingerprint (ECFP6) key to train their ML model. Through random forest (RF)
screening, they further narrowed down the selection to 149 molecules, as shown in Figure 5.
However, the RF method’s accuracy for predicting PCE was only 48%. They ultimately
selected one polymer for its synthetic feasibility, but the solar cell device made from this
polymer had a PCE of 0.53%, significantly lower than the RF prediction of 5.0–5.8%.

This disparity can be attributed to two primary factors. The RF model was first trained
on PCE values derived from the Scharber model, which exhibits suboptimal performance.
The structures of polymer donors documented in the literature are more intricate than
those of the semiconductors in the HCEP database. Notwithstanding these features, the
predictive accuracy of the RF model for PCE remains inadequate. Consequently, the
ML model must enhance its accuracy, and various materials should be synthesized for
empirical validation.
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Schmidt and colleagues assembled a dataset including 3989 monomers and developed
a model utilizing a grammar variational autoencoder (GVA) [61]. Even without knowing
the precise locations of individual atoms, the trained model can calculate the LUMO
and lowest optical transition energies. Furthermore, conformations with the required
LUMO and optical gap energies can be synthesized using this approach. Deep neural
network (DNN) predictions were more accurate than grammar variational autoencoder
(GVA) predictions; however, forecasting the LUMO still requires density functional theory
(DFT) calculations to find the atomic locations. Therefore, it is not possible to bypass DFT
calculations when using the DNN model.

When compared to neural networks trained on molecular fingerprints, SMILES, Chem-
ception, and molecular graphs, their suggested models performed better. Peng and Zhao
utilized convolutional neural networks (CNNs) to develop models for generating and
predicting the properties of non-fullerene acceptors. These models aid in the design and
analysis of these materials, leveraging the power of CNNs to identify and optimize key
characteristics [62]. Peng and Zhao used various molecular descriptors, including extended-
connectivity fingerprints, Coulomb matrices, molecular graphs, bag-of-bonds, and SMILES
strings, to construct their models. The depth of the convolutional layers in their CNNs
influenced the diversity of the generated (NFAs). In order to confirm the compounds that
were predicted, they used quantum chemistry computations. They employed an attention
method to decipher the outcomes of feature extraction using dilated convolution layers
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in their prediction model. They concluded that graph-based representations of molecules
were more effective than string-based representations.

In most experimental studies, donor and acceptor materials for OSCs are optimized
separately. However, optimizing only one component at a time limits the exploration
of potential combinations. Troisi used ML to investigate whether these components
should be optimized individually or if simultaneous optimization would yield better
results [63]. They took molecular fingerprints as their starting point and searched the
literature for combinations of 262 donors (D) and 76 acceptors (A). Despite the tiny dataset,
they achieved a high accuracy (r = 0.78) by predicting the PCE of BHJ solar cells using
these donor/acceptor combinations. The most promising combination was recommended
for experimental testing.

The study by Wu et al. is notable for its comprehensive approach and transformative
impact on organic photovoltaic research. It stands out due to the scale of its analysis, utiliz-
ing 565 donor/acceptor pairs as training data and screening an unprecedented 432 million
pairings for PCE predictions. The use of advanced ML models, such as boosted regression
trees (BRT) and random forests (RF), achieving prediction accuracies of 0.71 and 0.70,
respectively, highlights the methodological rigor [64,65]. The experimental validation of
six selected pairings, with results closely aligning with model predictions, underscores
the reliability of their workflow [8]. Focusing on non-fullerene acceptors (NFAs) from the
high-performing Y6 series, the study exemplifies how ML can accelerate material discovery
and optimize device performance, marking a significant advancement in the field. The
entire workflow of the study is illustrated in Figure 6.
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5.5. Images

ML has made significant strides in image recognition by identifying features within
complex backgrounds and associating them with specific outputs. To put this skill to use,
Sun and colleagues trained a deep neural network to detect and automatically categorize
chemical structures; this allowed them to estimate the PCE of OSCs [66]. The researchers
used unaltered images of chemical structures for their model, which was both fast and low
in computational cost, making it feasible to run on a personal computer. This approach
achieved an accuracy of 91.02% in predicting the PCE of donor materials. The workflow of
this study is illustrated in Figure 7.
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However, this study has several limitations. Firstly, the ML model was trained using
data from the HCEP, but the molecules reported in the literature are generally more
complex than those in the HCEP database. Secondly, the Scharber model’s PCE estimates
were based on energy levels calculated using DFT, which are not always accurate. The
performance of OSCs is influenced by many factors, including the materials in the active
layer, solubility, solvent additives, crystallinity, and molecular orientation. Only images
of chemical structures are used as the input does not provide realistic results. Molecular
descriptors, which provide more detailed information about the molecules, are a better
option compared to just using pictures of the structures.

