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Abstract: This contribution discusses the main challenges related to successful application of automatic
control systems used to control specific growth rate in industrial biotechnological processes. It is
emphasized that, after the implementation of basic automatic control systems, primary attention
shall be paid to the specific growth rate control systems because this process variable critically affects
the physiological state of microbial cultures and the formation of the desired product. Therefore,
control of the specific growth rate enables improvement of the quality and reproducibility of
the biotechnological processes. The main requirements have been formulated that shall be met to
successfully implement the specific growth rate control systems in industrial bioreactors. The relatively
easy-to-implement schemes of specific growth rate control systems have been reviewed and discussed.
The recommendations for selection of particular control systems for specific biotechnological processes
have been provided.

Keywords: biotechnological processes; bioreactor control; specific growth rate control; batch-to-batch
reproducibility

1. Introduction

Biotechnological processes play an increasingly important role in modern industry and health
sectors. Many of the important active pharmaceutical ingredients are recombinant therapeutic
proteins produced by the cultivation of genetically modified microorganisms or mammalian cells in
bioreactors. These biotechnological processes are highly nonlinear and non-stationary. Therefore,
modeling and control of the above bioprocesses are complicated control engineering tasks, especially in
industrial recombinant protein production processes, in which high safety requirements and operational
restrictions must be secured [1,2]. The goal of this contribution is to review and recommend practical
and easily implementable control system schemes for biomass specific growth rate (further referred
to as SGR or µ) control in industrial bioreactors. The recommendations are based on an analysis
of the existing SGR control solutions and availability of the control schemes suitable for practical
implementation in industrial bioreactors. The specific growth rate µ (1/h), is defined as the ratio of the
cell’s absolute growth rate and the amount of cells:

µ =
dX
dt

1
X

(1)

where X = xV (g) is the cell (biomass) amount; x (g/L) is the cell (biomass) concentration; and V (L) is
the cultivation broth volume. The SGR is the most important variable in biotechnological processes,
which influences the physiological state of microbial culture, production of cell biomass and desired
products, and quantity and quality of products [3–8].
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The development of relatively simple and reliable methods for SGR monitoring and control
in industrial bioreactors is one of the most important control engineering tasks for successful
implementation of the Process Analytical Technology (PAT) framework in bioengineering [9,10].
However, to properly exploit the benefits of SGR control systems in microbial and mammalian cell
cultivation processes, basic bioprocess variables (temperature, pH, dissolved oxygen concentration,
etc.) need to be controlled by commonly available and well-functioning control systems. Unfortunately,
in many cases these systems do not ensure sufficient control quality [1,11,12] allowing to further
proceed with SGR monitoring and control.

This paper is structured as follows: In Section 2, importance of the control quality of the
basic control systems in the biotechnological processes is analyzed. Section 3 introduces important
preconditions for implementation of SGR control systems in industrial bioreactors. Section 4 expands on
strategies for SGR control suitable for industrial bioreactors. Finally, the authors give recommendations
for application of the discussed SGR control solutions in various biotechnological processes.

2. Quality of Basic Control Systems in Industrial Bioreactors

The performance quality of automatic control systems for basic process variables is still low
in most industrial microbial and mammalian cell cultivation processes [1,11]. Despite the fact
that sophisticated control strategies for microbial cultivation processes are widely discussed in the
academic community and research papers [2,13–15], the authors’ experience shows that, at present,
only simple, conventional automatic control systems are realized in the majority of industrial-scale
(bio)reactors [11,16]. This situation is related to a common underestimation of the control systems’
importance in improving the productivity and quality of the biotechnological processes. It is also
related to the relatively high costs of implementation and maintenance of these advanced control
systems and the resultant low acceptance of these systems by plant managers.

Bioreactors are the key operation units in biochemical and biopharmaceutical processes,
in which the basic control systems attempt to control the cultivation environment outside of the
cell. The commonly controlled variables of the cells’ environment are temperature, pressure, pH,
and dissolved oxygen concentration. The basic feedback control systems of industrial bioreactors for
controlling bacterial cell cultures that produce biopharmaceutical products are presented in Figure 1.
The temperature controller manipulates the flow rate of cooling water in the jacket. The pressure inside
the bioreactor is controlled by manipulation of the off-gas flow rate. The pH controller manipulates the
flow rate of ammonia solution (usually, the acid solution does not need to be added to bacterial cell
culture cultivations, unless compensation of base excess is required). The dissolved oxygen controller
output is split to manipulate the air flow rate and the agitation speed (at high cell density cultivation
the air flow may be enriched by additional oxygen).

