Review of Field Development Optimization of Waterflooding, EOR, and Well Placement Focusing on History Matching and Optimization Algorithms
Abstract
:1. Introduction
2. History Matching for Waterflood and Enhanced Oil Recovery
2.1. History Matching as Precursor to Production Optimization
3. Production Optimization for Waterflood and Enhanced Oil Recovery
3.1. Well Placement Optimization
3.2. Well Control Optimization
3.3. Coupled Well Placement and Well Control Optimization
- A GA can be applied with a high fidelity reservoir simulator, although this may require excessive computational time.
- GAs can be applied to a surrogate model to reduce computational time. In this instance a surrogate model, such as an adaptive ANN, is used with an intelligent sample selection algorithm derived from a simulator. The GA is used to optimize the surrogate model.
- A surrogate model is updated after each generation of the GA based on optimal solutions from the Pareto front.
3.4. Optimization of Chemical Flooding
4. Benchmark Models
4.1. The Brugge Benchmark
4.2. SPE-Comparative Solution Projects
4.3. The Norne Benchmark
5. Conclusions and Future Work
Acknowledgments
Conflicts of Interest
References
- Enhanced Oil Recovery. Available online: http://energy.gov/fe/science-innovation/oil-gas-research/enhanced-oil-recovery (accessed on 16 May 2017).
- Mashayekhizadeh, V.; Kord, S.; Dejam, M. EOR potential within Iran. Spec. Top. Rev. Porous Media Int. J. 2014, 5, 325–354. [Google Scholar] [CrossRef]
- Mollaei, A.; Maini, B. Steam flooding of naturally fractured reservoirs: Basic concepts and recovery mechanisms. J. Can. Pet. Technol. 2010, 49, 65–70. [Google Scholar] [CrossRef]
- Baker, P. An experimental study of heat flow in steam flooding. Soc. Pet. Eng. J. 1969, 9, 89–99. [Google Scholar] [CrossRef]
- Akstinat, M. Gas evolution and change of oil composition during steam flooding of oil reservoirs. J. Pet. Geol. 1983, 5, 363–388. [Google Scholar] [CrossRef]
- Yitang, Z.; Xiuluan, L.; Xia, Z. Four fundamental principles for design and follow-up of steam flooding in heavy oil reservoirs. Pet. Explor. Dev. 2008, 35, 715–719. [Google Scholar]
- Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: Half-century studies. J. Pet. Sci. Eng. 2016, 142, 85–100. [Google Scholar] [CrossRef]
- Saboorian-Jooybari, H.; Dejam, M.; Chen, Z. Half-Century of Heavy Oil Polymer Flooding from Laboratory Core Floods to Pilot Tests and Field Applications. In Proceedings of the SPE Canada Heavy Oil Technical Conference, Calgary, AB, Canada, 9–11 June 2015; Society of Petroleum Engineers: Calgary, AB, Canada, 2015. [Google Scholar]
- Guo, Y.; Liang, Y.; Cao, M.; Feng, R.; Zhang, X.; Li, H.; Hu, J. Flow Behavior and Viscous-Oil-Microdisplacement Characteristics of Hydrophobically Modified Partially Hydrolyzed Polyacrylamide in a Repeatable Quantitative Visualization Micromodel. SPE J. 2017. [Google Scholar] [CrossRef]
- Seright, R.S. How Much Polymer Should Be Injected During a Polymer Flood? Review of Previous and Current Practices. SPE J. 2016. [Google Scholar] [CrossRef]
- Seright, R. How Much Polymer Should Be Injected During a Polymer Flood? In Proceedings of the SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 11–13 April 2016; Society of Petroleum Engineers: Tulsa, OK, USA, 2016. [Google Scholar]
- Liu, S.; Zhang, D.; Yan, W.; Puerto, M.; Hirasaki, G.J.; Miller, C.A. Favorable attributes of alkaline–surfactant–polymer flooding. SPE J. 2008, 13, 5–16. [Google Scholar] [CrossRef]
- Zerpa, L.E.; Queipo, N.V.; Pintos, S.; Salager, J.L. An optimization methodology of alkaline–surfactant– polymer flooding processes using field scale numerical simulation and multiple surrogates. J. Pet. Sci. Eng. 2005, 47, 197–208. [Google Scholar] [CrossRef]
- Samimi, S.E.; Masihi, M.; Gerami, S.; Ghazvini, M.G. An Improvement on Modeling of Forced Gravity Drainage in Dual Porosity Simulations Using a New Matrix-Fracture Transfer Function. Transp. Porous Media 2012, 94, 207–223. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Z.; Liu, X.; Sun, J.; He, Y.; Guo, H. Experiments on the permeability limits of tight oil reservoirs for gas flood recovery. Spec. Top. Rev. Porous Media Int. J. 2016, 7, 385–390. [Google Scholar] [CrossRef]
- Jansen, J. Model-based control of subsurface flow. J. Process Control 2008, 18, 846–855. [Google Scholar] [CrossRef]
- Jansen, J.D.; Durlofsky, L.J. Use of reduced-order models in well control optimization. Optim. Eng. 2016, 18, 105–132. [Google Scholar] [CrossRef]
- Aanonsen, S.I.; Nævdal, G.; Oliver, D.S.; Reynolds, A.C.; Vallès, B. The ensemble Kalman filter in reservoir engineering—A review. SPE J. 2009, 14, 393–412. [Google Scholar] [CrossRef]
- Alvarado, V.; Manrique, E. Enhanced oil recovery: An update review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Franco, A.; Vaccaro, M. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review. Renew. Sustain. Energy Rev. 2014, 30, 987–1002. [Google Scholar] [CrossRef]
