The Fracturing Behavior of Tight Glutenites Subjected to Hydraulic Pressure
Abstract
:1. Introduction
2. The Digital Image Processing (DIP) Technique in Rock Failure Process Analysis (RFPA) and Rock Heterogeneities
2.1. DIP Technique and Integration in RFPA
2.2. Intrarock and Interrock Heterogeneities
3. 2D Numerical Investigation
3.1. Impact of Stress Anisotropy
3.2. Impact of Gravel Strength
4. 3D Numerical Investigation
4.1. The 3D Numerical Model
4.2. Results and Discussion
- (1)
- Penetrating directly.
- (2)
- Deflecting to propagate along the gravels to form distorted HFs.
- (3)
- Propagating to bypass the gravels.
- (4)
- Combination of (1) and (2), or (2) and (3).
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weng, X.; Kresse, O.; Chuprakov, D.; Cohen, C.-E.; Prioul, R.; Ganguly, U. Applying complex fracture model and integrated workflow in unconventional reservoirs. J. Petroleum Sci. Eng. 2014, 124, 468–483. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, S.; Zhou, T.; Zhou, X.; Guo, T. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology. Rock Mech. Rock Eng. 2015, 49, 1–13. [Google Scholar]
- Dehghan, A.N.; Goshtasbi, K.; Ahangari, K.; Jin, Y.; Bahmani, A. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture. Rock Mech. Rock Eng. 2016, 50, 1–20. [Google Scholar] [CrossRef]
- Fu, W.; Ames, B.C.; Bunger, A.P.; Savitski, A.A. Impact of Partially Cemented and Non-persistent Natural Fractures on Hydraulic Fracture Propagation. Rock Mech. Rock Eng. 2016, 49, 4519–4526. [Google Scholar] [CrossRef]
- Huang, B.; Liu, J. Experimental Investigation of the Effect of Bedding Planes on Hydraulic Fracturing under True Triaxial Stress. Rock Mech. Rock Eng. 2017, 50, 2627–2643. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Zhao, H.; Wang, L.; Li, W.; Geng, Y.; Tao, S.; Zhang, G.; Chen, M. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks. Rock Mech. Rock Eng. 2017, 51, 491–511. [Google Scholar] [CrossRef]
- Llanos, E.M.; Jeffrey, R.G.; Hillis, R.; Zhang, X. Hydraulic Fracture Propagation through an Orthogonal Discontinuity: A Laboratory, Analytical and Numerical Study. Rock Mech. Rock Eng. 2017, 50, 2101–2118. [Google Scholar] [CrossRef]
- Ma, X.; Zou, Y.; Li, N.; Chen, M.; Zhang, Y.; Liu, Z. Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir. J. Struct. Geol. 2017, 97, 37–47. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Z.; Li, A.; Gao, Y.; Yue, M. The Seepage Theory and Exploitation Technology of Hydraulic Fracturing in Thin Interbed Tight Reservoirs; Science Press: Beijing, China, 2016. [Google Scholar]
- Li, L. Size Effect Tests and Mechanical Properties of Low-Permeability Sandstone under Static and Dynamic Loadings; Shengli Oilfield Branch Company: Dongying, China, 2017. [Google Scholar]
- Meng, Q.M.; Zhang, S.C.; Guo, X.M.; Chen, X.H.; Zhang, Y. Aprimary investigation on propagation mechanism for hydraulic fractures in Glutenite formation. J. Oil Gas Technol. 2010, 32, 119–123. [Google Scholar]
- Li, L.; Meng, Q.; Wang, S.; Li, G.; Tang, C. A numerical investigation of the hydraulic fracturing behaviour of conglomerate in Glutenite formation. Acta Geotech. 2013, 8, 597–618. [Google Scholar] [CrossRef]
- Warpinski, N.R.; Mayerhofer, M.J.; Agarwal, K.; Du, J. Hydraulic fracture geomechanics and microseismic source mechanisms. In Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE2012), San Antonio, TX, USA, 8–10 October 2012. [Google Scholar]
- Haddad, M.; Sepehrnoori, K. XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations. Rock Mech. Rock Eng. 2016, 49, 4731–4748. [Google Scholar] [CrossRef]