Today, the most important industrial cultivations of microbial and mammalian cells are carried out
in the fed-batch mode. In fed-batch processes, one or more substrates are fed into the bioreactor during
the process. The product remains in the bioreactor until the end of the cultivation cycle. Fed-batch
processes overcome substrate inhibition and overflow effects. Such an operational mode allows a high
cell density and product concentrations to be achieved [6]. By controlling the substrate feeding rate,
the optimal conditions for the biotechnological process can be secured.

To realize the bacterial growth rate control systems, efficient glucose feeding algorithms need
to be implemented, and in the mammalian cell cultivation processes, additionally, the feeding rate
of glutamine needs to be controlled. It is important to note that modern industrial bioreactors are
equipped with inexpensive and reliable devices to measure the composition of aeration gas in the inlet
and outlet (fraction of O2, CO2) and the molar flow rate, Q. Hence, the oxygen uptake rate (OUR) and
the carbon dioxide production rate (CPR) can be calculated from the online measurements as follows:

OUR = Q
(
Oin

2 −Oout
2

)
, (2)
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CPR = Q
(
COout

2 −COin
2

)
. (3)

The above measurements allow an online estimation of the important process variables, OUR
and CPR, during bacterial and mammalian cell cultivation processes [17,18]. Because of the lower
cell density and respiratory intensity, OUR and CPR measurements based on the off-gas composition
may cause larger measurement errors in mammalian cell cultivation processes. As an alternative
technique, an OUR estimation using dissolved oxygen (DO) measurements may also be applied [19].
The OUR and CPR are the most important variables for indirect monitoring of the biomass growth rate
in industrial bioreactors, as they comprehensively reflect the physiological state and metabolic activity
of the aerobic biotechnological processes [1–3,11,20].
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Good performance of the basic control systems improves the batch-to-batch reproducibility/

repeatability of the processes [11,21]. The other advantage of a well-controlled bioreactor is the
possibility to run the bioreactor at higher capacity or with better efficiency by operating the process
closer to physical constraints. Good reproducibility is also an important condition for possible process
improvements and modifications, as improvement in reproducibility by means of well-operating
control systems allows a reduction in the number of expensive and time-consuming experiments
required to compare the performance indices of the modified processes and to optimize the controlled
technological regime [1].

The proportional-integral-derivative (PID) controllers are predominant controllers used in the
basic control systems of microbial and mammalian cell cultivation processes. Quality of the bioprocess
control depends on the complexity of the process dynamics, the process variable measurement noise
and errors, tuning of the system controllers, and performance accuracy of the executive devices (valves
and speed drives). Dynamics of the particular biotechnological parameter control process can be
characterized by three resulting dynamic parameters: dead time, time constant and process gain.
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These parameters are commonly used to determine the tuning parameters of a PID controller. Control
quality of the bioreactor operation mode critically depends on how well the controllers are set up
and tuned to deal with the sources of the process variability [1,2,11,13]. Because of the nonlinearity
and nonstationarity of the bioprocesses, proper tuning of the controllers requires appropriate efforts.
The performance of PID controllers with fixed tuning parameters are not sufficiently accurate because
of the significant variations in the process’ dynamics. Consequently, various approaches have been
proposed to tune the PID controller parameters in microbial cultivation processes under time-varying
operating conditions, including gain-scheduling methods [12,22–24], first-principle models [25],
tendency models [26], rule-based fuzzy systems [13], and other techniques [1,2,14,15]. The proposed
approaches give a sound theoretical and practical basis to implement adaptive control schemes in
bioreactor systems and show that implementation of the adaptive algorithms in basic control systems
can significantly increase the performance of the systems. Gain-scheduling methods and tendency
models are the most appropriate solutions for improving the quality of basic control systems in microbial
cultivation processes because they are relatively simple to implement and pose low requirements on
model complexity. The advantages have been extensively discussed and substantiated in previous
studies [12,22–24,26]. An important task now is to broaden implementation of these algorithms in
industrial bioreactors.