- Islam, A.W.; Sepehrnoori, K. A Review on SPE’s Comparative Solution Projects (CSPs). J. Pet. Sci. Res. 2013, 2. [Google Scholar] [CrossRef]
- Oliver, D.S.; Chen, Y. Recent progress on reservoir history matching: A review. Comput. Geosci. 2011, 15, 185–221. [Google Scholar] [CrossRef]
- Jansen, J. Adjoint-based optimization of multi-phase flow through porous media—A review. Comput. Fluids 2011, 46, 40–51. [Google Scholar] [CrossRef]
- Hou, J.; Zhou, K.; Zhang, X.S.; Kang, X.D.; Xie, H. A review of closed-loop reservoir management. Pet. Sci. 2015, 12, 114–128. [Google Scholar] [CrossRef]
- Beal, L.D.; Park, J.; Petersen, D.; Warnick, S.; Hedengren, J.D. Combined model predictive control and scheduling with dominant time constant compensation. Comput. Chem. Eng. 2017, 104, 271–282. [Google Scholar] [CrossRef]
- Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Plant-level dynamic optimization of cryogenic carbon capture with conventional and renewable power sources. Appl. Energy 2015, 149, 354–366. [Google Scholar] [CrossRef]
- Safdarnejad, S.M.; Hedengren, J.D.; Baxter, L.L. Dynamic optimization of a hybrid system of energy-storing cryogenic carbon capture and a baseline power generation unit. Appl. Energy 2016, 172, 66–79. [Google Scholar] [CrossRef]
- Powell, K.M.; Eaton, A.N.; Hedengren, J.D.; Edgar, T.F. A continuous formulation for logical decisions in differential algebraic systems using mathematical programs with complementarity constraints. Processes 2016, 4, 7. [Google Scholar] [CrossRef]
- Safdarnejad, S.M.; Hedengren, J.D.; Lewis, N.R.; Haseltine, E.L. Initialization strategies for optimization of dynamic systems. Comput. Chem. Eng. 2015, 78, 39–50. [Google Scholar] [CrossRef]
- Udy, J.; Blackburn, L.; Hedengren, J.; Darby, M. Reduced Order Modeling for Reservoir Injection Optimization and Forecasting. In Proceedings of the FOCAPO/CPC Conference, Tuscon, AZ, USA, 8–12 January 2017; Foundations of Computer Aided Process Operations/Chemical Process Control: Tuscon, AZ, USA, 2017. [Google Scholar]
- Todd, M.; Longstaff, W. The development, testing, and application of a numerical simulator for predicting miscible flood performance. J. Pet. Technol. 1972, 24, 874–882. [Google Scholar] [CrossRef]
- Wang, P.; Yotov, I.; Wheeler, M.; Arbogast, T.; Dawson, C.; Parashar, M.; Sepehrnoori, K. A New Generation EOS Compositional Reservoir Simulator: Part I-Formulation and Discretization. In Proceedings of the SPE Reservoir Simulation Symposium, Dallas, TX, USA, 8–11 June 1997; Society of Petroleum Engineers: Dallas, TX, USA, 1997. [Google Scholar]
- Kazemi, H.; Vestal, C.; Shank, D.G. An efficient multicomponent numerical simulator. Soc. Pet. Eng. J. 1978, 18, 355–368. [Google Scholar] [CrossRef]
- Blunt, M.J.; Jackson, M.D.; Piri, M.; Valvatne, P.H. Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 2002, 25, 1069–1089. [Google Scholar] [CrossRef]
- Lee, K.; Ortega, A.; Jafroodi, N.; Ershaghi, I. A multivariate autoregressive model for characterizing producer producer relationships in waterfloods from injection/production rate fluctuations. SPE West. Reg. Meet. 2010, 13, 1–11. [Google Scholar]
- Liu, F.; Mendel, J.M.; Nejad, A.M. Forecasting injector/producer relationships from production and injection rates using an extended Kalman filter. SPE J. 2009, 14, 653–664. [Google Scholar] [CrossRef]
- Zhai, D.Y.; Mendel., J.M. An inequality-constrained extended Kalman filter for continual forecasting of interwell connectivities in waterfloods. SPE West. Reg. Meet. 2010. [Google Scholar] [CrossRef]
- Weber, D. The use of Capacitance-Resistance Models to Optimize Injection Allocation and Well Location in Water Floods. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2009. [Google Scholar]
- Sayarpour, M.; Zuluaga, E.; Kabir, C.S.; Lake, L.W. The use of capacitance–resistance models for rapid estimation of waterflood performance and optimization. J. Pet. Sci. Eng. 2009, 69, 227–238. [Google Scholar] [CrossRef]
- Mamghaderi, A.; Pourafshary, P. Water flooding performance prediction in layered reservoirs using improved capacitance-resistive model. J. Pet. Sci. Eng. 2013, 108, 107–117. [Google Scholar] [CrossRef]
- Jafroodi, N.; Zhang, D. New method for reservoir characterization and optimization using CRM–EnOpt approach. J. Pet. Sci. Eng. 2011, 77, 155–171. [Google Scholar] [CrossRef]
- Hourfar, F.; Moshiri, B.; Salahshoor, K.; Zaare-Mehrjerdi, M.; Pourafshary, P. Adaptive modeling of waterflooding process in oil reservoirs. J. Pet. Sci. Eng. 2016, 146, 702–713. [Google Scholar] [CrossRef]
- Verga, F.; Cancelliere, M.; Viberti, D. Improved application of assisted history matching techniques. J. Pet. Sci. Eng. 2013, 109, 327–347. [Google Scholar] [CrossRef]
- Rwechungura, R.W.; Dadashpour, M.; Kleppe, J. Advanced History Matching Techniques Reviewed. Proceeding of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25–28 September 2011; Society of Petroleum Engineers: Manama, Bahrain, 2011. [Google Scholar]
