Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.1.1. Fluid–Solid Coupling Similarity Theory
2.1.2. Similar-Material Components
2.2. Methodology
2.2.1. Orthogonal Test Schemes of Similar-Material Proportion
2.2.2. Fabricating Specimens
- (1)
- Aggregate, cementing agent and regulator were weighed proportionately.
- (2)
- The aggregate and cement were mixed evenly, followed by adding water 0.5 times of cement.
- (3)
- Vaseline was heated to a liquid state and poured into the above mixture.
- (4)
- Antiwear hydraulic oil was added and stirred.
- (5)
- The well-mixed materials were loaded into a mold and compacted. The mold for testing specimen tensile strength is a PVC tube with a height of 25 mm and an inner diameter of 45 mm (Figure 2h).
- (6)
- Demolded and labeled, specimens were maintained for three days at room temperature.
2.2.3. Testing Index Parameters of Specimens
3. Results and Discussion
3.1. Results
3.1.1. Density Analysis
3.1.2. Compressive Strength Analysis
3.1.3. Tensile Strength Analysis
3.1.4. Permeability Coefficient Analysis
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, Z.K.; Lu, D.R.; Nakayama, H.; Xi, J.H.; Sun, J.S. Developement and applicaiton of new technology for 3D geomechanical model test of large underground houses. Chin. J. Rock Mech. Eng. 2003, 22, 1430–1436. [Google Scholar]
- Cui, X.M.; Miu, X.X.; Su, D.G.; Ma, W.M. Error analysis in similar material simulation test of the movement of rock strata and surface. Chin. J. Rock Mech. Eng. 2002, 21, 1827–1830. [Google Scholar]
- Chapman, D.N.; Ahn, S.K.; Hunt, D.V.L.; Chan, A.H.C. The Use of Model Tests to Investigate the Ground Displacements Associated with Multiple Tunnel Construction in Soil. Tunn. Undergr. Space Technol. 2006, 21, 413. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, J.; Seo, Y.; Hong, C. Effect of a Fault and Weak Plane on the Stability of a Tunnel in Rock—A Scaled Model Test and Numerical Analysis. Int. J. Rock Mech. Min. 2004, 41, 658–663. [Google Scholar] [CrossRef]
- Fumagalli, E. Statical and Geomechanical Model; Springer: New York, NY, USA, 1973; pp. 25–36. [Google Scholar]
- Kim, S.H.; Burd, H.J. Model testing of closely spaced tunnels in clay. Geotechnique 1998, 48, 375–388. [Google Scholar] [CrossRef]
- Gu, D.Z. Similar Materials and Similar Models; China University of Mining and Technology Press: Xuzhou, China, 1995. [Google Scholar]
- Fu, X.M.; Deng, R.G. Indoor Rock Mechanics Test; Southwest Jiao Tong University Press: Chengdu, China, 2012; pp. 56–58. [Google Scholar]
- Chen, S.J.; Wang, H.L.; Zhang, J.W.; Xing, H.L.; Wang, H.L. Experimental study on low-strength similar-material proportioning and properties for coal mining. Adv. Mater. Sci. Eng. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Chen, S.J.; Wang, H.L.; Zhang, J.W.; Xing, H.L.; Wang, H.L. Low-Strength Similar Materials for Backfill Mining: Insight from Experiments on Components and Influence Mechanism. Geotech. Test. J. 2015, 38, 929–935. [Google Scholar] [CrossRef]