Well-functioning basic control systems create opportunities for further process improvements and
also for implementation of the SGR control systems in bioreactors [1,11]. Development of relatively
simple solutions to control the specific growth rate in fed-batch processes remains a timely and
important task in view of implementing the PAT framework in industrial biotechnological processes.

3. Preconditions for Implementation of SGR Control Systems in Industrial Bioreactors

The basic requirements for SGR control systems designed to control microbial and mammalian
cell cultivation processes can be formulated as follows:

• The systems should be as simple as possible and intuitive for the user. Process operators without
special modeling/control knowledge should be able to supervise these systems.

• The systems must be based on measurement and control equipment that is currently used standard
equipment in industrial bioreactors.

• Development time, cost, and benefits of the systems must be attractive to potential users.

According to the above requirements, most of the solutions for SGR control systems presented
in scientific literature [3,6] are not attractive enough for industrial implementation. More complex
monitoring and control systems, even if equipped with easy-to-use interfaces, may require retuning,
model identification, and maintenance tasks in case the operational modes or microbial cultures have
been changed. Often these tasks cannot be carried out by the biotechnology companies alone and may
cause additional expenses for outsourcing and production delays. In the authors’ opinion, this is the
main reason SGR control systems have rarely been used in industrial bioreactors so far.

In this contribution, the authors provide an overview of those SGR control systems that meet
the aforementioned requirements. In most widespread control systems, SGR is usually controlled
by manipulating the substrate feeding rate [6,27]. In recombinant protein production processes,
the temperature of the medium is also used to control cell growth [28]. Despite that the growth
rate could be controlled (e.g., by manipulating the dissolved oxygen concentration in cultivation
medium [29], temperature of the medium [28] or pH), to date these techniques have not been sufficiently
investigated and have not been widely implemented in industrial practice [11].

When the growth rate is controlled by manipulating the substrate feeding rate, the substrate
concentration in cultivation medium remains relatively low [30]. This allows avoiding production
of the overflow metabolites in some of the most important microbial expression systems, so-called
Crabtree-positive organisms, such as S. cerevisiae and E. coli. The presence of the overflow metabolites,
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such as acetate or ethanol, frequently leads to inhibition of both the biomass growth and formation of
the proteins.

To ensure controllability and batch-to-batch reproducibility, the SGR needs to be controlled during
the process at a level that is lower than the maximum SGR [11]. The maximum available SGR is
observed during particular growth phases of the process, when the growth is not limited by substrate
concentration [12,31], and depends on the specific culture, medium composition, concentrations of
biomass and metabolites, as well as the oxygen transfer capabilities of the bioreactor. It is worth
mentioning that direct control of the substrate concentration in bioreactor at the set-point does not
guarantee that a constant SGR will be kept. This is because [11]:

• Cell growth at a limited rate occurs under low substrate concentrations. Because of this, online
measurements, calibration of the measuring devices, and control of the substrate concentration
are difficult to implement in industrial bioreactors.

• Sensor readings of the substrate concentration reflect only the local substrate concentration
around the sensor, which may significantly differ from the average concentration in the bioreactor.
Therefore, the substrate concentration control system is not able to control the SGR in the entire
cultivation medium.

In the majority of recombinant protein production processes, the control objective is to maximize the
amount of target protein at the end of the process while maintaining high batch-to-batch reproducibility.
To achieve this goal, two steps most often are implemented for SGR control:

• During the first stage of the process, the SGR is kept at a trajectory that is 10–15% below the maximum
available SGR.

• During the second stage, the SGR is kept at a trajectory that leads to the maximum specific
production rate of the target product. Usually, the level of the SGR kept at this phase is significantly
lower compared to that maintained at the first stage.

SGR control systems can be realized using open-loop and closed-loop control systems [6,11].
In the following sections, the authors analyze and evaluate SGR control systems that are best suited for
industrial applications. The analyzed and evaluated control solutions are ordered in this review by
their complexity (i.e., starting with the simplest open-loop systems and ending up with the control
systems that employ cascade control schemes and SGR estimators).