- Stordal, A.S.; Szklarz, S.P.; Leeuwenburgh, O. A theoretical look at ensemble-based optimization in reservoir management. Math. Geosci. 2016, 48, 399–417. [Google Scholar] [CrossRef]
- Anifowose, F.A.; Labadin, J.; Abdulraheem, A. Ensemble machine learning: An untapped modeling paradigm for petroleum reservoir characterization. J. Pet. Sci. Eng. 2017, 151, 480–487. [Google Scholar] [CrossRef]
- Rahmati, H.; Nouri, A.; Pishvaie, M.R.; Bozorgmehri, R. A modified differential evolution optimization algorithm with random localization for generation of best-guess properties in history matching. Energy Sources Part A Recovery Util. Environ. Effects 2011, 33, 845–858. [Google Scholar] [CrossRef]
- Park, H.Y.; Datta-Gupta, A.; King, M.J. Handling conflicting multiple objectives using Pareto-based evolutionary algorithm during history matching of reservoir performance. J. Pet. Sci. Eng. 2014, 125, 48–66. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Christie, M.; Demyanov, V. Ant colony optimization for history matching and uncertainty quantification of reservoir models. J. Pet. Sci. Eng. 2011, 77, 78–92. [Google Scholar] [CrossRef]
- Hajizadeh, Y.; Demyanov, V.; Mohamed, L.; Christie, M. Comparison of evolutionary and swarm intelligence methods for history matching and uncertainty quantification in petroleum reservoir models. In Intelligent Computational Optimization in Engineering; Springer: Berlin/Heidelberg, Germany, 2010; pp. 209–240. [Google Scholar]
- Jin, L.; van den Hoek, P.J.; Alpak, F.O.; Pirmez, C.; Fehintola, T.; Tendo, F.; Olaniyan, E.E. A comparison of stochastic data-integration algorithms for the joint history matching of production and Time-Lapse-Seismic data. SPE Reserv. Eval. Eng. 2012, 15, 498–512. [Google Scholar] [CrossRef]
- Evensen, G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dyn. 2003, 53, 343–367. [Google Scholar] [CrossRef]
- He, J.; Sarma, P.; Durlofsky, L.J. Reduced-order flow modeling and geological parameterization for ensemble-based data assimilation. Comput. Geosci. 2013, 55, 54–69. [Google Scholar] [CrossRef]
- Heidari, L.; Gervais, V.; Ravalec, M.L.; Wackernagel, H. History matching of petroleum reservoir models by the ensemble Kalman Filter and parameterization methods. Comput. Geosci. 2012, 55, 84–95. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Wheeler, M.F.; Hoteit, I. An iterative stochastic ensemble method for parameter estimation of subsurface flow models. J. Comput. Phys. 2013, 242, 696–714. [Google Scholar] [CrossRef]
- Agbalaka, C.C.; Stern, D.; Oliver, D.S. Two-stage ensemble-based history matching with multiple modes in the objective function. Comput. Geosci. 2013, 55, 28–43. [Google Scholar] [CrossRef]
- Emerick, A.A.; Reynolds, A.C. Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 2013, 17, 325–350. [Google Scholar] [CrossRef]
- Ding, D.Y. Development of a data partition technique for gradient-based optimization methods in history matching. SPE J. 2011, 16, 582–593. [Google Scholar] [CrossRef]
- Kaleta, M.P.; Hanea, R.G.; Heemink, A.W.; Jansen, J.D. Model-reduced gradient-based history matching. Comput. Geosci. 2010, 15, 135–153. [Google Scholar] [CrossRef]
- Bhark, E.; Jafarpour, B.; Datta-Gupta, A. An adaptively scaled frequency-domain parameterization for history matching. J. Pet. Sci. Eng. 2011, 75, 289–303. [Google Scholar] [CrossRef]
- Peters, L.; Arts, R.; Brouwer, G.; Geel, C.; Cullick, S.; Lorentzen, R.; Chen, Y.; Dunlop, N.; Vossepoel, F.; Xu, R.; et al. Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 2010, 13, 391–405. [Google Scholar] [CrossRef]
- Naevdal, G.; Johnsen, L.M.; Aanonsen, S.I.; Vefring, E.H. Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 2005, 10, 66–74. [Google Scholar] [CrossRef]
- Bianco, A.; Cominelli, A.; Dovera, L.; Nævdal, G.; Valles, B. History matching and production forecast uncertainty by means of the ensemble Kalman filter: A real field application. Procedings of the EUROPEC/EAGE Conference and Exhibition, London, UK, 11–14 June 2007; Society of Petroleum Engineers: London, UK, 2007. [Google Scholar]
- Jansen, J.D.; Brouwer, R.; Douma, S.G. Closed Loop Reservoir Management. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2–4 February 2009; Society of Petroleum Engineers: The Woodlands, TX, USA, 2009. [Google Scholar]
- Skjervheim, J.; Evensen, G.; Aanonsen, S.; Rudd, B.; Johansen, T. Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 9–12 October 2005; pp. 1–11. [Google Scholar]
- Gu, Y.; Oliver, D. An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J. 2007, 12, 438–446. [Google Scholar] [CrossRef]
- Cullick, A.S.; Johnson, W.D.; Shi, G. Improved and More Rapid History Matching with a Nonlinear Proxy and Global Optimization. In Proceedings of the SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: San Antonio, TX, USA, 2006. [Google Scholar]
