Polyphenols from Red Vine Leaves Using Alternative Processing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Red Vine Leaves and Chemicals
2.2. Folin–Ciocalteu Assay
2.3. Extraction Apparatus
2.4. Alternative Extraction Techniques
2.5. Mass Transfer
3. Results and Discussion
3.1. Laboratory Robot
3.2. Nonconventional Processing Techniques
3.3. Comparison of Nonconventional Processing Techniques
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Surface area of red vine leaves () | |
Polyphenol concentration in the bulk (g/L) | |
Polyphenol concentration considering the to ratio | |
Polyphenol concentration at pseudo-equilibrium (g/L) | |
Effective diffusion coefficient | |
Electric field strength | |
Current | |
Diffusive mass flux | |
Weight of the bulk | |
Weight of the red vine leaves | |
Weight of the methanol bulk | |
Weight of the water bulk | |
Power | |
Electric power () | |
Resistance | |
Particle radius | |
Bulk density | |
Density of water | |
Density of methanol | |
Conductivity | |
Release time | |
Pseudo-equilibrium time | |
Extraction temperature | |
Voltage | |
Bulk volume | |
Volume of the red vine leaves | |
Energy () | |
Mass fraction of water | |
Mass fraction of methanol |
References
- Schneider, E. Rotes Weinlaub—Geschichte der Verwendung in der Medizin. Schweiz. Z. GanzheitsMed. 2009, 8, 333–339. [Google Scholar] [CrossRef]
- Esperester, A.; Frey, H.W.; Vix, J.-M. Method for Treatment of Chronic Venous Insufficiencies Using an Extract of Red Vine Leaves. U.S. Patent US6485727B1, 26 November 2002. [Google Scholar]
- Schneider, E. Rotes Weinlaub—Eine venenwirksame Arzneidroge. Dtsch. Apoth. Ztg. 2007, 147, 40–47. [Google Scholar]
- Chethan, S.; Malleshi, N.G. Finger millet polyphenols: Optimization of extraction and the effect of pH on their stability. Food Chem. 2007, 105, 862–870. [Google Scholar] [CrossRef]
- Schneider, F.H. Extraktive Trennung Fest/Flüssig: Untersuchungen Über die Feinstruktur Vegetabiler Feststoffe und Ihren Einfluß auf das Extraktionsverhalten; Forschungsberichte des Landes Nordrhein-Westfalen; Springer: Essen, Germany, 1980. [Google Scholar]
- Cheynier, V. Polyphenols in foods are more complex than often thought. Am. J. Clin. Nutr. 2005, 81, 223S–229S. [Google Scholar] [CrossRef]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Luque-García, J.L.; de Castro, M.D.L. Ultrasound: A powerful tool for leaching. Trends Anal. Chem. 2003, 22, 41–47. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent-free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial scale. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-F.; Yang, X.-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol. 2011, 22, 672–688. [Google Scholar] [CrossRef]
- Brodelius, P.E.; Funk, C.; Shillito, R.D. Permeabilization of cultivated plant cells by electroporation for release of intracellularly stored secondary products. Plant Cell Rep. 1988, 7, 186–188. [Google Scholar] [CrossRef]
- Bouzrara, H.; Vorobiev, E. Solid–liquid expression of cellular materials enhanced by pulsed electric field. Chem. Eng. Process. 2003, 42, 249–257. [Google Scholar] [CrossRef]
- Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol. 2008, 9, 85–91. [Google Scholar] [CrossRef]
- Loginova, K.V.; Lebovka, N.I.; Vorobiev, E. Pulsed electric field assisted aqueous extraction of colorants from red beet. J. Food Eng. 2011, 106, 127–133. [Google Scholar] [CrossRef]
- de Oliveira, C.F.; Giordani, D.; Gurak, P.D.; Cladera-Olivera, F.; Marczak, L.D.F. Extraction of pectin from passion fruit peel using moderate electric field and conventional heating extraction methods. Innov. Food Sci. Emerg. Technol. 2015, 29, 201–208. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Belova, V.; Gorin, D.A.; Shchukin, D.G.; Möhwald, H. Selektive Ultraschall-Kavitation an strukturierten hydrophoben Oberflächen. Angew. Chem. 2010, 122, 7285–7289. [Google Scholar] [CrossRef]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Khan, M.K.; Abert-Vian, M.; Fabiano-Tixier, A.-S.; Dangles, O.; Chemat, F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 2010, 119, 851–858. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; le Bourvellec, C.; Renard, C.M.G.C.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Hao, J.-Y.; Han, W.; Huang, S.-D.; Xue, B.-Y.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- Proestos, C.; Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci. Technol. 2008, 41, 652–659. [Google Scholar] [CrossRef]