- Chen, L.W.; Bai, S.W. Proportioning test study on similar of rock burst tendency of brittle rock mass. Rock Soil Mech. 2006, 27, 1050–1054. [Google Scholar]
- Meguid, M.A.; Saada, O.; Nunes, M.A.; Mattar, J. Physical modeling of tunnels in soft ground: A review. Tunn. Undergr. Space Technol. 2008, 23, 185–198. [Google Scholar] [CrossRef]
- Wu, B.T.; Zhu, H.H.; Xu, W.Q.; Ming, T. Research study of similar material for weak surrounding rock mass of class IV. Rock Soil Mech. 2013, 34, 109–116. [Google Scholar]
- Zhang, Q.Y.; Li, S.C.; Guo, X.H.; Li, Y.; Wang, H.P. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application. Rock Soil Mech. 2008, 29, 2126–2130. [Google Scholar]
- Zhang, Q.Y.; Liu, D.J.; Jia, C.; Shen, X.; Liu, J.; Duan, K. Development of geomechanical model similitude material for salt rock oil-gas storage medium. Rock Soil Mech. 2009, 30, 3581–3586. [Google Scholar]
- Zhang, S.T.; Dai, L.C.; Wang, B.; Cao, Y. Experiment study on mixture ratio of similar material for simulation of coal and gas outburst. Coal Sci. Technol. 2015, 43, 76–81. [Google Scholar]
- Liu, J.H.; Li, W.X.; Liu, Y.S.; Liu, B.G. A method for determining the ratio of similar material to simulate porous water-bearing stratum. Rock Soil Mech. 2018, 39, 657–664. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, G.; Tao, Y.Q.; Liu, X.; Feng, D.; Li, R. Proportioning experiment of similar material for coal and rock model test. Coal Geol. Explor. 2018, 46, 119–124. [Google Scholar]
- Zha, J.F.; Li, H.Z.; Guo, G.L.; Wang, J.T. Influence of temperature and humidity on similar material and its control measures. Environ. Earth Sci. 2017, 76, 740. [Google Scholar] [CrossRef]
- Li, H.Z.; Guo, G.L.; Zha, J.F. Study on time-varying characteristics of similar material model strength and the regulation measures. Environ. Earth Sci. 2017, 76, 518. [Google Scholar] [CrossRef]
- Li, L.J.; Qian, M.G.; Yin, Y.Q. Simulation of similar materials for water inrush from coal floor. Coal Geol. Explor. 1996, 25, 33–36. [Google Scholar]
- Sun, W.B.; Zhang, S.C.; Li, Y.Y.; Lu, C. Development application of solid-fluid coupling similar material for floor strata and simulation test of water-inrush in deep mining. Chin. J. Rock Mech. Eng. 2015, 31, 2665–2670. [Google Scholar]
- Sun, W.B.; Zhang, S.C.; Guo, W.J.; Liu, W.T. Physical simulation of high-pressure water inrush through the floor of a deep mine. Mine Water Environ. 2017, 36, 542–549. [Google Scholar] [CrossRef]
