Multiresponse Optimization of Ultrasonic-Assisted Extraction for Aurantii Fructus to Obtain High Yield of Antioxidant Flavonoids Using a Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Chemicals, and Reagents
2.2. Optimal Extraction of AFs from ZQ
2.3. Determination of Flavonoid Yield
2.4. Analysis of Antioxidant Activity
2.5. Experimental RSM Design
2.6. Identification of AFs
2.7. Quality Evaluation of ZQ
3. Results and Discussion
3.1. Selection of Optimization Factors
3.1.1. Selection of Organic Solvent for Extraction
3.1.2. Selection of Sieves
3.1.3. Selection of Extraction Time
3.1.4. Selection of Extraction Temperature
3.2. Optimization of Extraction Conditions Using RSM
3.3. Effect of Extraction Conditions on Flavonoid Yield and Antioxidant Activity
3.4. Response Surface Analysis
3.5. Theoretical Extraction Conditions and Verification
3.6. Identification of AFs from ZQ
3.7. Quality Evaluation of ZQ
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wai Chon Ng, H.H. From medicine to food: Evolution of TCM health food sector in China. Int. J. Transit. Innov. Syst. 2014, 3, 16. [Google Scholar]
- Xu, Q.; Shen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Application of response surface methodology to optimise extraction of flavonoids from fructus sophorae. Food Chem. 2013, 138, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, W.; Chen, G.; Luo, Y. Optimization of Extraction Conditions for Maximal Phenolic, Flavonoid and Antioxidant Activity from Melaleuca bracteata Leaves Using the Response Surface Methodology. PLoS ONE 2016, 11, e0162139. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopoeia of the People Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2015.
- Lin, Z.; Wang, H.; Xu, Y.; Dong, J.; Hashi, Y.; Chen, S. Identification of antioxidants in Fructus aurantii and its quality evaluation using a new on-line combination of analytical techniques. Food Chem. 2012, 134, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Z.; Wang, W.; Sooranna, S.R.; Shi, Y.; Chen, Y.; Wu, C.; Zeng, J.; Tang, Q.; Xie, H. Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods. Molecules 2018, 23, 2189. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cheng, P.; Wang, W.; Yan, S.; Tang, Q.; Liu, D.; Xie, H. Rapid Investigation and Screening of Bioactive Components in Simo Decoction via LC-Q-TOF-MS and UF-HPLC-MD Methods. Molecules 2018, 23, 1792. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zeng, S.L.; Duan, L.; Ma, X.D.; Dou, L.L.; Wang, L.J.; Li, P.; Bi, Z.M.; Liu, E.H. Comparison of Aurantii Fructus Immaturus and Aurantii Fructus based on multiple chromatographic analysis and chemometrics methods. J. Chromatogr. A 2016, 1469, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Y.; Liu, Z.L.; Shu, Y.S.; Wang, M.L.; He, D.; Song, Z.Q.; Zeng, H.L.; Ning, Z.C.; Lu, C.; Lu, A.P.; et al. Chemotaxonomic Classification Applied to the Identification of Two Closely-Related Citrus TCMs Using UPLC-Q-TOF-MS-Based Metabolomics. Molecules 2017, 22, 1721. [Google Scholar] [CrossRef]
- He, Y.; Zhu, S.; Wu, C.; Lu, Y.; Tang, Q. Bioactivity-Guided Separation of Potential D2 Dopamine Receptor Antagonists from Aurantii Fructus based on Molecular Docking Combined with High-Speed Counter-Current Chromatography. Molecules 2018, 23, 3135. [Google Scholar] [CrossRef]
- Liu, X.Y.; Fan, M.L.; Wang, H.Y.; Yu, B.Y.; Liu, J.H. Metabolic profile and underlying improved bio-activity of Fructus aurantii immaturus by human intestinal bacteria. Food Funct. 2017, 8, 2193–2201. [Google Scholar] [CrossRef]
- Su, M.S.; Shyu, Y.T.; Chien, P.J. Antioxidant activities of citrus herbal product extracts. Food Chem. 2008, 111, 892–896. [Google Scholar] [CrossRef]