5.6. Microscopic Properties

Optical gap, charge-carrier mobility, ionization potential, electron affinity, and hole–
electron binding energy are some of the microscopic features of organic materials that
determine the efficiency of OSCs. When contrasted with more basic topological descrip-
tors, these microscopic descriptors offer a more grounded view of solar cell applications.
However, computing or experimentally determining these microscopic properties can be
costly and time-consuming.

To address this, Ma and colleagues used 13 microscopic properties as descriptors to
train a model for predicting PCE. They utilized a dataset of 270 small molecules for this
purpose. This approach aims to enhance the accuracy of PCE predictions by incorporating
detailed microscopic properties, despite the higher computational and experimental costs
involved [67]. PCE was predicted using a variety of methods, such as artificial neural
networks, gradient boosting, and random forest. The gradient boosting model stood
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out among the rest, achieving an amazing R-value of 0.79. Unfortunately, these models
rely on computationally expensive characteristics like excited state and polarizability.
Massive, high-throughput virtual screening of possible compounds is hindered by this
hefty price tag.

Ma and colleagues utilized random forest (RF) and gradient boosting regression tree
(GBRT) algorithms to predict key device characteristics such as (VOC), (JSC), and (FF) based
on microscopic properties. They found a strong correlation between JSC (r = 0.78) and FF
(r = 0.73) with PCE, indicating these factors are reliable predictors of efficiency. However,
VOC showed a very weak correlation with PCE (r = 0.15), which aligns with findings from
recent studies [40]. The JSC and FF are found to be poorly correlated (r = 0.33), with almost
no correlation between VOC and JSC (r = −0.18) as well as VOC and FF (r = −0.09).

The impact of various descriptors on ML models’ prediction abilities was studied by
Trois and colleagues. Using information from 566 donor/acceptor pairs retrieved from the
literature, they trained k-Nearest Neighbors (k-NN), Kernel Ridge Regression (KRR), and
Support Vector Regression (SVR) models. To improve the accuracy of these ML models
in predicting the performance of OSCs, our investigation sought to identify the most
effective descriptors [68]. The research made use of both spatial (topological) and temporal
(physical) characteristics, including energy levels, molecule size, light absorption, and
mixing characteristics. The ML models benefited greatly from the structural descriptors.
Some physical parameters correlated strongly with PCE, but these did not improve the
model’s predictive capability as the structural descriptors already included this information.

When developing organic semiconductors, a number of building pieces are utilized to
construct push–pull conjugated systems. These building blocks include electron-deficient,
electron-rich, and p-spacer units. In order to screen 10,000 compounds made from 32 dis-
tinct building blocks, Ma and colleagues used ML algorithms. Their research set out to
deduce how the molecules’ characteristics are impacted by the type and configuration of
these building pieces. Using their ground and excited states, we were able to calculate
their descriptive properties. They found 126 possible candidates with efficiency predictions
above 8% using ANN and gradient boosting regression trees (GBRT) models. This method
was effective in finding OSC candidates through screening.