- Chen, J.T.; Yin, L.M.; Sun, W.B.; Lu, C.; Zhang, S.C.; Sun, X.Z. Development and application for new solid-fluid coupling similar material of deep floor aquifuge. Chin. J. Rock Mech. Eng. 2015, 34, 3956–3964. [Google Scholar]
- Li, S.C.; Feng, X.D.; Li, S.C.; Li, L.P.; Li, G.Y. Research and development of a new similar material for solid-fluid coupling and its application. Chin. J. Rock Mech. Eng. 2010, 29, 281–288. [Google Scholar]
- Li, S.C.; Zhou, Y.; Li, L.P.; Zhang, J.; Song, S.G. Development and application of a new similar material for underground engineering fluid-solid coupling model test. Chin. J. Rock Mech. Eng. 2012, 31, 1128–1137. [Google Scholar]
- Yu, L.Y.; Jing, H.W.; Xu, B.S.; Wang, Y.C. Solid-fluid coupling analogous material test for subsea tunnel. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 983–990. [Google Scholar] [CrossRef]
- Wang, H. The Development and Application of Solid-Liquid Coupling Similar Stimulation Non-Hydrophilic Material for Water-Protection Mining. Master’s Thesis, China University of Mining and Technology, Xuzhou, China, 2015. [Google Scholar]
- Wang, K.; Li, S.C.; Zhang, Q.S.; Zhang, X.; Li, L.P. Development and application of new similar materials of surrounding rock for a fluid-solid coupling model test. Rock Soil Mech. 2016, 37, 2521–2533. [Google Scholar] [CrossRef]
- Zhao, B.; Wen, G.C.; Sun, H.T.; Sun, D.L.; Yang, H.M.; Cao, J.; Dai, L.C.; Wang, B. Similarity criteria and coal-like material in coal and gas outburst physical simulation. Int. J. Coal Sci. Technol. 2018, 5, 167–178. [Google Scholar] [CrossRef]
- Hu, Y.Q.; Zhao, Y.S.; Yang, D. Simulation theory & method of 3D solid-liquid coupling. J. Liaoning Tech. Univ. 2007, 26, 204–206. [Google Scholar]
- Wang, W.Z. Design and Analysis of Experiments; Higher Education Press: Beijing, China, 2004; pp. 23–25. [Google Scholar]
- Gao, R.; Yan, H.; Ju, F.; Mei, X.C.; Wang, X.L. Influential factors and control of water inrush in a coal seam as the main aquifer. Int. J. Min. Sci. Technol. 2018, 28, 187–193. [Google Scholar] [CrossRef]
- Guo, Z.G. Methods of Social Statistics: Application of SPSS Software; Renmin University of China Press: Beijing, China, 1999. [Google Scholar]
- Li, K.; Li, H.F. Response characteristics analysis of mine water filled structure with ground-tunnel transient electromagnetic method. J. China Univ. Sci. Technol. 2018, 47, 1113–1122. [Google Scholar]
- Wu, R.A.; Wei, Y.J.; Ji, C.L. Analysis of deformation mechanism of slope with soft and hard rock inter-bedded structure in Three Gorges reservoir area: A case study of Xiangcheng elementary school in Yunyang. J. Catastrophol. 2018, 33, 212–217. [Google Scholar] [CrossRef]
- Cao, P.; Wang, H.; Jin, J.; Hao, R.Q.; Fan, W.C. Experimental study of the fracture failure of sandstone containing hole and fissure under seepage water pressure. J. China Univ. Sci. Technol. 2018, 47, 240–246. [Google Scholar]