- Tan, W.; Li, Y.; Wang, Y.; Zhang, Z.; Wang, T.; Zhou, Q.; Wang, X. Anti-coagulative and gastrointestinal motility regulative activities of Fructus Aurantii Immaturus and its effective fractions. Biomed. Pharmacother. 2017, 90, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Kim, J.H.; Cho, C.; Chung, H.S.; Kang, C.W.; Kim, Y.; Shin, M.; Hong, M.; Bae, H. Anti-ischemic effect of Aurantii Fructus on contractile dysfunction of ischemic and reperfused rat heart. J. Ethnopharmacol. 2007, 111, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Jia, W.; Zeng, Y.E.; Cao, C.; Wang, S.L. Optimal extracting conditions for flavonoids in Fructus Aurantii Immaturus with central composite design and response surface method. Chin. J. Pharm. Anal. 2012, 32, 5. [Google Scholar]
- Mohamed Mahzir, K.A.; Abd Gani, S.S.; Hasanah Zaidan, U.; Halmi, M.I.E. Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties. Molecules 2018, 23, 724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Xing, R.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. Polymethoxylated flavones metabolites in rat plasma after the consumption of Fructus aurantii extract: Analysis by liquid chromatography/electrospray ion trap mass spectrometry. J. Pharm. Biomed. Anal. 2008, 46, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Jing, Y.; Liang, X.M. Rapid qualitative and quantitative analyses of flavanone aglycones in Fructus aurantii by HPLC ion-trap MS. J. Sep. Sci. 2007, 30, 858–867. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, W.; Liu, Z.; Zhang, Z.; Liu, C. Systematic Analysis of Main Constituents in Rat Biological Samples after Oral Administration of the Methanol Extract of Fructus Aurantii by HPLC-ESI-MS/MS. Iran. J. Pharm. Res. IJPR 2014, 13, 493–503. [Google Scholar]
- Tomaz, I.; Maslov, L.; Stupic, D.; Preiner, D.; Asperger, D.; Karoglan Kontic, J. Multi-response optimisation of ultrasound-assisted extraction for recovery of flavonoids from red grape skins using response surface methodology. Phytochem. Anal. PCA 2016, 27, 13–22. [Google Scholar] [CrossRef]
- Nipornram, S.; Tochampa, W.; Rattanatraiwong, P.; Singanusong, R. Optimization of low power ultrasound-assisted extraction of phenolic compounds from mandarin (Citrus reticulata Blanco cv. Sainampueng) peel. Food Chem. 2018, 241, 338–345. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, X. Method and application for dynamic comprehensive evaluation with subjective and objective information. PLoS ONE 2013, 8, e83323. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.M.; Karsani, S.A.; Banisalam, B.; Mohajer, S.; Abd Malek, S.N. Antioxidants, phytochemicals, and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl seeds. BioMed Res. Int. 2014, 2014, 410184. [Google Scholar] [CrossRef] [PubMed]
Factors | Factor Level | ||
---|---|---|---|
Coded levels | −1 | 0 | 1 |
A: Percentage of ethanol (%) | 40 | 60 | 80 |
B: Extraction temperature (°C) | 30 | 50 | 70 |
C: Extraction time (min) | 10 | 20 | 30 |
Std. | Run | A (%) | B (°C) | C (min) | Total Flavonoids (mg/g) | DPPH Scavenging (%) |
---|---|---|---|---|---|---|
7 | 1 | −1 | 0 | 1 | 208.95 | 55.45 |
9 | 2 | 0 | −1 | −1 | 217.19 | 58.07 |
1 | 3 | −1 | −1 | 0 | 229.66 | 53.85 |
10 | 4 | 0 | 1 | −1 | 232.18 | 59.78 |
4 | 5 | 1 | 1 | 0 | 215.29 | 58.45 |
17 | 6 | 0 | 0 | 0 | 235.11 | 58.92 |
3 | 7 | −1 | 1 | 0 | 232.24 | 58.09 |
6 | 8 | 1 | 0 | −1 | 211.85 | 59.28 |
2 | 9 | 1 | −1 | 0 | 218.87 | 58.17 |
8 | 10 | 1 | 0 | 1 | 213.07 | 59.34 |
16 | 11 | 0 | 0 | 0 | 235.94 | 59.56 |
14 | 12 | 0 | 0 | 0 | 235.70 | 58.36 |
11 | 13 | 0 | −1 | 1 | 234.40 | 57.31 |
15 | 14 | 0 | 0 | 0 | 229.99 | 58.50 |
12 | 15 | 0 | 1 | 1 | 228.62 | 58.74 |
13 | 16 | 0 | 0 | 0 | 240.65 | 59.89 |
5 | 17 | −1 | 0 | −1 | 221.54 | 55.02 |
Number | Compound | [M+H]+/[M−H]− | Frag. (ESI+) | MW | Formula |