- Destandau, E.; Michel, T.; Elfakir, C. Microwave-assisted Extraction. In Natural Product Extraction: Principles and Applications; Rostagno, M.A., Ed.; Royal Soc. of Chemistry: Cambridge, UK, 2013; pp. 113–156. [Google Scholar]
- Alfaro, M.J.; Bélanger, J.M.R.; Padilla, F.C.; Paré, J.R.J. Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAPTM) extraction of ginger (Zingiber officinale). Food Res. Int. 2003, 36, 499–504. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Both, S.; Strube, J.; Cravatto, G. Mass Transfer Enhancement for Solid-Liquid Extractions. In Green Extraction of Natural Products: Theory and Practice; Chémat, F., Strube, J., Eds.; Wiley VCH: Weinheim, Germany, 2015; pp. 101–144. [Google Scholar]
- Barba, F.J.; Galanakis, C.M.; Esteve, M.J.; Frigola, A.; Vorobiev, E. Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. J. Food Eng. 2015, 167, 38–44. [Google Scholar] [CrossRef]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of electroporation: A review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Vorobiev, E.; Lebovka, N. Pulsed-Electric-Fields-Induced Effects in Plant Tissues: Fundamental Aspects and Perspectives of Applications. In Electrotechnologies for Extraction from Plant Foods and Biomaterials; Vorobiev, E., Lebovka, N., Eds.; Springer: New York, NY, USA; London, UK, 2008; pp. 39–82. [Google Scholar]
- Weaver, J.C. Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 2000, 28, 24–33. [Google Scholar] [CrossRef]
- Barnett, A.; Weaver, J.C. Electroporation: A unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Bioelectrochem. Bioenerg. 1991, 25, 163–182. [Google Scholar] [CrossRef]
- Zimmermann, U.; Pilwat, G.; Beckers, F.; Riemann, F. Effects of External Electrical Fields on Cell Membranes. Bioelectrochem. Bioenerg. 1976, 3, 58–83. [Google Scholar] [CrossRef]
- Morales-Cid, G.; Cárdenas, S.; Simonet, B.M.; Valcárcel, M. Sample treatments improved by electric fields. Trends Anal. Chem. 2010, 29, 158–165. [Google Scholar] [CrossRef]
- Heinz, V.; Alvarez, I.; Angersbach, A.; Knorr, D. Preservation of liquid foods by high intensity pulsed electric fields—Basic concepts for process design. Trends Food Sci. Technol. 2001, 12, 103–111. [Google Scholar] [CrossRef]
- Kassing, M.; Jenelten, U.; Schenk, J.; Strube, J. A New Approach for Process Development of Plant-Based Extraction Processes. Chem. Eng. Technol. 2010, 33, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Bart, H.-J.; Pilz, S. Industrial Scale Natural Products Extraction; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Both, S.; Eggersglüß, J.; Lehnberger, A.; Schulz, T.; Schulze, T.; Strube, J. Optimizing Established Processes like Sugar Extraction from Sugar Beets—Design of Experiments versus Physicochemical Modeling. Chem. Eng. Technol. 2013, 36, 2125–2136. [Google Scholar] [CrossRef]
- Bachtler, S.; Bart, H.-J. Extraction of Anthocyanins Using a Laboratory Robot and Innovative Extraction Technologies. Chem. Eng. Technol. 2016, 39, 1875–1883. [Google Scholar] [CrossRef]
- Werner, A.; Blaschke, T.; von Harbou, E.; Hasse, H. Fully Automated Weighing of Liquid Substances with a Laboratory Robot. Chem. Eng. Technol. 2014, 37, 168–172. [Google Scholar] [CrossRef]