With a Pearson’s coefficient (r) of 0.68, the ML model trained by Padula et al. to
forecast device parameters outperformed the Scharber model [11]. In OSCs, the thermo-
dynamics of mixing the materials in the active layer dictates how the film morphology
evolves. Charge transfer and light harvesting are both impacted by this evolution, which
in turn affects the device’s stability and performance [69,70]. Investigating the connection
between the characteristics of molecular interactions and the phase behavior of thin films is
crucial. To achieve this goal, Perea et al. investigated the phase evolution of fullerenes and
polymers using the ANN model in conjunction with the Flory–Huggins solution theory [71].
Solubility parameters were predicted using the surface charge distribution and the ANN
model. To characterize the stability of polymer–fullerene blends, a figure of merit was
developed, which is combined with solubility characteristics (Figure 8).
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Figure 8. Computational flowchart describing the routine for determining the relative stability
capable of describing the microstructure of polymer–fullerene blends. (i) Creation of the s-profile
from the conductor-like screening model (COSMO); (ii) s-moments as extracted from COSMO are fed
into an artificial neural network (ANN) to determine Hansen solubility parameters (HSPs); (iii) HSPs
are used to calculate the qualitative Flory–Huggins interaction parameters (χ1,2); (iv) implementation
of moiety-monomer-structure properties (reduced molar volumes/weights); (v) spinodal demixing
diagrams resulting from polymer blend theory; and (vi) figure of merit (FoM) defined as the ratio of
the Flory–Huggins intermolecular parameter and the spinodal diagram forms the basis of a relative
stability metric. Reproduced with permission from [71].

5.7. Energy Levels

The performance of OSCs is significantly influenced by the energy levels of the donor
and acceptor materials. When there is a mismatch in these energy levels, it can lead to
substantial energy loss due to radiative recombination, which in turn reduces the PCE of



Processes 2025, 13, 393 22 of 34

the OSCs [72]. In 2017, Aspuru Guzik’s group investigated millions of molecular motifs
using 150 million DFT calculations [73]. PCE was predicted using Scharber’s model [10]
and the calculated energy level was used as input. Candidates with a PCE of more than
10% were identified.

Automatic thiophene-based polymer production from donor and acceptor units, or-
bital level calculation using Hückel-based models, and photovoltaic characteristic evalua-
tion were all reported by Imamura et al. in 2017 [74]. PCE was calculated using Scharber’s
model, but its performance is very poor [11,57,75]. Molecular descriptors and microscopic
properties of semi-conductors were totally ignored. With a training set R2 of 0.85 and
a testing set R2 of 0.80, Min-Hsuan Lee demonstrated excellent prediction accuracy us-
ing random forest (RF) modeling on a database including 4100 bulk heterojunction solar
cells [76].

As discussed earlier, various examples of ML applications in binary solar cells have
been highlighted. However, ternary OSCs generally exhibit better performance than binary
ones. One of the main issues with binary OSCs is their limited light harvesting capability
due to the narrow absorption range of organic semiconductors. In contrast, ternary OSCs
include a third component, which can be either a donor or an acceptor. This additional
component not only enhances photon harvesting by serving as an extra absorber but also
contributes to achieving a more favorable morphology [77]. The operation of ternary solar
cells is more intricate than that of binary solar cells, making the identification of optimal
third components for ternary solar cells a tough endeavor [78,79]. Min-Hsuan Lee has
developed a ML model for ternary solar cells utilizing random forest, gradient boosting, k-
Nearest Neighbors (k-NN), Linear Regression, and Support Vector Regression. The LUMO
value of the donor (D1) exhibited a significant linear connection with PCE (r = −0.55), but
the correlations of other markers with PCE were minor [80]. The VOC value has a strong
correlation with the donor’s HOMO (r = −0.54) and LUMO (r = −0.54), indicating that
the donor’s energy levels require additional examination to elucidate the origin of VOC

in ternary OSCs. The Random Forest model exhibited the highest R2 score (0.77 on the
test set) across all ML approaches. In a separate work, he developed the ML model to
forecast the voltage of operation characteristics of fullerene derivative-based ternary OSCs.
The descriptions were identical to those in a prior study [81]. The Random Forest model
exhibited an R2 score of 0.77. Both investigations utilized only the energy levels of organic
semiconductors as descriptors, neglecting other chemical descriptors and the influence of
thin film shape. Enhancing the efficiency of OSCs necessitates the development of a hybrid
modeling framework that integrates thin-film features, including the optimal ratio of the
three components, and fabrication parameters, such as annealing temperature and solvent
additives. By controlling these variables, we may improve charge generation and minimize
voltage loss, hence increasing total device efficiency [82]. Theoretical analysis of the
morphology of the three components is much more complex than that of two components.