4. Schemes for SGR Practical Control Systems

4.1. Open-Loop SGR Control Systems

The majority of industrial fed-batch microbial cultivation processes are operated using open-loop
SGR control systems [11], in which the time profile of the substrate feeding rate is calculated using
simple mass-balance models and a desired time profile of the SGR during the process. The desired
SGR values, µset, can be described by the following equation:

µset =

{
µset1 = (0.85 . . . 0.90)µmax f or growth phase,

µset2 = µopt f or production phase.
(4)

Based on the desired set values for SGR, the corresponding substrate feeding rate can be determined.
Accumulation of the total biomass during cultivation and the substrate feeding rate for both stages of
the process can be estimated from simple mass-balance equations:

dX
dt

= µsetiX, i = 1, 2. (5)

The amount of biomass accumulated in the growth stage can be calculated from the equation

X(t) = X0eµset1 t, (6)
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and the amount of biomass accumulated in the production stage can be calculated from the equation

X(t) = X0eµset1 tg · eµset2 (t−tg), (7)

where tg (h) is the end time of the growth stage.
Using the predicted time trajectories of the biomass accumulation, X(t), the substrate feeding rate

F1(t) in the growth stage can be derived from the dynamic mass-balance equation for the substrate
under steady-state conditions [2,6,8,20,30], which results in the following equation

F1(t) =
X0eµset1 tµset1

Yxs1SF
, (8)

and the substrate feeding rate F2(t) in the production stage can be estimated from the equation

F2(t) =
X0eµset1 tgeµset2 (t−tg)µset2

Yxs2SF
, (9)

where X0 (g) is the total amount of biomass in the bioreactor at the beginning of cultivation process;
X(t) (g) is the time trajectory of the total biomass accumulated during the process; SF (g/L) is the
concentration of the substrate in the feeding solution; and Yxs1 and Yxs2 (g/g) are the yields of biomass
on substrate in the growth and production phases, respectively. In substrate-limited processes,
the substrate concentration in the bioreactor is low. Therefore, this concentration is not taken into
account in Equations (8) and (9).

When the SGR control algorithm based on Equations (8) and (9) is developed, implementation of
the control system is straightforward. For this purpose, only an actuator to dose the feeding substrate
to the bioreactor is needed. For some recombinant protein production processes, the yield of biomass
on substrate can be different in the growth (Yxs1) and the production stages (Yxs2). In such cases, the
yields must be identified from experimental data for the particular process phase and must be taken
into account when using Equations (8) and (9) to estimate the substrate feeding rates. Additionally,
µmax and µopt may vary during the process because of the increasing concentrations of metabolites,
biomass, and other process variables. In this case, µmax(t) and µopt(t) should be presented as time
profiles, and a numerical integration procedure to predict the biomass growth and substrate feeding
time profiles needs to be applied.

The substrate feeding time profiles estimated from Equations (8) and (9) can be directly
used for implementing the open-loop SGR control systems in various biotechnological
processes [6,7,22,30,32,33]. Certainly, more sophisticated bioprocess models and optimization
procedures can be used to determine the feeding rate control algorithms in open-loop SGR control
systems. These methods are widely reviewed and analyzed in many research and academic
papers [3,6,8,27,34,35]. However, implementation of more sophisticated procedures in industrial
bioprocesses requires specific knowledge in process modeling and efforts to develop more accurate
models. Consequently, application of complex methods in industrial environment is not a commonplace.

The SGR open-loop control systems based on Equations (8) and (9) are easy to implement and do
not require additional measurements. On the other hand, open-loop systems do not compensate for
process disturbances. Consequently, possible variations in the substrate concentration of the feeding
solution or deviations of the feeding flow rate are not compensated. These disturbances can decrease
the performance of the biotechnological process. In the next sections, the authors analyze and provide
relatively simple and already existing solutions to overcome these problems.