- Both, S. Systematische Verfahrensentwicklung für Pflanzlich Basierte Produkte im Regulatorischen Umfeld; Shaker: Aachen, Germany, 2014. [Google Scholar]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Bergs, D.; Merz, J.; Delp, A.; Joehnck, M.; Martin, G.; Schembecker, G. A Standard Procedure for the Selection of Solvents for Natural Plant Extraction in the Early Stages of Process Development. Chem. Eng. Technol. 2013, 36, 1739–1748. [Google Scholar] [CrossRef]
- Chapman, T. A structured approach. Nature 2003, 421, 661–666. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C. Modeling and kinetics study of conventional and assisted batch solvent extraction. Chem. Eng. Res. Des. 2014, 92, 1169–1186. [Google Scholar] [CrossRef]
- Boussetta, N.; Vorobiev, E. Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT Food Sci. Technol. 2012, 46, 127–134. [Google Scholar] [CrossRef]
- Herodez, S.S.; Hadolin, M.; Skerget, M.; Knez, Z. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem. 2003, 80, 275–282. [Google Scholar] [CrossRef]
- Hojnik, M.; Škerget, M.; Knez, Ž. Extraction of lutein from Marigold flower petals—Experimental kinetics and modelling. LWT Food Sci. Technol. 2008, 41, 2008–2016. [Google Scholar] [CrossRef]
- Perez, E.E.; Carelli, A.A.; Crapiste, G.H. Temperature-dependent diffusion coefficient of oil from different sunflower seeds during extraction with hexane. J. Food Eng. 2011, 105, 180–185. [Google Scholar] [CrossRef]
- Qu, W.; Pan, Z.; Ma, H. Extraction modeling and activities of antioxidants from pomegranate marc. J. Food Eng. 2010, 99, 16–23. [Google Scholar] [CrossRef]
- Pan, G.; Yu, G.; Zhu, C.; Qiao, J. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrason. Sonochem. 2012, 19, 486–490. [Google Scholar] [CrossRef]
- Rakotondramasy-Rabesiaka, L.; Havet, J.-L.; Porte, C.; Fauduet, H. Solid–liquid extraction of protopine from Fumaria officinalis L.—Kinetic modelling of influential parameters. Ind. Crops Prod. 2009, 29, 516–523. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1219. [Google Scholar] [CrossRef]
- Velicković, D.T.; Milenović, D.M.; Ristić, M.S.; Veljković, V.B. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Guerrero, M.S.; Torres, J.S.; Nuñez, M.J. Extraction of polyphenols from white distilled grape pomace: Optimization and modelling. Bioresour. Technol. 2008, 99, 1311–1318. [Google Scholar] [CrossRef]
- Rakotondramasy-Rabesiaka, L.; Havet, J.-L.; Porte, C.; Fauduet, H. Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 2010, 76, 126–131. [Google Scholar] [CrossRef]
- Spiro, M.; Selwood, R.M. The kinetics and mechanism of caffeine infusion from coffee: The effect of particle size. J. Sci. Food Agric. 1984, 35, 915–924. [Google Scholar] [CrossRef]
- VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC). VDI-Wärmeatlas, 11th ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Fossen, T.; Cabrita, L.; Andersen, O.M. Colour and stability of pure anthocyanins influenced by pH including the alkaline region. Food Chem. 1998, 63, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Türker, N.; Erdogdu, F. Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J. Food Eng. 2006, 76, 579–583. [Google Scholar] [CrossRef]
- Franco, D.; Sineiro, J.; Rubilar, M.; Sánchez, M.; Jerez, M.; Pinelo, M.; Costoya, N.; Nunez, M.J. Polyphenols from plant materials: Extraction and antioxidant power. Electron. J. Environ. Agric. Food Chem. 2008, 7, 3210–3216. [Google Scholar]
- Rødtjer, A.; Skibsted, L.H.; Andersen, M.L. Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chem. 2006, 99, 6–14. [Google Scholar] [CrossRef]
- Kallithraka, S.; Garcia-Viguera, C.; Bridle, P.; Bakker, J. Survey of solvents for the extraction of grape seed phenolics. Phytochem. Anal. 1995, 6, 265–267. [Google Scholar] [CrossRef]
- Lapornik, B.; Prošek, M.; Wondra, A.G. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng. 2005, 71, 214–222. [Google Scholar] [CrossRef]
- Revilla, E.; Ryan, J.-M.; Martín-Ortega, G. Comparison of Several Procedures Used for the Extraction of Anthocyanins from Red Grapes. J. Agric. Food Chem. 1998, 46, 4592–4597. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef]