Theoretical analysis of the morphology in ternary OSCs presents greater challenges
compared to binary systems due to the added complexity of the third component. This third
component, often a donor or acceptor, introduces additional interactions that affect photon
harvesting, charge separation, and transport mechanisms. Morphological studies require
advanced modeling to understand how the three components interact at a molecular level
and influence the efficiency of the device.

For instance, the interplay between energy levels and a thin-film structure in ternary
OSCs demands the integration of experimental data and computational simulations to
predict and optimize device performance effectively [82]. These complexities underscore
the need for hybrid modeling frameworks that incorporate both structural and energetic
descriptors to achieve meaningful insights and guide experimental designs. By carefully
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controlling these variables, it is possible to enhance charge generation and reduce voltage
loss, thereby improving the overall efficiency of the device [82]. A theoretical analysis of
the morphology becomes significantly more complex when dealing with three components
compared to two components.

Tandem OSCs are known for their superior PCE. These cells consist of two sub-
cells, designed to extend the range of photon response and minimize both transmission
and thermalization losses. This dual-layer architecture enhances the overall efficiency
by capturing a broader spectrum of light and reducing energy losses that typically occur
in single-junction solar cells [83]. Developing a correlation between the efficiency and
physical properties of active layer materials in OSCs is particularly challenging due to
the vast diversity of organic materials available. This diversity results in a multitude of
potential candidate materials, making the task more complex. To address this issue, Min-
Hsuan Lee employed ML algorithms to predict the efficiency of tandem OSCs and identify
optimal bandgap combinations for these devices. This approach helps streamline the
selection process, making it more efficient and effective in finding high-performing material
combinations [84]. Random forest regression was employed to predict the efficiency of
tandem OSCs using energy levels as input data. The findings suggest that optimizing the
energy offset in the LUMO level between the donor and acceptor materials can significantly
enhance electron transfer and overall device performance. This optimization is crucial for
improving the efficiency and effectiveness of the solar cells.

5.8. Simulated Properties

The efficiency of OSCs is largely governed by the morphology of the film. To further
enhance PCE, it is crucial to have a thorough understanding of this film morphology. In
addition to experimental methods, mathematical simulations can also be employed to
explore the film’s structure and analyze how various parameters affect it. This combination
of experimental and computational approaches provides a comprehensive understanding
that can lead to significant improvements in solar cell performance.

These simulations generally consist of two primary phases: the representation phase
and the mapping phase. During the representation phase, a mathematical foundation is
established to produce microstructures. In the mapping phase, the created microstructures
are correlated with a certain desired attribute. The application of graph theory in the
analysis of the microstructure of OSCs is gaining traction, since it offers a reliable approach
to elucidating the correlation between microstructure and device performance [85–87].
For example, Ganapathy Subramanian and colleagues used a graph-based approach to
study morphology descriptors in OSCs. They analyzed multiple mechanisms, including
photon absorption, exciton diffusion, charge separation, and charge transport, offering a
comprehensive assessment of how these elements affect the efficiency and performance of
OSCs [88]. A strong association was shown between the graph-based technique and the
computationally demanding method. In a separate investigation, they employed CNN to
correlate film morphology with a short-circuit current (JSC) [89].

They resolved the thermodynamically consistent Cahn–Hilliard equation for binary
phase separation via an in-house finite element library [90]. A total of B65000 morphologies
were generated with JSC, and it evaluated each morphology using the excitonic drift-
diffusion equation [91]. CNN using morphologies as input and JSC as output showed a
classification accuracy of 80% (Figure 9).
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Majeed et al. used the Shockley–Read–Hall-based drift-diffusion model to simulate
current/voltage (JV) curves [92]. A total of 20,000 devices were produced, and electrical
parameters including carrier trapping rates, energy disorder, trap densities, recombination
time constants, and parasitic resistances were computed. Simulated data were employed to
train the neural network.

After training the model, it was applied to the investigation of charge carrier dynamics
in several famous OSC devices to determine the effect of surfactant choice and annealing
temperature. The solubility of the materials in the active layer of an OSC in a specific
solvent plays a crucial role in determining the film morphology, which in turn affects the
device’s performance. Risko and colleagues tackled this by calculating the free energy
of mixing using molecular dynamics (MD) simulations. They also employed Bayesian
statistics to further refine these calculations. This method provides a quick and efficient
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way to study a wide variety of solvents and solvent additives, helping to optimize the
performance of the solar cells.