- Esposito, L.; Esposito, A.W.; Pasculli, A.; Sciarra, N. Particular features of the physical and mechanical characteristics of certain Phlegraean pyroclastic soils. Catena 2013, 104, 186–194. [Google Scholar] [CrossRef]
- Pasculli, A.; Sciarra, N.; Esposito, L.; Esposito, A.W. Effects of wetting and drying cycles on mechanical proprerties of pyroclastic soils. Catena 2017, 156, 113–123. [Google Scholar] [CrossRef]
- Cao, R.H.; Lin, H.; Cao, P. Strength and failure characteristics of brittle jointed rock-like specimens under uniaxial compression: Digital speckle technology and a particle mechanics approach. Int. J. Min. Sci. Technol. 2018, 28, 669–677. [Google Scholar] [CrossRef]
- Peng, S.J.; Chen, C.C.; Xu, J.; Zhang, H.L.; Tang, Y.; Nie, W.; Zhao, K. Loading rate dependency of rock stress-strain curve based on Brazil splitting test. Chin. J. Rock Mech. Eng. 2018, 37, 3247–3252. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, F.Z.; Zhang, C.Q.; Xu, R.C.; Lu, J.J. Quantitative evaluation of rock brittleness based on stress-strain curve. Chin. J. Rock Mech. Eng. 2014, 33, 1114–1122. [Google Scholar]
- Wu, L.Y. Introduction to MINITAB Software: The Most Practical Statistical Analysis Tutorial; Higher Education Press: Beijing, China, 2012; pp. 78–81. [Google Scholar]
- Feng, H.Y. The influence of pressure and temperature on dispensing quantity in dispensing technology based on MINITAB regression analysis method. Commod. Qual. 2017, 9, 229–230. [Google Scholar]
Level | Factors | |||
---|---|---|---|---|
A (%) | B | C | D (%) | |
1 | 75 | 3:4 | 3:7 | 2 |
2 | 80 | 4:4 | 4:6 | 3 |
3 | 85 | 5:4 | 5:5 | 4 |
4 | 90 | 6:4 | 6:4 | 5 |
5 | 95 | 7:4 | 7:3 | 6 |
Schemes | A (%) | B | C | D (%) |
---|---|---|---|---|
S1 | 1 (75) | 1 (3:4) | 1 (3:7) | 1 (2) |
S2 | 1 | 2 (4:4) | 2 (4:6) | 2 (3) |
S3 | 1 | 3 (5:4) | 3 (5:5) | 3 (4) |
S4 | 1 | 4 (6:4) | 4 (6:4) | 4 (5) |
S5 | 1 | 5 (7:4) | 5 (7:3) | 5 (6) |
S6 | 2 (80) | 1 | 2 | 3 |
S7 | 2 | 2 | 3 | 4 |
S8 | 2 | 3 | 4 | 5 |
S9 | 2 | 4 | 5 | 1 |
S10 | 2 | 5 | 1 | 2 |
S11 | 3 (85) | 1 | 3 | 5 |
S12 | 3 | 2 | 4 | 1 |
S13 | 3 | 3 | 5 | 2 |
S14 | 3 | 4 | 1 | 3 |
S15 | 3 | 5 | 2 | 4 |
S16 | 4 (90) | 1 | 4 | 2 |
S17 | 4 | 2 | 5 | 3 |
S18 | 4 | 3 | 1 | 4 |
S19 | 4 | 4 | 2 | 5 |
S20 | 4 | 5 | 3 | 1 |
S21 | 5 (95) | 1 | 5 | 4 |
S22 | 5 | 2 | 1 | 5 |
S23 | 5 | 3 | 2 | 1 |
S24 | 5 | 4 | 3 | 2 |
S25 | 5 | 5 | 4 | 3 |
Schemes | σc (MPa) | PrePEM (MPa) | PostPEM (MPa) | BB | σt (MPa) | RTC | ρ (g/cm3) | K (cm/s) |
---|---|---|---|---|---|---|---|---|
S1 | 0.268 | 24.15 | 9.05 | 2.67 | 0.028 | 1/9.6 | 1.766 | 3.15 × 10−5 |
S2 | 0.228 | 22.39 | 10.38 | 2.16 | 0.021 | 1/10.9 | 1.761 | 2.08 × 10−5 |