4.2. SGR Control Systems Based on CPR/OUR Estimations

Reliability and accuracy of SGR control can be increased by employing closed-loop control systems.
One of the simplest closed-loop SGR control systems is proposed in Reference [27]. Here, based on a
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simplified assumption that the carbon dioxide production rate (CPR) during the process is in a linear
relationship with the biomass growth rate

CPR(t) = αµ(t)X(t), (10)

the specific growth rate µ can be estimated using the following equation

µ(t) =
CPR(t)∫ t

0 CPR(τ)dτ
, (11)

where α is a model parameter, and τ is the integration time variable.
If real-time estimation of SGR is available, feedback control systems can be developed to

automatically track a desired SGR time profile by manipulating the substrate feeding rate.
Results of the SGR control obtained in Reference [36] show that an acceptable control quality can

be obtained by applying a typical control system based on PI controllers. To achieve better control
quality, it is straightforward to adapt the controller parameters to the time-varying dynamics of the
controlled process by applying gain-scheduling algorithms mentioned in Section 2 and using the
CPR signal as a scheduling variable. The main drawback of the analyzed control approach is that,
during SGR estimation, an assumption is made that the CPR during the process is proportional to
the absolute biomass growth rate. In fact, it is known that more accurate results may be achieved
if the Luedeking–Piret-type relationship is applied to correlate the CPR and the biomass growth
rate [20,37]. This relationship additionally takes into account the CPR fraction that is related to the
maintenance of the cell’s vital functions and accounts for a significant part of the total CPR (for instance,
in high-cell-density bacterial cultivation processes). Figure 2 shows the simulated trajectories of the
biomass growth and the CPR of the recombinant E. coli cultivation process in a 1 m3 volume bioreactor
as well as the comparison of the actual and the estimated SGRs. The latter is calculated from Equations
(10) and (11). The actual CPR of the process is modeled using the equation

CPR(t) = αµ(t)X(t) + βX(t), (12)

where parameter β determines the CPR fraction related to maintenance of the cell’s vital functions.

Processes 2019, 7, x FOR PEER REVIEW 8 of 13 

 

In the next sections, more complex control systems are discussed that overcome the above 
shortcomings. 

(a) (b) 

Figure 2. Simulated trajectories of the biomass growth and carbon dioxide production rate (CPR) (a), 
and the trajectories of the real specific growth rate (SGR) and that estimated from Equation (7) (b) in 
a typical recombinant E. coli cultivation process in a 1 m3 bioreactor. 

(a) (b) 

Figure 3. Block-scheme of the SGR control system (a) and the simulation results of the system 
performance (b). Reproduced with permission from D. Levišauskas, Biotechnology Letters; published 
by Springer Nature, 2001. 

4.3. SGR Control Systems Based on CPR/OUR Estimations and the Mass of CO2/O2 Produced/Consumed 
During Cultivation 

Robust control of the SGR is a crucial problem when designing an efficient process, in which the 
SGR is to be controlled at the value μset < μmax in order to secure reproducibility of the processes. 
However, the already discussed SGR closed-loop control systems have two shortcomings: (a) for 
system implementation, an online estimation of the μ-values is required, and (b) high batch-to-batch 
reproducibility is not guaranteed. For example, if disturbances occur during a process (e.g., variation 
in the initial amount of biomass X0) or in the instrumentation (e.g., if the substrate feeding is shortly 
interrupted), they cause slight deviations in the biomass growth trajectory from the desired trajectory, 
and such an offset cannot be eliminated later on, even if the controller exactly tracks the predefined 
μ-profile. An approach to cope with the disturbances that cause process reproducibility problems is 
proposed in Reference [40]. In this work, a desired SGR time profile μset(t), the initial amount of 
biomass X0, and Equation (1) were used to estimate the biomass growth time profile X(t) during the 
process. If the biomass growth profile X(t) can be tightly controlled by manipulating the substrate 
feeding rate, the corresponding SGR profile will follow the desired μset(t) profile. This control system 
is more robust as compared to direct SGR control systems, as the short-term disturbances that occur 

Figure 2. Simulated trajectories of the biomass growth and carbon dioxide production rate (CPR) (a),
and the trajectories of the real specific growth rate (SGR) and that estimated from Equation (7) (b) in a
typical recombinant E. coli cultivation process in a 1 m3 bioreactor.

In the simulation experiment, values of the parameters α and β were used that are typical for
recombinant E. coli cultivation processes (α = 0.9 (gCO2/gX), and β = 0.1 (gCO2/(gX·h))), induction at
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t = 8 h) [38]. The simulation results, presented in Figure 2, show that the estimated SGR deviation
from the real trajectory increases with an increasing amount of biomass (the estimated rate at the
end of the process is 0.05 (1/h) higher than the real one). Hence, it is advantageous to introduce
empiric correlations correct the estimated SGR when applying this method in high-density cultivation
processes. The magnitude of correction should be defined from earlier cultivation experiments.