- Webb, S.J.; Bayless, J.S.; Dunlop, K.N.B. Enabling the ’Big Loop’-Ensuring Consistency of Geological and Reservoir Simulation Models. In Proceedings of the AAPG Annual Convention and Exhibition, Long Beach, CA, USA, 1–4 April 2007; pp. 1–4. [Google Scholar]
- Sarma, P.; Durlofsky, L.J.; Aziz, K.; Chen, W.H. Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 2006, 10, 3–36. [Google Scholar] [CrossRef]
- Hooke, R.; Jeeves, T.A. Direct search solution of numerical and statistical problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Echeverría Ciaurri, D.; Isebor, O.; Durlofsky, L. Application of derivative-free methodologies to generally constrained oil production optimization problems. Proced. Comput. Sci. 2010, 1, 1301–1310. [Google Scholar] [CrossRef]
- He, Z.; Yoon, S.; Datta-Gupta, A. Streamline-based production data integration with gravity and changing field conditions. SPE J. 2002, 7, 423–436. [Google Scholar] [CrossRef]
- Krymskaya, M.V.; Hanea, R.G.; Verlaan, M. An iterative ensemble Kalman filter for reservoir engineering applications. Comput. Geosci. 2009, 13, 235–244. [Google Scholar] [CrossRef]
- Chen, Y.; Oliver, D.S. Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 2013, 17, 689–703. [Google Scholar] [CrossRef]
- Raniolo, S.; Dovera, L.; Cominelli, A.; Callegaro, C.; Masserano, F. History Match and Polymer Injection Optimization in a Mature Field Using the Ensemble Kalman Filter. In Proceedings of the IOR 2013—17th European Symposium on Improved Oil Recovery, St. Petersburg, Russia, 16–18 April 2013. [Google Scholar]
- Douma, S.G.; Abu-Shiekah, I.M.; Kindi, Z.Y. Full Field History Matching for Chemical Flooding with the Adjoint Method. In Proceedings of the SPE Kuwait Oil and Gas Show and Conference, Kuwait City, Kuwait, 8–10 October 2013; Society of Petroleum Engineers: Kuwait City, Kuwait, 2013. [Google Scholar]
- Xu, S.; Zhang, M.; Zeng, F.; Chan, C. Application of Genetic Algorithm (GA) in history matching of the Vapour Extraction (VAPEX) heavy oil recovery process. Nat. Resour. Res. 2014. [Google Scholar] [CrossRef]
- Lee, K.H.; Ortega, A.; Nejad, A.M.; Ershaghi, I. A Method for Characterization of Flow Units Between Injection-Production Wells Using Performance Data. In Proceedings of the 2008 SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, USA, 31 March–2 April 2008; pp. 419–446. [Google Scholar]
- Zhai, D.Y.; Jerry, M.; Mendel, F.L. A New Method for Continual Forecasting of Interwell Connectivitiy in Waterfloods Using an Extended Kalman Filter. SPE West. Reg. Meet. 2009. [Google Scholar] [CrossRef]
- Williams, M.; Keating, J.F.; Barghouty, M. The stratigraphic method: A structured approach to history matching complex simulation models. SPE Reserv. Eval. Eng. 1998, 1, 169–176. [Google Scholar] [CrossRef]
- Williams, G.; Mansfield, M.; MacDonald, D.; Bush, M. Top-down Reservoir Modelling. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; Society of Petroleum Engineers: Houston, TX, USA, 2004. [Google Scholar]
- Yin, J.; Park, H.Y.; Datta-Gupta, A.; King, M.J.; Choudhary, M.K. A hierarchical streamline-assisted history matching approach with global and local parameter updates. J. Pet. Sci. Eng. 2011, 80, 116–130. [Google Scholar] [CrossRef]
- Cheng, H.; Dehghani, K.; Billiter, T.C. A Structured Approach for Probabilistic-Assisted History Matching Using Evolutionary Algorithms: Tengiz Field Applications. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 1–24 September 2008; Society of Petroleum Engineers: Denver, CO, USA, 2008. [Google Scholar]
- Ariadji, T.; Sukarno, P.; Sidarto, K.A.; Soewono, E.; Riza, L.S.; David, K. Optimization of Vertical Well Placement for Oil Field Development Based on Basic Reservoir Rock Properties using a Genetic Algorithm. ITB J. Eng. Sci. 2012, 44, 106–127. [Google Scholar] [CrossRef]
- Fahim Forouzanfar, A.; Gaoming Li, S. A Two-Stage Well Placement Optimization Method Based on Adjoint Gradient. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 20–22 September 2010. [Google Scholar]
- Bellout, M.C.; Echeverría Ciaurri, D.; Durlofsky, L.J.; Foss, B.; Kleppe, J. Joint optimization of oil well placement and controls. Comput. Geosci. 2012, 16, 1061–1079. [Google Scholar] [CrossRef]
- Zandvliet, M.; Handels, M.; Van Essen, G.; Brouwer, D.; Jansen, J.D. Adjoint-based well-placement optimization under production constraints. SPE J. 2008, 13, 392–399. [Google Scholar] [CrossRef]
- Handels, M.; Zandvliet, M.; Brouwer, R.; Jansen, J.D. Adjoint-Based Well-Placement Optimization under Production Constraints. In Proceedings of the SPE Reservoir Simulation Symposium; Society of Petroleum Engineers: Houston, TX, USA, 2007. [Google Scholar]
- Wang, C.; Li, G.; Reynolds, A.C. Optimal Well Placement for Production Optimization. In Proceedings of the Eastern Regional Meeting; Society of Petroleum Engineers: Lexington, KY, USA, 2007. [Google Scholar]