6. Challenges and Future Prospects
6.1. Data Infrastructure

The ML model for screening OPV compounds is often trained using data from the
Harvard Clean Energy Project (HCEP). However, the complexity of molecules reported in
the literature usually far exceeds that of the HCEP. This disparity can lead to inaccurate ML
predictions. Training an ML model effectively requires a vast amount of data. In areas like
image recognition, data availability is not an issue, with millions of input datasets available.
In contrast, OSCs have data only in the hundreds or thousands. The accuracy of ML models
reportedly improves as the number of data points (molecules) increases [23,66,84].

The ML model for screening OSC compounds is often trained using data from the
Harvard Clean Energy Project (HCEP). However, the complexity of molecules reported in
the literature usually far exceeds that of the HCEP, potentially leading to inaccurate ML
predictions. Training an ML model effectively requires a substantial amount of data. In
areas like image recognition, data availability is abundant, with millions of input datasets.
In contrast, OSCs have data only in the hundreds or thousands.

Studies have demonstrated that increasing the number of data points significantly
enhances ML model performance. For instance, a 10% improvement in predictive accuracy
was reported in [23] when dataset size was increased from 1000 to 5000 molecules. Similarly,
Sun et al. observed that doubling the dataset size improved their regression model’s R2

value by 15%. These findings underscore the importance of expanding datasets in the
context of OSCs for improving the accuracy and reliability of ML predictions [39].

Including massive amounts of data in ML models trained using power conversion
process descriptors is challenging because DFT computations are computationally intensive.
A potential solution for small datasets is meta-learning, which involves learning from both
within and across problems. Another viable approach for dealing with sparse data are a
Bayesian framework. Striking a balance between data accessibility and model predictive
power requires a two-pronged approach. The degree of freedom (DoF) of the model can
mediate the influence of data size on model precision, potentially leading to a relationship
between precision and DoF. This concept is theoretically grounded in the statistical bias-
variance trade-off [93]. A significant negative point is the lack of high-quality, extensive
datasets specifically tailored for OSCs. This shortage impedes the development of highly
accurate ML models, as the limited and less complex data often fail to capture the intricacies
of real-world OSC materials.

6.2. Descriptor Selection

A crucial step in ML modeling is the selection of molecular descriptors. While finger-
prints and molecular descriptors are simple and quick to compute, they are not ideal for
modeling OSCs. Understanding photovoltaic processes requires precise quantum computa-
tions on a small scale, which are prohibitively costly for rapid virtual screening on a broad
scale. There needs to be an appropriate compromise between precision and quickness.
Developing a new generation of descriptors specifically for organic semiconductors is
critically needed, along with accurate and conveniently accessible fingerprints.

6.3. Multidimensional Design

Many models account for power PCE by correlating chemical structures but fail to
consider miscibility and film morphology. Applying the theories of Flory and Huggins
might enhance ML approaches. Prediction accuracy could be improved by including data
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from grazing-incidence small-angle X-ray scattering (GISAXS), atomic force microscopy
(AFM), transmission electron microscopy (TEM), and grazing-incidence wide-angle X-ray
scattering (GIWAXS) [94].

Despite ML’s apparent mastery of everyday image analysis, results from these methods
vary significantly. It is exceedingly difficult to perform ML analysis on images generated by
the aforementioned techniques because, unlike everyday photos, they contain unique char-
acters. Microscope images are often associated with high-level noise and aberrations [95].
Experimental images also correlate highly with the physicochemical characteristics of
materials, mixing conditions, and experimental settings, adding complexity. Additionally,
the physical significance of images captured using various techniques varies, necessitating
different analytical approaches.