To estimate SGR, OUR data can also be used. However, the measurements related to OUR
estimation may be corrupted by the noise related to the off-gas composition, pressure, and the gas
flow rate fluctuations if additional oxygen is used enrich the aeration air. Therefore, to control the
high-density cultivation processes, it is recommended to use CPR data in SGR estimation relationships.

A more accurate SGR control system based on OUR or CPR measurements is proposed in
References [25,39]. Realization of the proposed control system does not require a mathematical model
and a priori knowledge of the culture of the microorganisms under control. It can be realized using
standard programmable controllers/measurement devices and is well suited for control of industrial
biotechnological processes. In the cited contributions, it is shown that if the substrate feeding rate is
manipulated to control OUR during the process, in such a way that the OUR data-based ratio R

R =
dOUR

dt
1

OUR
, (13)

is stabilized at the desired SGR set-point R = µset, then the specific growth rate µ will asymptotically
approach the set-point µset and will be controlled at that point. For control of the ratio R, the PI control
algorithm was recommended, and controller gain was adapted to the time-varying dynamics of the
controlled process using the gain-scheduling approach with the feeding rate as the scheduling variable.
The block-scheme of the SGR control system and the simulation results of the system’s performance
are presented in Figure 3. The simulation and experimental investigation tests of the proposed SGR
automatic control system have shown a stable performance and sufficiently accurate control of the SGR
under stepwise changes to the process parameter values and high-level noise of the feedback signal
measurements [25,39]. This control system can be efficiently applied in controlling biotechnological
processes, in which the SGR set-point is constant or changes slowly. For realization of the system,
either OUR or CPR online estimates can be used.

Processes 2019, 7, x FOR PEER REVIEW 8 of 13 

 

In the next sections, more complex control systems are discussed that overcome the above 
shortcomings. 

(a) (b) 

Figure 2. Simulated trajectories of the biomass growth and carbon dioxide production rate (CPR) (a), 
and the trajectories of the real specific growth rate (SGR) and that estimated from Equation (7) (b) in 
a typical recombinant E. coli cultivation process in a 1 m3 bioreactor. 

 
 

(a) (b) 

Figure 3. Block-scheme of the SGR control system (a) and the simulation results of the system 
performance (b). Reproduced with permission from D. Levišauskas, Biotechnology Letters; published 
by Springer Nature, 2001. 

4.3. SGR Control Systems Based on CPR/OUR Estimations and the Mass of CO2/O2 Produced/Consumed 
During Cultivation 

Robust control of the SGR is a crucial problem when designing an efficient process, in which the 
SGR is to be controlled at the value μset < μmax in order to secure reproducibility of the processes. 
However, the already discussed SGR closed-loop control systems have two shortcomings: (a) for 
system implementation, an online estimation of the μ-values is required, and (b) high batch-to-batch 
reproducibility is not guaranteed. For example, if disturbances occur during a process (e.g., variation 
in the initial amount of biomass X0) or in the instrumentation (e.g., if the substrate feeding is shortly 
interrupted), they cause slight deviations in the biomass growth trajectory from the desired trajectory, 
and such an offset cannot be eliminated later on, even if the controller exactly tracks the predefined 
μ-profile. An approach to cope with the disturbances that cause process reproducibility problems is 
proposed in Reference [40]. In this work, a desired SGR time profile μset(t), the initial amount of 
biomass X0, and Equation (1) were used to estimate the biomass growth time profile X(t) during the 
process. If the biomass growth profile X(t) can be tightly controlled by manipulating the substrate 
feeding rate, the corresponding SGR profile will follow the desired μset(t) profile. This control system 
is more robust as compared to direct SGR control systems, as the short-term disturbances that occur 

Figure 3. Block-scheme of the SGR control system (a) and the simulation results of the system
performance (b). Reproduced with permission from D. Levišauskas, Biotechnology Letters; published
by Springer Nature, 2001.

It should be stressed that the SGR control systems based on Equation (11), when applied in
high-density cultivation processes, cause noticeable deviations at high cell concentrations. SGR control
systems based on Equation (13) are less efficient when tracking time-varying SGR set-point profiles.