- Sarma, P.; Chen, W.H.; Durlofsky, L.J.; Aziz, K. Production optimization with adjoint models under nonlinear control-state path inequality constraints. SPE Reserv. Eval. Eng. 2008, 11, 326–339. [Google Scholar] [CrossRef]
- Zhang, K.; Li, G.; Reynolds, A.C.; Yao, J.; Zhang, L. Optimal well placement using an adjoint gradient. J. Pet. Sci. Eng. 2010, 73, 220–226. [Google Scholar] [CrossRef]
- Younis, R.M.; Aziz, K.; Tchelepi, H.; Alonso, J.J. Modern Advances in Software and Solution Algorithms for Reservoir Simulation; Stanford University: Stanford, CA, USA, 2011. [Google Scholar]
- Li, X.; Zhang, D. A backward automatic differentiation framework for reservoir simulation. Comput. Geosci. 2014, 18, 1009–1022. [Google Scholar] [CrossRef]
- Montes, G.; Bartolome, P.; Udias, A.L. The Use of Genetic Algorithms in Well Placement Optimization. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 25–28 March 2011; Society of Petroleum Engineers: Buenos Aires, Argentina, 2001. [Google Scholar]
- Farshi, M.M. Improving Genetic Algorithms for Optimum Well Placement. Master’s Thesis, Stanford University, Stanford, CA, USA, 2008. [Google Scholar]
- Bukhamsin, A.Y.; Farshi, M.M.; Aziz, K. Optimization of Multilateral Well Design and Location in a Real Field Using a Continuous Genetic Algorithm. In Proceedings of the SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 4–7 April 2010; SPE: Al-Khobar, Saudi Arabia, 2010. [Google Scholar]
- Emerick, A.A.; Silva, E.; Messer, B.; Almeida, L.; Szwarcman, D.; Pacheco, M.; Vellasco, M. Well Placement Optimization Using a Genetic Algorithm With Nonlinear Constraints. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 2–4 February 2009; SPE: The Woodlands, TX, USA, 2009. [Google Scholar]
- Bouzarkouna, Z.; Ding, D.Y.; Auger, A. Partially Separated Meta-Models with Evolution Strategies for Well Placement Optimization. In Proceedings of the 73rd EAGE Conference & Exhibition Incorporating SPE EUROPEC, Vienna, Austria, 23–26 May 2011; pp. 1–9. [Google Scholar]
- Eberhart, R.C.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, New York, NY, USA, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Onwunalu, J.E.; Durlofsky, L.J. Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput. Geosci. 2010, 14, 183–198. [Google Scholar] [CrossRef]
- Cheng, G.; An, Y.; Wang, Z.; Zhu, K. Oil Well Placement Optimization Using Niche Particle Swarm Optimization. In Proceedings of the 2012 Eighth International Conference on Computational Intelligence and Security, Guangzhou, China, 17–18 November 2012; pp. 61–64. [Google Scholar]
- Brits, R.; Engelbrecht, A.P.; Van den Bergh, F. A Niching Particle Swarm Optimizer. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, 18–22 November 2002; pp. 692–696. [Google Scholar]
- Nwankwor, E.; Nagar, A.; Reid, D. Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput. Geosci. 2013, 17, 249–268. [Google Scholar] [CrossRef]
- Ding, S.; Jiang, H.; Li, J.; Tang, G. Optimization of well placement by combination of a modified particle swarm optimization algorithm and quality map method. Comput. Geosci. 2014, 18, 747–762. [Google Scholar] [CrossRef]
- Min, B.; Park, C.; Kang, J.; Ahn, T.; Chung, S.; Kim, S. Optimal Injector Placement Coupled Multi-objective Genetic Algorithm with a Black-oil Simulator in Waterflooding Project. In Proceedings of the 73rd EAGE Conference & Exhibition, Vienna, Austria, 23–26 May 2011. [Google Scholar]
- Beckner, B.; Xong, X. Field Development Planning Using Simulated Annealing-Optimal Economic Well Scheduling and Placement; Technical Report; Society of Petroleum Engineers (SPE), Inc.: Dallas, TX, USA, 1995. [Google Scholar]
- Parashar, M.; Klie, H.; Catalyurek, U.; Kurc, T.; Bangerth, W.; Matossian, V.; Saltz, J.; Wheeler, M.F. Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies. Future Gener. Comput. Syst. 2005, 21, 19–26. [Google Scholar] [CrossRef]
- Bangerth, W.; Klie, H.; Wheeler, M.F.; Stoffa, P.L.; Sen, M.K. On optimization algorithms for the reservoir oil well placement problem. Comput. Geosci. 2006, 10, 303–319. [Google Scholar] [CrossRef]
- Afshari, S.; Aminshahidy, B.; Pishvaie, M.R. Application of an improved harmony search algorithm in well placement optimization using streamline simulation. J. Pet. Sci. Eng. 2011, 78, 664–678. [Google Scholar] [CrossRef]
- Kraaijevanger, J.; Egberts, P.J.P.; Valstar, J.R.; Buurman, H.W. Optimal Waterflood Design Using the Adjoint Method. In Proceedings of the SPE Reservoir Simulation Symposium, Houston, TX, USA, 26–28 February 2007; Society of Petroleum Engineers: Houston, TX, USA, 2007. [Google Scholar]
- Liu, X.; Reynolds, A. Gradient-based multi-objective optimization with applications to waterflooding optimization. Comput. Geosci. 2015, 20, 677–693. [Google Scholar] [CrossRef]
- Zangl, G.; Hermann, R. Waterflood Pattern Optimization Using Genetic Algorithms with Multi-tank Material Balance. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; Society of Petroleum Engineers: Houston, TX, USA, 2004. [Google Scholar]