Due to multiple images for a single compound under varying experimental circum-
stances, accumulating a comprehensive dataset is laborious. Implementing automatic
image extraction and sorting is challenging, necessitating human intervention. Analysis
and specification of tasks, such as data label decision-making or target property selection,
will constitute the second stage. The FF values are heavily affected by the active layer’s
morphology [96]. Thus, choosing FF as the objective instead of PCE might be more practi-
cal. The correlation between FF and other components can then be determined using PCE.
Another consideration is whether to use classification or regression. Classification may be
more appropriate for smaller datasets, and vice versa. Training the model and extracting
patterns to provide a forecast will be the third stage. Experimental validation is the final
stage. Linking visuals with performance is an uphill battle but ultimately rewarding [97].

Many ML models correlate chemical structures with PCE but fail to consider criti-
cal factors like miscibility and film morphology. Incorporating the theories of Flory and
Huggins could potentially improve ML approaches. Prediction accuracy might also ben-
efit from integrating data derived from advanced characterization techniques such as
grazing-incidence small-angle X-ray scattering (GISAXS), atomic force microscopy (AFM),
transmission electron microscopy (TEM), and grazing-incidence wide-angle X-ray scatter-
ing (GIWAXS) [94]. However, applying ML to these methods presents significant challenges.
For example:

• GISAXS: Useful for probing nanoscale morphology with a resolution typically around
1–100 nm. Data processing often involves advanced fitting procedures to extract
domain spacing and orientation information.

• AFM: Provides surface morphology details at a resolution of ~1 nm but requires noise
reduction techniques to mitigate surface irregularities.

• TEM: Offers atomic to nanoscale resolution (~0.1 nm) but demands complex sample
preparation and interpretation.

• GIWAXS: Captures crystallographic information with sub-nanometer resolution,
requiring extensive data modeling to distinguish between amorphous and crys-
talline phases.

Despite the potential of these methods, image-based analysis remains challenging
due to the high noise levels, aberrations, and the specialized nature of data compared to
everyday photographs [95]. Images generated by these techniques are also highly depen-
dent on physicochemical characteristics, mixing conditions, and experimental settings,
necessitating tailored analytical approaches.

Compiling a comprehensive dataset for a single compound under varying experi-
mental conditions is a labor-intensive process. Automated image extraction and sorting
systems struggle to account for the variability in experimental conditions and data quality,
requiring substantial human intervention. Tasks such as data labeling and target property
selection represent a critical intermediate stage in the process.
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Given the influence of the active layer’s morphology on FF values [96], selecting FF as
a primary objective instead of PCE could simplify the modeling process. Correlating FF
with other parameters, including PCE, provides additional insights. For smaller datasets,
classification methods may be more effective, whereas regression models are better suited
for larger datasets. The final stages involve training the model to extract meaningful
patterns and making performance forecasts, followed by experimental validation. While
linking visual data to performance metrics is an intricate task, it holds significant promise
for advancing OSC design [97]. Establishing clear resolution limits and data-processing
protocols for GISAXS, AFM, TEM, and GIWAXS is essential for ensuring the reliability and
interpretability of ML-based predictions.

6.4. Experimental Validation

The use of ML in OSC research is increasing, as noted in the literature. High-
throughput screening is expected to continue progressing. Typically, materials are screened
using heuristic rules, but these rules do not guarantee that materials can be synthesized,
as their synthesis techniques are not always known. Collaboration with experimental
professionals is essential to enhance the accuracy of machine predictions. Once candidates
are identified by ML, a manual examination based on synthetic aspects is recommended,
followed by experimental validation. However, the number of cases where experiments
validate ML predictions is relatively small. Sun et al. confirmed ML findings by synthe-
sizing ten donor materials, with eight compounds correctly categorized by the model [39].
Nagasawa et al. found a PCE of 0.53% in their OSC device fabrication and donor synthe-
sis, significantly lower than the RF forecast of 5.0–5.8% [40]. Wu et al. manufactured six
donor/acceptor pairs, with most devices exhibiting a PCE close to the predicted values [64].

In the realm of OSCs, ML has emerged as a pivotal tool for predicting material
performance and guiding experimental efforts. While several studies have demonstrated
the potential of ML in this field, the translation of predictions into experimental validations
remains limited. Zhang et al. synthesized ten donor materials based on ML predictions,
with eight compounds correctly categorized by the model, highlighting the promise of ML
in guiding material selection [33].