In the next sections, more complex control systems are discussed that overcome the
above shortcomings.
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4.3. SGR Control Systems Based on CPR/OUR Estimations and the Mass of CO2/O2 Produced/Consumed
During Cultivation

Robust control of the SGR is a crucial problem when designing an efficient process, in which
the SGR is to be controlled at the value µset < µmax in order to secure reproducibility of the processes.
However, the already discussed SGR closed-loop control systems have two shortcomings: (a) for
system implementation, an online estimation of the µ-values is required, and (b) high batch-to-batch
reproducibility is not guaranteed. For example, if disturbances occur during a process (e.g., variation
in the initial amount of biomass X0) or in the instrumentation (e.g., if the substrate feeding is shortly
interrupted), they cause slight deviations in the biomass growth trajectory from the desired trajectory,
and such an offset cannot be eliminated later on, even if the controller exactly tracks the predefined
µ-profile. An approach to cope with the disturbances that cause process reproducibility problems
is proposed in Reference [40]. In this work, a desired SGR time profile µset(t), the initial amount of
biomass X0, and Equation (1) were used to estimate the biomass growth time profile X(t) during the
process. If the biomass growth profile X(t) can be tightly controlled by manipulating the substrate
feeding rate, the corresponding SGR profile will follow the desired µset(t) profile. This control system
is more robust as compared to direct SGR control systems, as the short-term disturbances that occur in
the control equipment and the process itself are compensated by controlling an integral variable—the
amount of accumulated biomass X(t). However, implementation of the above control system requires
development of a reliable soft-sensor for the online estimation of the amount of accumulated biomass
during the process. Therefore, the X(t) online estimation problem complicates the practical realization
of this control approach. To eliminate this shortcoming, simplified SGR control systems were developed
and experimentally tested in bacterial and mammalian cell cultivation processes [41–43]. The main
idea behind these control systems is to use the predetermined time profiles of CPRset(t) as the system’s
time-varying set-point, and the mass of CO2(t) produced during the process (mCO2set) as an indirect
metric for SGR control purposes. CPR(t) is stoichiometrically related to the SGR and the biomass
(Equation (9)), and the integral of this equation gives the mass mCO2set(t) produced during the process.

By manipulating the substrate feeding rate to control the predetermined set-point time profile
mCO2set(t), the control system indirectly maintains the desired SGR during the process. The structure of
the discussed cascade control system is depicted in Figure 4. The PI controller of the inner loop controls
the CPRset(t) time profile, and the PI controller of the outer loop controls the set mCO2set(t) profile.
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Figure 4. Cascade control system for indirect SGR control based on predetermined CPRset(t) and
mCO2set(t) time profiles.

If the controlled process is tightly kept on the CPRset(t) and mCO2set(t) time profiles, the process
will also follow the desired SGR time profile. The proposed control system ensures good quality of
the SGR control, and, because of the cumulative nature of the set-point variable mCO2(t), random
disturbances do not significantly distort the course and reproducibility of the process.

Implementation of the proposed control system can be realized in the following steps:
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• Choose a rational µset(t) time profile for the process. A proper profile can be estimated from expert
knowledge, mathematical model-based process optimization results, or from the analysis of a
successful “golden batch” experiment.

• Choose an appropriate inoculum size (initial amount of the total biomass X0) for the process
and estimate the biomass growth time profile X(t) using the µset(t) profile, Equation (4), and a
numerical integration procedure.

• Estimate the CPRset(t) time profile using Equation (10) and the identified parameter values α and
β. Note that the above parameter values may be different for the biomass growth and product
formation stages.

• Integrate the CPRset(t) time profile to get the corresponding profile mCO2set(t) for the controlled process.
• Control the process by tracking the estimated profiles CPRset(t) and mCO2set(t). Control is realized

using the cascade control system that manipulates the substrate feeding rate.