- Guan, X.J.; Wei, L.X.; Yang, J.J. Optimization of operation plan for water injection system in oilfield using hybrid genetic algorithm. Acta Pet. Sin. 2005, 3, 026. [Google Scholar]
- Safarzadeh, M.A.; Motealleh, M.; Moghadasi, J. A novel, streamline-based injection efficiency enhancement method using multi-objective genetic algorithm. J. Pet. Explor. Prod. Technol. 2015, 5, 73–80. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, Q.; Gu, Y. Integrated optimization and control of the production-injection operation systems for hydrocarbon reservoirs. J. Pet. Sci. Eng. 2003, 37, 69–81. [Google Scholar] [CrossRef]
- Khan, H.; Saputelli, L.A.; Ranjan, P.; Carvajal, G.A.; Knabe, S.P.; Wang, F. Multi-Objectives Constrained Waterflood Optimization in Tight Carbonates. In Proceedings of the SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, UAE, 16–18 September 2013; Society of Petroleum Engineers: Abu Dhabi, UAE, 2013. [Google Scholar]
- Wang, Y.X.; Liu, C.L.; Wang, Y.F.; Zhou, S.H. Optimization in oilfield water injection system based on algorithm of ant colony-particle swarm method. J. Daqing Pet. Inst. 2010, 2, 014. [Google Scholar]
- Oliveira, D.F.; Reynolds, A. An adaptive hierarchical multiscale algorithm for estimation of optimal well controls. SPE J. 2014, 19, 909–930. [Google Scholar] [CrossRef]
- Everitt, T.A.; Jennings, J. An improved finite-difference calculation of downhole dynamometer cards for sucker-rod pumps. SPE Prod. Eng. 1992, 7, 121–127. [Google Scholar] [CrossRef]
- Gibbs, S. A review of methods for design and analysis of rod pumping installations. J. Pet. Technol. 1982, 34, 2–931. [Google Scholar] [CrossRef]
- Ehimeakhe, V.M. Calculating Pump Fillage for Well Control Using Transfer Point Location. In Proceedings of the SPE Eastern Regional Meeting, Morgantown, WV, USA, 13–15 October 2010; Society of Petroleum Engineers: Morgantown, WV, USA, 2010. [Google Scholar]
- Krug, D.; Nelsen, S.; Allison, J. Regenerative Hydraulic Lift System. U.S. Patent 8,562,308, 22 October 2013. [Google Scholar]
- Emerick, A.A.; Portella, R.C.M. Production Optimization With Intelligent Wells. In Proceedings of the Latin American & Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 15–18 April 2007; Society of Petroleum Engineers: Buenos Aires, Argentina, 2007. [Google Scholar]
- Humphries, T.D.; Haynes, R.D.; James, L.A. Simultaneous and sequential approaches to joint optimization of well placement and control. Comput. Geosci. 2014, 18, 433–448. [Google Scholar] [CrossRef]
- Humphries, T.D.; Haynes, R.D. Joint optimization of well placement and control for nonconventional well types. J. Pet. Sci. Eng. 2015, 126, 242–253. [Google Scholar] [CrossRef]
- Sun, Z.; Xin, Y.; Sun, Q.; Ma, R.; Zhang, J.; Lv, S.; Cai, M.; Wang, H. Numerical Simulation of the Depressurization Process of a Natural Gas Hydrate Reservoir: An Attempt at Optimization of Field Operational Factors with Multiple Wells in a Real 3D Geological Model. Energies 2016, 9, 714. [Google Scholar] [CrossRef]
- Drouven, M.G.; Grossmann, I.E. Multi-period planning, design and strategic models for long-term, quality-sensitive shale gas development. AIChE J. 2016. [Google Scholar] [CrossRef]
- Drouven, M.G.; Cafaro, D.C.; Grossmann, I.E. Stochastic Programming Models for Optimal Shale Well Development and Refracturing Planning under Uncertainty. AIChE J. 2016. [Google Scholar] [CrossRef]
- Tavallali, M.; Karimi, I.; Halim, A.; Baxendale, D.; Teo, K. Well placement, infrastructure design, facility allocation, and production planning in multireservoir oil fields with surface facility networks. Ind. Eng. Chem. Res. 2014, 53, 11033–11049. [Google Scholar] [CrossRef]
- Brouwer, D.; Jansen, J. Dynamic optimization of water flooding with smart wells using optimal control theory. SPE J. 2004, 9, 391–402. [Google Scholar] [CrossRef]
- Sarma, P.; Aziz, K.; Durlofsky, L.J. Implementation of Adjoint Solution for Optimal Control of Smart wells. In Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, TX, USA, 31 January–2 Feburary 2005; Society of Petroleum Engineers: The Woodlands, TX, USA, 2005. [Google Scholar]
- Forouzanfar, F.; Reynolds, A.C.; Li, G. Optimization of the well locations and completions for vertical and horizontal wells using a derivative-free optimization algorithm. J. Pet. Sci. Eng. 2012, 86, 272–288. [Google Scholar] [CrossRef]
- Sefat, M.H.; Salahshoor, K.; Jamialahmadi, M.; Vahdani, H. The Development of Techniques for the Optimization of Water-flooding Processes in Petroleum Reservoirs Using a Genetic Algorithm and Surrogate Modeling Approach. Energy Sources Part A Recovery Util. Environ. Effects 2014, 36, 1175–1185. [Google Scholar] [CrossRef]
- Isebor, O.J.; Durlofsky, L.J. Biobjective optimization for general oil field development. J. Pet. Sci. Eng. 2014, 119, 123–138. [Google Scholar] [CrossRef]
- Isebor, O.J.; Durlofsky, L.J.; Ciaurri, D.E. A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci. 2014, 18, 463–482. [Google Scholar] [CrossRef]