- Ziarani, A.S.; Chen, C.; Cui, A.; Quirk, D.J.; Roney, D. Fracture and wellbore spacing optimization in multistage fractured horizontal wellbores: Learnings from our experience on Canadian unconventional resources. In Proceedings of the International Petroleum Technology Conference (IPTC2014), Kuala Lumpur, Malaysia, 10–12 December 2014. [Google Scholar]
- Cipolla, C.; Weng, X.; Mack, M.; Ganguly, U.; Gu, H.; Kresse, O.; Cohen, C.E. Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition (HFTC2011), The Woodlands, TX, USA, 24–26 January 2011. [Google Scholar]
- Zhao, Z.; Guo, J.; Ma, S. The Experimental Investigation of Hydraulic Fracture Propagation Characteristics in Glutenite Formation. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, P.; Chen, J.; Yang, Y.; Ranjithd, P.G. CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites. J. Nat. Gas Sci. Eng. 2016, 35, 614–623. [Google Scholar] [CrossRef]
- Li, N.; Zhang, S.; Ma, X.; Zou, Y.; Chen, M.; Li, S.; Zhang, Y. Experimental study on the propagation mechanism of hydraulic fracture in glutenite formations. Chin. J. Rock Mech. Eng. 2017, 36, 2383–2392. (In Chinese) [Google Scholar]
- Wang, R.Q.; Kemeny, J.M. A study of the coupling between mechanical loading and flow properties in tuffaceous rock. In Proceedings of the 1st North American Rock Mechanics Symposium, Austin, TX, USA, 1–3 June 1994. [Google Scholar]
- Mahrer, K.D. A review and perspective on far-field hydraulic fracture geometry studies. J. Pet. Sci. Eng. 1999, 24, 13–28. [Google Scholar] [CrossRef]
- Beugelsdijk, L.J.L.; De Pater, C.J.; Sato, K. Experimental hydraulic fracture propagation in a multi-fractured medium. In SPE Asia Pacific Conference on Integrated Modelling for Asset Management; SPE 59419; Society of Petroleum Engineers: Richardson, TX, USA, 2000. [Google Scholar]
- Jeffrey, R.G.; Bunger, A.; LeCampion, B.; Zhang, X.; Chen, Z.; van As, A.; Allison, D.P.; de Beer, W.; Dudley, J.W.; Thiercelin, E.S.M.J.; et al. Measuring hydraulic fracture growth in naturally fractured rock. In SPE Annual Technical Conference and Exhibition; SPE124919; Society of Petroleum Engineers: Richardson, TX, USA, 2009. [Google Scholar]
- Liu, P.; Ju, Y.; Ranjith, P.G.; Zheng, Z.; Chen, J. Experimental investigation of the effects of heterogeneity and geostress difference on the 3D growth and distribution of hydrofracturing cracks in unconventional reservoir rocks. J. Nat. Gas Sci. Eng. 2016, 35, 541–554. [Google Scholar] [CrossRef]
- Tang, C.A.; Tham, L.G.; Lee, P.K.K.; Yang, T.H.; Li, L.C. Coupled analysis of flow, stress and damage (FSD) in rock failure. Int. J. Rock Mech. Min. Sci. 2002, 39, 477–489. [Google Scholar] [CrossRef]
- Tan, X.; Konietzky, H.; Chen, W. Numerical Simulation of Heterogeneous Rock Using Discrete Element Model Based on Digital Image Processing. Rock Mech. Rock Eng. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Zhu, W.C.; Liu, J.; Yang, T.H.; Sheng, J.C.; Elsworth, D. Effects of local rock heterogeneities on the hydromechanics of fractured rocks using a digital-image-based technique. Int. J. Rock Mech. Min. Sci. 2006, 43, 1182–1199. [Google Scholar] [CrossRef]
- Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsui, Y.; Tham, L.G. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity. Int. J. Rock Mech. Min. Sci. 2000, 37, 555–569. [Google Scholar] [CrossRef]
- Yuan, S.C.; Harrison, J.P. Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks. Int. J. Rock Mech. Min. Sci. 2005, 42, 961–984. [Google Scholar] [CrossRef]
- Tang, C.A. Numerical simulation of progressive rock failure and associated seismicity. Int. J. Rock Mech. Min. Sci. 1997, 34, 249–261. [Google Scholar] [CrossRef]