S3 | 0.250 | 23.06 | 9.00 | 2.56 | 0.025 | 1/10.0 | 1.884 | 2.95 × 10−4 |
S4 | 0.278 | 24.55 | 9.15 | 2.68 | 0.026 | 1/10.7 | 1.879 | 2.85 × 10−6 |
S5 | 0.461 | 40.31 | 14.21 | 2.84 | 0.048 | 1/9.6 | 1.832 | 1.23 × 10−6 |
S6 | 0.272 | 24.38 | 9.33 | 2.61 | 0.024 | 1/11.3 | 1.778 | 1.09 × 10−4 |
S7 | 0.400 | 43.92 | 15.17 | 2.90 | 0.033 | 1/12.1 | 1.851 | 2.58 × 10−6 |
S8 | 0.435 | 51.20 | 19.89 | 2.57 | 0.042 | 1/10.4 | 1.886 | 8.79 × 10−5 |
S9 | 0.859 | 103.13 | 43.00 | 2.40 | 0.095 | 1/9.1 | 1.892 | 3.25 × 10−6 |
S10 | 0.472 | 45.18 | 16.09 | 2.81 | 0.050 | 1/9.4 | 1.939 | 2.06 × 10−6 |
S11 | 0.500 | 55.23 | 18.79 | 2.94 | 0.045 | 1/11.1 | 1.731 | 8.13 × 10−5 |
S12 | 1.005 | 98.76 | 34.58 | 2.86 | 0.101 | 1/10.0 | 1.837 | 8.45 × 10−6 |
S13 | 1.103 | 112.40 | 42.00 | 2.68 | 0.099 | 1/11.1 | 1.843 | 1.25 × 10−7 |
S14 | 0.521 | 39.87 | 15.05 | 2.65 | 0.046 | 1/11.3 | 1.809 | 5.17 × 10−5 |
S15 | 0.365 | 40.26 | 16.35 | 2.46 | 0.040 | 1/9.1 | 1.792 | 3.09 × 10−5 |
S16 | 0.910 | 106.90 | 40.61 | 2.63 | 0.080 | 1/11.4 | 1.895 | 2.00 × 10−7 |
S17 | 1.223 | 121.20 | 49.88 | 2.43 | 0.102 | 1/12.0 | 1.894 | 1.56 × 10−7 |
S18 | 0.538 | 40.26 | 16.35 | 2.46 | 0.053 | 1/10.2 | 1.728 | 4.25 × 10−5 |
S19 | 0.502 | 42.29 | 17.23 | 2.45 | 0.053 | 1/9.5 | 1.755 | 8.09 × 10−6 |
S20 | 0.786 | 55.23 | 18.79 | 2.94 | 0.070 | 1/11.2 | 1.786 | 1.02 × 10−6 |
S21 | 1.311 | 135.60 | 52.40 | 2.59 | 0.111 | 1/11.8 | 1.736 | 8.79 × 10−8 |
S22 | 0.531 | 39.83 | 15.05 | 2.65 | 0.057 | 1/9.3 | 1.798 | 7.59 × 10−6 |
S23 | 0.656 | 45.92 | 17.17 | 2.67 | 0.058 | 1/11.3 | 1.722 | 9.93 × 10−5 |
S24 | 0.715 | 66.20 | 29.20 | 2.23 | 0.079 | 1/9.1 | 1.725 | 1.21 × 10−6 |
S25 | 1.116 | 108.69 | 43.60 | 2.49 | 0.101 | 1/11.1 | 1.722 | 2.29 × 10−7 |
Factors | A | B | C | D | Sum of Test Results | |
---|---|---|---|---|---|---|
ρ | K1 | 9.122 | 8.906 | 9.040 | 9.003 | ∑ = 45.241 |
K2 | 9.346 | 9.141 | 8.808 | 9.163 | ||
K3 | 9.013 | 9.063 | 8.977 | 9.087 | ||
K4 | 9.058 | 9.060 | 9.219 | 8.986 | ||
K5 | 8.703 | 9.071 | 9.197 | 9.002 | ||
K1-a | 1.824 | 1.781 | 1.808 | 1.801 | ||
K2-a | 1.869 | 1.828 | 1.762 | 1.833 | ||
K3-a | 1.803 | 1.813 | 1.795 | 1.817 | ||
K4-a | 1.812 | 1.812 | 1.844 | 1.797 | ||
K5-a | 1.741 | 1.814 | 1.839 | 1.800 | ||
R | 0.128 | 0.047 | 0.082 | 0.036 | ||
σc | K1 | 1.485 | 3.261 | 2.330 | 3.574 | ∑ = 20.705 |
K2 | 2.438 | 3.387 | 2.023 | 3.428 | ||
K3 | 3.494 | 2.982 | 2.651 | 3.382 | ||
K4 | 3.959 | 2.875 | 3.744 | 2.892 | ||
K5 | 4.329 | 3.200 | 4.957 | 2.429 | ||
K1-a | 0.297 | 0.652 | 0.466 | 0.715 | ||
K2-a | 0.488 | 0.677 | 0.405 | 0.686 | ||
K3-a | 0.699 | 0.596 | 0.530 | 0.676 | ||
K4-a | 0.792 | 0.575 | 0.749 | 0.578 | ||
K5-a | 0.866 | 0.640 | 1.191 | 0.686 | ||
R | 0.378 | 0.102 | 0.586 | 0.229 | ||
σt | K1 | 0.148 | 0.288 | 0.234 | 0.352 | ∑ = 1.487 |