Nagasawa et al. reported a significant discrepancy between ML predictions and
experimental outcomes. The fabricated OSC device achieved a PCE of 0.53%. This was
notably lower than the 5.0–5.8% range predicted by the random forest model [40]. Wu
et al. fabricated six donor–acceptor pairs, with most devices exhibiting PCEs close to the
predicted values, demonstrating the potential of ML in accurately forecasting OSC perfor-
mance [33]. Zhang et al. constructed a database of 397 donor–acceptor pairs and trained
various ML models, including random forest and gradient boosting regression trees, to
predict PCE. The random forest model exhibited the highest accuracy and stability. Subse-
quently, they designed 20 non-fullerene acceptor molecules and, based on ML predictions,
identified several candidates with predicted PCEs exceeding 12% when paired with P3HT
as the donor [33]. Paul et al. developed an ensemble deep neural network architecture,
SINet, leveraging both SMILES and InChI molecular representations to predict the highest
occupied molecular orbital (HOMO) values of donor molecules. By employing transfer
learning from a large dataset, they built robust predictive models applicable to smaller
datasets, enhancing the reliability of ML predictions in OSC research [98]. Osterrieder
et al. introduced an autonomous optimization platform combining Bayesian optimization
with experimental fabrication and characterization. Their system efficiently navigated a
four-dimensional parameter space, optimizing the composition and processing conditions
of a ternary OSC system. This approach underscores the potential of integrating ML with
automated experimentation to accelerate OSC development [99]. These studies underscore
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the potential of ML in OSC research, particularly when integrated with experimental valida-
tion. However, challenges persist in ensuring the accuracy of predictions and their practical
applicability. Collaborative efforts between computational scientists and experimentalists
are essential to refine ML models and enhance their predictive capabilities, ultimately
accelerating the development of high-performance OSCs.

6.5. Development of Better Software

Most current ML technologies require programming skills, limiting their use to indi-
viduals with extensive knowledge of data science and computer programming. However,
these individuals often lack a deep understanding of the fundamental processes involved.
This gap occasionally leads to misinterpretation of results. While OSCs are a hot topic
among experimental scientists, they typically lack training in ML. To address this issue,
developing user-friendly software with intuitive graphical user interfaces for material
specialists is beneficial. This way, experts can harness the full potential of data-driven
research without worrying about complex syntax or esoteric tuning settings. Figure 10
shows how ML can play a transformative role in solving the current issues that exist in
OSCs by making research and development faster and more efficient. It helps scientists
identify the key material properties, molecular features, and fabrication steps that have the
biggest impact on how well these solar cells work. By analyzing large datasets, ML can
predict which material combinations or manufacturing methods are likely to produce the
best performance and device stability, saving time and resources. Beyond that, ML speeds
up the discovery of new materials, like better donor/acceptor polymers, by predicting
important properties such as energy efficiency and charge movement.
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7. Conclusions
ML has emerged as a powerful tool in the field of OSCs, demonstrating significant

potential to predict key parameters such as energy levels, absorption spectra, and PCE.
By utilizing diverse inputs like molecular fingerprints, microscopic properties, and simu-
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lated features, ML enables researchers to rapidly identify and optimize effective organic
semiconductors. However, the progress of ML in OSC research is not without challenges.
The quality and diversity of available datasets often limit the reliability of predictions,
and the complex operational principles of OSCs further complicate the training of robust
models. Despite these obstacles, the growing focus on ML reflects its importance in ad-
dressing these issues. Open-source tools and data-sharing initiatives are paving the way
for more integrated approaches, helping to overcome data heterogeneity and improve
predictive accuracy.

This review successfully highlighted the transformative role of ML in reshaping how
OSC materials are discovered and optimized, providing solutions to some of the most
persistent challenges in the field. While ML is not yet a replacement for traditional experi-
mental methods, its ability to enhance efficiency and accuracy is undeniable. As technology
continues to advance, the integration of ML in OSC research will likely surpass the limi-
tations of trial-and-error approaches, accelerating the journey toward high-performance,
cost-effective, and stable solar energy solutions.
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DFT Density Functional Theory
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CNNs Convolutional Neural Networks
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CasSVM Cascaded Support Vector Machine
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