- Charlez, P.A. Rock Mechanics (II:Petroleum Applications); Technical Publisher: Paris, France, 1991. [Google Scholar]
- Blanton, T.L. An Experimental Study of Interaction between Hydraulically Induced and Pre-Existing Fractures; SPE10847; Society of Petroleum Engineers: Richardson, TX, USA, 1982. [Google Scholar]
- Blanton, T.L. Propagation of Hydraulically and Dynamically Induced Fractures in Naturally Fractured Reservoirs; SPE 15261; Society of Petroleum Engineers: Richardson, TX, USA, 1986. [Google Scholar]
- Abass, H.H. Experimental Observations of Hydraulic Fracture Propagation through Coal Blocks; SPE 21289; Society of Petroleum Engineers: Richardson, TX, USA, 1990. [Google Scholar]
- Chuprakov, D.A.; Akulich, A.V.; Siebrits, E.; Thiercelin, M.J. Hydraulic-Fracture Propagation in a Naturally Fractured Reservoir; SPE 128715; Society of Petroleum Engineers: Richardson, TX, USA, 2010. [Google Scholar]
- Lin, C.; He, J.; Li, X.; Wan, X.; Zheng, B. An Experimental Investigation into the Effects of the Anisotropy of Shale on Hydraulic Fracture Propagation. Rock Mech. Rock Eng. 2017, 50, 543–554. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Z.; Zhang, R.; Zhou, H. Gravels in the Daxing conglomerate and their effect on reservoirs in the Oligocene Langgu Depression of the Bohai Bay Basin, North China. Mar. Petroleum Geol. 2012, 29, 192–203. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, S.; Jiang, X.; Lin, C.; Cheng, H.; Cui, J.; Jia, L. Deep strata geologic structure and tight sandy conglomerate gas exploration in Songliao Basin, East China. Petroleum Exp. Dev. 2016, 43, 13–25. [Google Scholar] [CrossRef]
Physico-Mechanical Parameters | Value |
---|---|
Young’s modulus (E0), GPa | 30.0 |
uniaxial compressive strength (fc0), MPa | 45.0 |
Ratio of compressive and tensile strength (fc0/ft0) | 10 |
Poisson’s ratio (ν) | 0.22 |
Internal friction angle (ϕ), | 31 |
Coefficient of the pore water pressure (α) | 0.7 |
Permeability coefficient (k0), m/s | 1 × 10−10 |
Physico-Mechanical Parameters | Sandstone | Gravel |
---|---|---|
Young’s modulus (E0), GPa | 30.0 | 55.0 |
uniaxial compressive strength (fc0), MPa | 45.0 | 130.0 |
Ratio of compressive and tensile strength (fc0/ft0) | 10 | 10 |
Poisson’s ratio (ν) | 0.22 | 0.25 |
Internal friction angle (ϕ), | 31 | 33 |
Coefficient of the pore water pressure (α) | 0.7 | 0.7 |
Permeability coefficient (k0), m/s | 1 × 10−10 | 1 × 10−11 |
Case | σx (MPa) | σy (MPa) | Δσ (MPa) |
---|---|---|---|
A | 30.0 | 15.0 | 15.0 |
B | 30.0 | 20.0 | 10.0 |
C | 30.0 | 28.0 | 2.0 |
Gravel Parameters | Long Axis Direction | a (mm) | c/a Ratio |
---|---|---|---|
Case F | parallel to y | 20 | 3 |
Case G | parallel to z | 20 | 3 |
Case H | parallel to y | 12 | 3 |
Case I | — | 20 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, L.; Zhang, Z.; Li, M.; Zhang, L.; Huang, B.; Tang, C. The Fracturing Behavior of Tight Glutenites Subjected to Hydraulic Pressure. Processes 2018, 6, 96. https://doi.org/10.3390/pr6070096
Li Z, Li L, Zhang Z, Li M, Zhang L, Huang B, Tang C. The Fracturing Behavior of Tight Glutenites Subjected to Hydraulic Pressure. Processes. 2018; 6(7):96. https://doi.org/10.3390/pr6070096
Chicago/Turabian StyleLi, Zhichao, Lianchong Li, Zilin Zhang, Ming Li, Liaoyuan Zhang, Bo Huang, and Chun’an Tang. 2018. "The Fracturing Behavior of Tight Glutenites Subjected to Hydraulic Pressure" Processes 6, no. 7: 96. https://doi.org/10.3390/pr6070096
APA StyleLi, Z., Li, L., Zhang, Z., Li, M., Zhang, L., Huang, B., & Tang, C. (2018). The Fracturing Behavior of Tight Glutenites Subjected to Hydraulic Pressure. Processes, 6(7), 96. https://doi.org/10.3390/pr6070096