- Lei, Y.; Li, S.; Zhang, X.; Zhang, Q.; Guo, L. Optimal Control of Polymer Flooding Based on Maximum Principle. J. Appl. Math. 2012, 2012, 987975. [Google Scholar] [CrossRef]
- Van Doren, J.; Douma, S.G.; Wassing, L.B.M.; Kraaijevanger, J.; De Zwart, A.H. Adjoint-Based Optimization of Polymer Flooding. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–21 July 2011; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Namdar Zanganeh, M.; Kraaijevanger, J.; Buurman, H.; Jansen, J.; Rossen, W. Adjoint-Based Optimization of a Foam EOR Process. In Proceedings of the ECMOR 13th European Conference on the Mathematics of Oil Recovery, Biarritz, France, 10–13 September 2012. [Google Scholar]
- Mehos, G.J.; Ramirez, W.F. Use of Optimal Control Theory to Optimize Carbon Dioxide Miscible-Flooding Enhanced Oil Recovery. J. Pet. Sci. Eng. 1989, 2, 247–260. [Google Scholar] [CrossRef]
- Shurong, L.; Yang, L.; Xiaodong, Z.; Qiang, Z. Optimal Control Solving of Polymer Flooding Based on a Hybrid Genetic Algorithm. In Proceedings of the IEEE 2010 29th Chinese Control Conference (CCC), Beijing, China, 29–31 July 2010; pp. 5194–5198. [Google Scholar]
- Hui, Z.; Yang, L.; Lin, C. A quantitative mathematic model for polymer flooding water-cut variation. Pet. Explor. Dev. 2010, 37, 737–742. [Google Scholar]
- Ali Ahmadi, M.; Zendehboudi, S.; Lohi, A.; Elkamel, A.; Chatzis, I. Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys. Prospect. 2013, 61, 582–598. [Google Scholar] [CrossRef]
- Sayyad, H.; Manshad, A.K.; Rostami, H. Application of hybrid neural particle swarm optimization algorithm for prediction of MMP. Fuel 2014, 116, 625–633. [Google Scholar] [CrossRef]
- Gates, I.; Chakrabarty, N. Optimization of steam assisted gravity drainage in McMurray reservoir. J. Can. Pet. Technol. 2006, 45, 54–62. [Google Scholar] [CrossRef]
- Zhao, D.W.; Wang, J.; Gates, I.D. Optimized solvent-aided steam-flooding strategy for recovery of thin heavy oil reservoirs. Fuel 2013, 112, 50–59. [Google Scholar] [CrossRef]
- Yong, L.J.; Liu, M.J.; Hanqiao, Z.W.J. Optimizing injection parameters of polymer flooding in offshore oilfields by combining surrogate model and genetic algorithm. China Offshore Oil Gas 2012, 4, 009. [Google Scholar]
- Lei, Y.; Li, S.; Zhang, X.; Zhang, Q.; Guo, L. Optimal control of polymer flooding based on mixed-integer iterative dynamic programming. Int. J. Control 2011, 84, 1903–1914. [Google Scholar] [CrossRef]
- Ekkawong, P. Multiobjective Design and Optimization of Polymer Flood Performance. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2013. [Google Scholar]
- Al-Gosayir, M.; Babadagli, T.; Leung, J.Y.W. Optimization of Solvent Additive SAGD Applications using Hybrid Optimization Techniques. In Proceedings of the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–21 July 2011; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Emera, M.K.; Sarma, H.K. Use of Genetic Algorithm to Predict Minimum Miscibility Pressure (MMP) Between Flue Gases and Oil in Design of Flue Gas Injection Project. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Kingdom of Bahrain, 12–15 March 2005; Kingdom of Bahrain Society of Petroleum Engineers: Kingdom of Bahrain, 2005. [Google Scholar]
- Dehghani, S.M.; Sefti, M.V.; Ameri, A.; Kaveh, N.S. Minimum miscibility pressure prediction based on a hybrid neural genetic algorithm. Chem. Eng. Res. Des. 2008, 86, 173–185. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Yang, D.; Tontiwachwuthikul, P. Optimal parametric design for water-alternating-gas (WAG) process in a CO2-miscible flooding reservoir. J. Can. Pet. Technol. 2010, 49, 75–82. [Google Scholar] [CrossRef]
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust. Sci. 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Horowitz, B.; Guimarães, L.J.D.N.; Dantas, V.; Afonso, S.M.B. A concurrent efficient global optimization algorithm applied to polymer injection strategies. J. Pet. Sci. Eng. 2010, 71, 195–204. [Google Scholar] [CrossRef]
- Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Dixon, T.; Yamaji, K.; van t Veld, K.; Mason, C.F.; Leach, A. The Economics of CO2 Sequestration through Enhanced Oil Recovery. Energy Proc. 2013, 37, 6909–6919. [Google Scholar]
- Jahangiri, H.R.; Zhang, D. Ensemble based co-optimization of carbon dioxide sequestration and enhanced oil recovery. Int. J. Greenh. Gas Control 2012, 8, 22–33. [Google Scholar] [CrossRef]
- Chen, Y.; Oliver, D.S. Ensemble-Based Closed-Loop Optimization Applied to Brugge Field. SPE Reserv. Eval. Eng. 2010, 2013, 56–71. [Google Scholar] [CrossRef]
- Rwechungura, R.W.; Suwartadi, E.; Dadashpour, M.; Kleppe, J.; Foss, B.A. The Norne Field Case—A Unique Comparative Case Study. SPE Intell. Energy Conf. Exhib. 2013. [Google Scholar] [CrossRef]