- Jäger, H. Process Performance Analysis of Pulsed Electric Field (PEF) Food Applications. Ph.D. Thesis, Technische Universität, Berlin, Germany, 2012. [Google Scholar]
- Fang, X.; Wang, J.; Yu, X.; Zhang, G.; Zhao, J. Optimization of microwave-assisted extraction followed by RP-HPLC for the simultaneous determination of oleanolic acid and ursolic acid in the fruits of Chaenomeles sinensis. J. Sep. Sci. 2010, 33, 1147–1155. [Google Scholar] [CrossRef]
Particle Size | r | ρs | ms | As | Vl | T | ρl,water | ml,water | ρl,methanol | Mixing Ratio a | ml | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(µm) | (µm) | (g/mL) | (g) | (dm2) | (mL) | (°C) | (kg/m3) | (g) | (kg/m3) | (% v/v) | (g) | |
51.0 | 987.58 | 2.47 | ||||||||||
56.0 | 985.21 | 2.46 | ||||||||||
60.5 | 982.95 | 2.46 | ||||||||||
56.0 | 985.21 | 752.16 | 20:80 | 2.35 | ||||||||
50:50 | 2.18 | |||||||||||
80:20 | 2.00 | |||||||||||
MW | 450–2000 | 612.5 | 0.19 | 1.09 | 2.82 | 25.0 | 50 | 988.05 | 24.7 | |||
2000–4000 | 1500 | 0.12 | 1.04 | 1.74 | 25.0 | 24.7 | ||||||
US | 450–2000 | 612.5 | 0.19 | 3.96 | 10.20 | 100 | 50 | 988.05 | 98.8 | |||
2000–4000 | 1500 | 0.12 | 4.03 | 6.71 | 100 | 98.8 | ||||||
PEF | 450–2000 | 612.5 | 0.19 | 0.80 | 2.07 | 20.0 | 35 | 994.04 | 19.9 | |||
2000–4000 | 1500 | 0.12 | 0.80 | 1.34 | 20.0 | 19.9 | ||||||
undried | 1500 | 0.37 | 2.95 | 1.57 | 20.0 | 35 | 994.04 | 19.9 | ||||
batch | 450–2000 | 612.5 | 0.19 | 10.0 | 25.79 | 250 | 25 | 997.69 | 249.4 | |||
2000–4000 | 1500 | 0.12 | 10.0 | 16.68 | 250 | 249.4 |
pH | T | Extractant | c | t | Deff | cs | |
---|---|---|---|---|---|---|---|
(°C) | (g/L) | (min) | (g/L) | (10−12 m2/s) | (% w/w) | ||
1.21 | 23.0 | acidified water (HCl) | 1.12 | 90 | 1.12 | 0.73 | 12.7 |
1.53 | 1.25 | 120 | 1.25 | 0.68 | 14.2 | ||
2.00 | 1.35 | 90 | 1.32 | 1.06 | 15.0 | ||
2.50 | 1.37 | 90 | 1.36 | 0.88 | 15.4 | ||
3.00 | 1.34 | 60 | 1.13 | 1.39 | 12.8 |
pH | T | Extractant | c | t | Deff | cs | |
---|---|---|---|---|---|---|---|
(°C) | (g/L) | (min) | (g/L) | (10−12 m2/s) | (% w/w) | ||
2.50 | 23.0 | acidified water (HCl) | 1.37 | 90 | 1.36 | 0.88 | 15.4 |
34.0 | 1.56 | 120 | 1.56 | 0.51 | 17.6 | ||
43.0 | 1.96 | 120 | 1.96 | 0.95 | 22.1 | ||
51.0 | 2.01 | 90 | 1.97 | 0.57 | 22.1 | ||
56.0 | 2.82 | 60 | 2.71 | 0.90 | 30.3 | ||
60.5 | 1.93 | 60 | 1.91 | 0.69 | 21.3 |
pH | T | Extractant | Mixing Ratio | c | t | Deff | cs | |
---|---|---|---|---|---|---|---|---|
(°C) | (% v/v/v) | (g/L) | (min) | (g/L) | (10−12 m2/s) | (% w/w) | ||
2.59 | 56.0 | meOH:acidified water | 20:80 | 2.21 | 240 | 2.21 | 0.97 | 23.6 |
2.80 | 50:50 | 2.39 | 180 | 2.38 | 0.85 | 23.5 | ||
3.16 | 80:20 | 2.09 | 240 | 2.09 | 1.21 | 19.0 | ||
6.37 | meOH:water | 20:80 | 2.32 | 180 | 2.24 | 0.75 | 23.9 | |
6.50 | 50:50 | 2.33 | 180 | 2.33 | 1.19 | 23.1 | ||
~7.0 | 80:20 | 1.76 | 240 | 1.76 | 1.39 | 16.0 | ||
1.38 | meOH:water:HCl | 50:49:1 | 2.38 | 240 | 2.38 | 0.98 | 23.5 |
Particle Size | Deff | cs | ||
---|---|---|---|---|
(µm) | (g/L) | (10−12 m2/s) | (% w/w) | |
microwave | 2000–4000 | 2.20 | 55.1 | 43.3 |
ultrasonic probe | 2.05 | 50.7 | 41.9 | |
pulsed electric field | dried | 0.64 | 43.1 | 13.2 |
pulsed electric field | undried | 1.44 | 121 | 2.6 |
250 mL batch | 1.82 | 26.6 | 37.9 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachtler, S.; Bart, H.-J. Polyphenols from Red Vine Leaves Using Alternative Processing Techniques. Processes 2018, 6, 262. https://doi.org/10.3390/pr6120262
Bachtler S, Bart H-J. Polyphenols from Red Vine Leaves Using Alternative Processing Techniques. Processes. 2018; 6(12):262. https://doi.org/10.3390/pr6120262
Chicago/Turabian StyleBachtler, Simone, and Hans-Jörg Bart. 2018. "Polyphenols from Red Vine Leaves Using Alternative Processing Techniques" Processes 6, no. 12: 262. https://doi.org/10.3390/pr6120262
APA StyleBachtler, S., & Bart, H. -J. (2018). Polyphenols from Red Vine Leaves Using Alternative Processing Techniques. Processes, 6(12), 262. https://doi.org/10.3390/pr6120262