Various realizations of the above control system have been investigated by computer simulations
of the system’s performance and by controlling real processes of recombinant E. coli and mammalian
cells (CHO) [18,41,42]. Typical results of the applied control system for controlling the recombinant
E. coli fed-batch cultivation processes over six runs are presented in Figure 5. The laboratory-scale
experimental results show that the proposed control approach leads to a stable and robust behavior of
the controlled process. It should also be stressed that small variations in the initial amount of biomass
X0 and short instrumentation disturbances do not significantly affect the reproducibility of the process.
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Figure 5. Typical experimental results of the total cumulative CPR (a) and SGR indirect control
(µset(t) = 0.5 1/h at the first process stage and µset(t) = 0.175 1/h at the second stage) (b) during the
recombinant E. coli cultivation process. Reproduced with permission from M. Jenzsch et al. J. of
Biotechnology; published by Elsevier, 2007.

Because of the significant changes in the process dynamics during cultivation, it is possible to
improve control quality of the cascade control system by adapting controller parameters. Tuning
parameters of the PI controllers can be adapted to time-varying dynamics of the controlled process
using the gain-scheduling approach. The controller adaptation scheme using the gain-scheduling
algorithm is shown in Figure 4 by the dashed lines. In the gain-scheduling algorithms, one can use
CPR or OUR measurements as the gain-scheduling variables.

Instead of using the OUR(t) or CPR(t) time profiles, the performance of the inner control loop
of the cascade control system can also be improved by implementing the SGR estimator, developed
from Equations (12) and (13) [44]. Investigation results presented in Reference [44] have shown that
the control system with the SGR estimator outperforms the control system depicted in Figure 4 when
the controlled process is affected by disturbances to the substrate feeding rate. On the other hand,
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implementation of the modified control system requires additional calculations related to online
estimation of the SGR.

The structure of the SGR control system presented in Figure 4 may be used as a basis for
development of closed-loop control systems for controlling the processes of various microbial cultures
in industrial bioreactors. Because it is technically simple to implement and possible to improve
batch-to-batch reproducibility, this system could be used as a benchmark to compare the control quality
of various SGR control systems and to evaluate their potential implementation in industrial bioreactors.

5. Concluding Remarks and Recommendations

In recent years, numerous research papers have been published, in which original solutions and
sophisticated control techniques were developed for the automatic control of microbial and mammalian
cell cultivations processes. However, the majority of the proposed control systems are too complicated
to be attractive for robust control of industrial biotechnological processes. Therefore, the well-known
statement of Luyben [16], “Complex elegant control systems look great on paper but soon end up on
‘manual’ in an industrial environment”, is also valid for the majority of the control systems developed
for biotechnological processes.

In this paper, relatively simple control approaches that can be applied in microbial and mammalian
cell cultivation processes are discussed and recommended for practical application. The reviewed
algorithms and systems designed for indirect control of the specific growth rate can significantly
increase robustness and batch-to-batch reproducibility of industrial-scale biotechnological processes.
The recommended control algorithms and systems are based on CPR or OUR online measurements
and on the total mass of oxygen consumed or the total mass of carbon dioxide produced during the
process. In the case when additional oxygen is used during the processes, it is recommended to use
the CPR and mCO2 signals in the control system algorithms because of their lower estimation errors
compared to those when using OUR and mO2 signals. To estimate oxygen uptake and carbon dioxide
production rates, several industrially well-established gas analyzers and mass flow meters are available.
Basic instrumentation for installation of the SGR control systems, the online gas analyzer, combines
parallel measurement of CO2 and O2 concentrations in the off-gas using two space-saving sensors.
The analyzer can be used both for lab- and industrial-scale bioreactors. In the industrial gas analyzers,
compensators for gas pressure and humidity are incorporated. Consequently, these analyzers ensure
good precision and reliability of the measurements.

The available instrumentation and discussed control methods and systems provide a possibility
for wider application of SGR control in biotechnological processes. At the very beginning of the
process, accuracy of the indirect measurements is usually low and insufficient to track exactly the
SGR set-point time profile in closed-loop control systems. Consequently, it is recommended to start
the process using the feeding rate open-loop control strategies determined by Equations (8) and (9)
and, after three to four hours, to switch the SGR control to the closed-loop control system. For the
low-density cell cultivation processes, the SGR control system based on Equation (11) is recommended.
For processes, in which the SGR set-point is kept constant, the control system based on Equation (13)
(Figure 3) is well suited. For more advanced applications, the SGR control system presented in Figure 4
is recommended. The above system can be applied as a benchmark to compare the control quality of
various SGR control systems.
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