---|---|---|---|---|---|
Flavanones | |||||
1 | Eriodictyol-7-O-rutinoside (eriocitrin) a | 597/595 | 435, 289 | 596 | C27H32O15 |
2 | Eriodictyol-7-O-neohesperidoside (neoeriocitrin) a | 597/595 | 435, 289 | 596 | C27H32O15 |
3 | Naringenin-7-O-rutinoside (narirutin) a | 581/579 | 419, 273 | 580 | C27H32O14 |
4 | Naringenin-7-O-neohesperidoside (naringin) a | 581/579 | 419, 273 | 580 | C27H32O14 |
5 | Hesperetin-7-O-rutinoside (hesperidin) a | 611/609 | 449, 303 | 610 | C28H34O15 |
6 | Hesperetin-7-O-neohesperidoside (neohesperidin) a | 611/609 | 449, 303 | 610 | C28H34O15 |
7 | Isosakuranetin-7-O-neohesperidoside (poncirin) a | 595/593 | 433, 287 | 594 | C28H34O14 |
Polymethoxyflavonoids (PMFs) | |||||
8 | 5,7,8,3′,4′-Pentamethoxyflavone (isosinensetin) | 373/— | 358, 343, 315 | 372 | C20H20O7 |
9 | 5,6,7,3′,4′-Pentamethoxyflavone (sinensetin) | 373/— | 358, 343, 312 | 372 | C20H20O7 |
10 | 5,6,7,8,3′,4′-Hexamethoxyflavone (nobiletin) a | 403/— | 373, 355, 327 | 402 | C21H22O8 |
11 | 3,5,6,7,8,3′,4′-Heptamethoxyflavone | 433/— | 403, 388, 385 | 432 | C22H24O9 |
12 | 5, 6, 7, 8, 4′-Pentamethoxyflavone (tangeretin) a | 373/— | 358, 325, 297 | 372 | C20H20O7 |
Evaluation Indexes | Intensity (σj) | Conflict (Rj) | Information (Cj) | Objective Weight (Wj) |
---|---|---|---|---|
Total flavonoids | 0.231 | 0.358 | 0.083 | 0.440 |
DPPH scavenging | 0.294 | 0.358 | 0.105 | 0.560 |
Samples | Region | Total Flavonoids (mg/g) | DPPH Scavenging (%) | Comprehensive Score | Ranking |
---|---|---|---|---|---|
S4 | Sanyantang, Yuangjiang | 356.53 | 75.34 | 97.33 | 1 |
S8 | Fuqiushan, Taojiang | 284.47 | 76.32 | 89.13 | 2 |
S6 | Chishanzhen, Yuangjiang | 264.36 | 79.11 | 88.63 | 3 |
S2 | Shijihu, Yuangjiang | 252.50 | 78.66 | 86.84 | 4 |
S9 | Heshanqu, Yiyang | 283.82 | 72.21 | 86.14 | 5 |
S11 | Nongda, Changsha | 277.24 | 71.82 | 85.05 | 6 |
S10 | Yangjixiang, Anren | 273.96 | 72.14 | 84.88 | 7 |
S7 | Longhushan, Yuangjiang | 249.72 | 74.54 | 83.58 | 8 |
S14 | Yanwanghuzhen, Hanshou | 242.64 | 75.77 | 83.58 | 9 |
S13 | Ningyuan, Yongzhou | 303.76 | 62.47 | 81.71 | 10 |
S15 | Bailuqiaozhen, Hanshou | 253.54 | 70.55 | 81.23 | 11 |
S5 | Tuanshanzhen, Yuangjiang | 231.88 | 74.06 | 81.04 | 12 |
S12 | Fenglinzhen, Lilin | 252.39 | 68.62 | 79.74 | 13 |
S16 | Xinning, Shaoyang | 212.36 | 61.70 | 69.88 | 14 |
S1 | Xinwanzhen, Yuangjiang | 182.99 | 55.25 | 61.69 | 15 |
S3 | Nanjuzhen, Yuangjiang | 151.23 | 51.24 | 54.94 | 16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Chen, Y.; Shi, Y.; Zhao, K.; Tan, H.; Zeng, J.; Tang, Q.; Xie, H. Multiresponse Optimization of Ultrasonic-Assisted Extraction for Aurantii Fructus to Obtain High Yield of Antioxidant Flavonoids Using a Response Surface Methodology. Processes 2018, 6, 258. https://doi.org/10.3390/pr6120258
He Y, Chen Y, Shi Y, Zhao K, Tan H, Zeng J, Tang Q, Xie H. Multiresponse Optimization of Ultrasonic-Assisted Extraction for Aurantii Fructus to Obtain High Yield of Antioxidant Flavonoids Using a Response Surface Methodology. Processes. 2018; 6(12):258. https://doi.org/10.3390/pr6120258
Chicago/Turabian StyleHe, Yingjie, Yun Chen, Yiting Shi, Kanghong Zhao, Haiyan Tan, Jianguo Zeng, Qi Tang, and Hongqi Xie. 2018. "Multiresponse Optimization of Ultrasonic-Assisted Extraction for Aurantii Fructus to Obtain High Yield of Antioxidant Flavonoids Using a Response Surface Methodology" Processes 6, no. 12: 258. https://doi.org/10.3390/pr6120258
APA StyleHe, Y., Chen, Y., Shi, Y., Zhao, K., Tan, H., Zeng, J., Tang, Q., & Xie, H. (2018). Multiresponse Optimization of Ultrasonic-Assisted Extraction for Aurantii Fructus to Obtain High Yield of Antioxidant Flavonoids Using a Response Surface Methodology. Processes, 6(12), 258. https://doi.org/10.3390/pr6120258