K2 | 0.244 | 0.314 | 0.196 | 0.329 | ||
K3 | 0.331 | 0.277 | 0.252 | 0.298 | ||
K4 | 0.358 | 0.299 | 0.350 | 0.263 | ||
K5 | 0.406 | 0.309 | 0.455 | 0.245 | ||
K1-a | 0.0296 | 0.0576 | 0.0468 | 0.0704 | ||
K2-a | 0.0488 | 0.0628 | 0.0392 | 0.0658 | ||
K3-a | 0.0662 | 0.0554 | 0.0504 | 0.0596 | ||
K4-a | 0.0716 | 0.0598 | 0.07 | 0.0526 | ||
K5-a | 0.0812 | 0.0618 | 0.091 | 0.049 | ||
R | 0.0516 | 0.0074 | 0.0518 | 0.0214 | ||
K | K1 | 3.51 × 10−4 | 2.22 × 10−4 | 1.35 × 10−4 | 1.44 × 10−4 | ∑ = 1.19 × 10−3 |
K2 | 2.05 × 10−4 | 3.96 × 10−5 | 2.68 × 10−4 | 2.44 × 10−5 | ||
K3 | 1.72 × 10−4 | 5.25 × 10−4 | 6.81 × 10−4 | 7.56 × 10−4 | ||
K4 | 5.20 × 10−5 | 6.71 × 10−5 | 9.96 × 10−5 | 7.89 × 10−5 | ||
K5 | 1.08 × 10−5 | 3.54 × 10−5 | 4.85 × 10−6 | 1.86 × 10−4 | ||
K1-a | 7.02 × 10−5 | 4.44 × 10−5 | 2.70 × 10−5 | 2.88 × 10−5 | ||
K2-a | 4.10 × 10−5 | 7.92 × 10−6 | 5.36 × 10−5 | 4.88 × 10−6 | ||
K3-a | 3.44 × 10−5 | 1.05 × 10−4 | 1.36 × 10−4 | 1.51 × 10−4 | ||
K4-a | 1.04 × 10−5 | 1.34 × 10−5 | 1.99 × 10−5 | 1.58 × 10−5 | ||
K5-a | 2.16 × 10−6 | 7.08 × 10−6 | 9.70 × 10−7 | 3.72 × 10−5 | ||
R | 7.00 × 10−5 | 9.79 × 10−5 | 1.35 × 10−4 | 1.46 × 10−4 |
Variance Sources | Free Degree | SeqSS | Adj SS | Adj MS | F | p |
---|---|---|---|---|---|---|
A | 4 | 0.042940 | 0.042940 | 0.010735 | 2.69 | 0.109 |
B | 4 | 0.005942 | 0.005942 | 0.001486 | 0.37 | 0.823 |
C | 4 | 0.022829 | 0.022829 | 0.005707 | 1.43 | 0.309 |
D | 4 | 0.004546 | 0.004546 | 0.001137 | 0.28 | 0.880 |
Error | 8 | 0.031966 | 0.031966 | 0.003996 |
Stratum | ρ (g/cm3) | σc (MPa) | σt (MPa) | K (cm/s) | |
---|---|---|---|---|---|
Mudstone | Protolith | 1.815 | 54.25 | 9.65 | 3.55 × 10−6 |
Model | 1.801 | 0.261 | 0.048 | 2.52 × 10−7 | |
Sandstone | Protolith | 1.903 | 92.30 | 16.25 | 1.69 × 10−5 |
Model | 1.893 | 0.458 | 0.081 | 1.20 × 10−6 |
Stratum | A (%) | B | C | D (%) | Sand: Calcium Carbonate: Talc Powder: White Cement: Vaseline: Antiwear Hydraulic Oil |
---|---|---|---|---|---|
Mudstone | 87.45 | 1.27 | 1.19 | 4.78 | 12.46:1.00:0.79:0.69:0.89:0.79 |
Sandstone | 75.32 | 1.43 | 1.74 | 3.65 | 5.19:1.00:0.70:0.51:0.29:0.29 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, W. Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. Processes 2018, 6, 211. https://doi.org/10.3390/pr6110211
Liu S, Liu W. Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. Processes. 2018; 6(11):211. https://doi.org/10.3390/pr6110211
Chicago/Turabian StyleLiu, Shiliang, and Weitao Liu. 2018. "Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test" Processes 6, no. 11: 211. https://doi.org/10.3390/pr6110211
APA StyleLiu, S., & Liu, W. (2018). Experimental Development Process of a New Fluid–Solid Coupling Similar-Material Based on the Orthogonal Test. Processes, 6(11), 211. https://doi.org/10.3390/pr6110211