- Rwechungura, R.; Bhark, E.; Miljeteig, O.T.; Suman, A.; Kourounis, D.; Foss, B.; Hoierand, L.; Kleppe, J. Results of the First Norne Field Case on History Matching and Recovery Optimization Using Production and 4D Seismic Data. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012; Society of Petroleum Engineers: San Antonio, TX, USA, 2012. [Google Scholar]
- Chen, Y.; Oliver, D.S. History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 2014, 17, 244–256. [Google Scholar] [CrossRef]
- Suman, A.; Fernández-Martínez, J.L.; Mukerji, T. Joint Inversion of Time-Lapse Seismic and Production Data for Norne Field. In Proceedings of the 2011 SEG Annual Meeting, San Antonio, TX, USA, 18–23 September 2011; Society of Exploration Geophysicists: San Antonio, TX, USA, 2011. [Google Scholar]
- Hedengren, J.D.; Shishavan, R.A.; Powell, K.M.; Edgar, T.F. Nonlinear modeling, estimation and predictive control in APMonitor. Comput. Chem. Eng. 2014, 70, 133–148. [Google Scholar] [CrossRef]
- Cao, F. Development of a Two-Phase Flow Coupled. Ph.D. Dissertation, University of Texas at Austin, Austin, TX, USA, 2014. [Google Scholar]
Manual Tuning of Parameters |
---|
(+) Fast individual trial solutions |
(−) Difficult to estimate uncertainty |
(−) Requires more manpower than automated methods |
(−) Inefficient for complex reservoirs |
Evolutionary Optimization |
(+) Suitable for discrete variables and parameters |
(+) Appropriate for non-Gaussian distributions |
(+) Easy implementation in many simulators |
(+) Useful for non-convex systems with multiple local optima |
(+) Ability to estimate parameters of stochastic systems |
(−) Convergence speed |
(−) Not suitable for large systems |
Ensemble Kalman Filter |
(+) Highly parallelizable |
(+) Handling system nonlinearity |
(+) Uncertainty assessment is a byproduct of assimilation |
(−) Frequently underestimates uncertainty |
(−) Not easily adaptable to discrete variables |
(−) Computationally expensive |
Adjoint Method |
(+) Fast Convergence |
(+) Efficient for single history matches |
(−) Requires access to simulator source code |
(−) Not applicable with discrete variables |
(−) Deterministic solution with no uncertainty assessment |
(−) Finds a locally optimal solution, needs good initial guess |
(−) Not easily adaptable to various reservoir simulators |
Adjoint Method [23,86,87,88,89,90,91,92,131,132,133,137,138,139,140] |
---|
(+) Faster convergence than stochastic methods |
(+) Efficient for large fields with many injectors |
(−) More likely to converge on local optimum than stochastic methods |
(−) Difficult to implement in discrete, nonlinear solution spaces |
Particle Swarm Optimization [100,101,102,103,104,105,118,125,126,135,136,141,142,143,144] and |
Simulated Annealing [107,108,109,116,117,145,146] |
(+) Incorporate discrete decision variables |
(+) Faster convergence than evolutionary algorithms for nonlinear problems |
(−) Less efficient than adjoint methods |
(−) Must combine multiple objectives into a weighted single objective |
Genetic Algorithm [40,85,95,96,97,98,99,106,113,114,115,116,134,141,143,145,147,148,149,150,151,152,153] |
(+) Allows discrete decision variables and multiple objectives |
(+) Customized optimizer implementation for complex fields |
(−) Generally less efficient than PSO and SA |
(−) Tuning the optimizer is more challenging |
SPE Study | Area of Focus |
---|---|
1 | Three Dimensional Black Oil Reservoir Simulation Problem |
2 | A Three Phase Coning Study |
3 | Gas Cycling of Retrograde Condensate |
4 | Steam Injection Simulation |
5 | Miscible Flood Simulation |
6 | Dual Porosity Simulation |
7 | Modeling Horizontal Wells in Reservoir Simulation |
8 | Gridding Techniques in Reservoir Simulation |
9 | Black Oil Simulation (re-evaluation of SPE01) |
10 | Upscaling Techniques |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udy, J.; Hansen, B.; Maddux, S.; Petersen, D.; Heilner, S.; Stevens, K.; Lignell, D.; Hedengren, J.D. Review of Field Development Optimization of Waterflooding, EOR, and Well Placement Focusing on History Matching and Optimization Algorithms. Processes 2017, 5, 34. https://doi.org/10.3390/pr5030034
Udy J, Hansen B, Maddux S, Petersen D, Heilner S, Stevens K, Lignell D, Hedengren JD. Review of Field Development Optimization of Waterflooding, EOR, and Well Placement Focusing on History Matching and Optimization Algorithms. Processes. 2017; 5(3):34. https://doi.org/10.3390/pr5030034
Chicago/Turabian StyleUdy, Jackson, Brigham Hansen, Sage Maddux, Donald Petersen, Spencer Heilner, Kevin Stevens, David Lignell, and John D. Hedengren. 2017. "Review of Field Development Optimization of Waterflooding, EOR, and Well Placement Focusing on History Matching and Optimization Algorithms" Processes 5, no. 3: 34. https://doi.org/10.3390/pr5030034
APA StyleUdy, J., Hansen, B., Maddux, S., Petersen, D., Heilner, S., Stevens, K., Lignell, D., & Hedengren, J. D. (2017). Review of Field Development Optimization of Waterflooding, EOR, and Well Placement Focusing on History Matching and Optimization Algorithms. Processes, 5(3), 34. https://doi.org/10.3390/pr5030034