
processes

Article

A Holonic-Based Self-Learning Mechanism for
Energy-Predictive Planning in Machining Processes

Seung-Jun Shin 1,* , Young-Min Kim 2 and Prita Meilanitasari 2

1 Division of Interdisciplinary Industrial Studies, Hanyang University, Seoul 04763, Korea
2 Graduate School of Technology and Innovation Management, Hanyang University, Seoul 04763, Korea;

yngmnkim@hanyang.ac.kr (Y.-M.K.); dintamio@hanyang.ac.kr (P.M.)
* Correspondence: sjshin@hanyang.ac.kr; Tel.: +82-2-2220-2358

Received: 30 August 2019; Accepted: 11 October 2019; Published: 14 October 2019
����������
�������

Abstract: The present work proposes a holonic-based mechanism for self-learning factories based
on a hybrid learning approach. The self-learning factory is a manufacturing system that gains
predictive capability by machine self-learning, and thus automatically anticipates the performance
results during the process planning phase through learning from past experience. The system
mechanism, including a modeling method, architecture, and operational procedure, is structured
to agentize machines and manufacturing objects under the paradigm of Holonic Manufacturing
Systems. This mechanism allows machines and manufacturing objects to acquire their data and model
interconnection and to perform model-driven autonomous and collaborative behaviors. The hybrid
learning approach is designed to obtain predictive modeling ability in both data-existent and even
data-absent environments via accommodating machine learning (which extracts knowledge from
data) and transfer learning (which extracts knowledge from existing knowledge). The present work
also implements a prototype system to demonstrate automatic predictive modeling and autonomous
process planning for energy reduction in milling processes. The prototype generates energy-predictive
models via hybrid learning and seeks the minimum energy-using machine tool through the contract
net protocol combined with energy prediction. As a result, the prototype could achieve a reduction of
9.70% with respect to energy consumption as compared with the maximum energy-using machine tool.

Keywords: cyber-physical production systems; self-learning factory; holonic manufacturing systems;
machine learning; transfer learning; predictive analytics

1. Introduction

Manufacturing intelligence reinforces real-time understanding, reasoning, planning, and
management of manufacturing processes with the pervasive use of sensor-based data analytics
and modeling [1]. Such intelligence is nothing new in manufacturing; however, it is not mature despite
much effort related to its implementation and utilization over the past decades [2]. Implementing
manufacturing intelligence is becoming more important than ever due to the evolution of manufacturing
technology (MT) itself and the convergence of MT with Internet of things and cyber-physical
systems (CPS).

CPS have been recognized as a cutting-edge technology in implementing machine intelligence
in various domains, as CPS are “physical and engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing and communicating core” [3]. The concept
of CPS is naturally being deployed to industrial automation in the manufacturing realm, and the
manufacturing version of CPS is known as cyber-physical production systems (CPPS). CPPS seek to
realize intelligence, connectedness, and responsiveness through autonomous and cooperative objects
and sub-systems based on context awareness within and across all levels of production [4].

Processes 2019, 7, 739; doi:10.3390/pr7100739 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
https://orcid.org/0000-0002-3587-5507
https://orcid.org/0000-0002-3483-2599
http://www.mdpi.com/2227-9717/7/10/739?type=check_update&version=1
http://dx.doi.org/10.3390/pr7100739
http://www.mdpi.com/journal/processes

Processes 2019, 7, 739 2 of 28

CPPS can be categorized based on their maturity levels, which consist of: visibility, transparency,
predictive capability, and self-optimization [5]. CPPS ultimately pursue the acquisition of
self-optimizing ability so that manufacturing machines are directly involved in problem-solving
or optimization through autonomous and collaborative decision-making and communication with
minimization of human intervention. This self-optimizing ability obviously requires predictive
capability at the precedent level. Machines can achieve self-optimization only after they can predict
their performance by themselves through learning algorithms and use this ability to enhance the
accuracy and robustness of their decision-making through evolutionary learning. Such predictive
capability can be realized if the machine can self-learn. Self-learning endows manufacturing
systems (especially manufacturing objects like machines, material handling equipment, workpieces,
work-in-process and products) with the ability to learn from history for future decisions [6].

From the perspective of CPPS implementation, CPPS require control architecture suites fit for
autonomous and collaborative operation and control on manufacturing objects. Holonic Manufacturing
Systems (HMS) represent one of the most promising architecture suites, with the same goals as those
of CPPS [4]. This coincidence can be demonstrated in the Product–Resource–Order–Staff Architecture
(PROSA) reference architecture. This referential architecture is structured to achieve both hierarchical
and heterarchical control by employing holons (autonomous and cooperative objects in manufacturing
systems) and their holarchy (a system of holons) for efficiency in resource utilization, stability against
disturbances, and flexibility during changes [7]. To pursue manufacturing intelligence, we suggest
that holonic-based systems should be reshaped to obtain learning ability within the complex and
dynamic nature of manufacturing environments. Even good stationary structures and mechanisms
can hardly accommodate huge numbers of manufacturing conditions which are rapidly changing.
Without learning, it is extremely difficult to identify concrete behaviors and activities that will improve
the performance of manufacturing systems [8].

Traditionally, self-learning largely depends on creating predictive models derived by
machine-learning techniques (e.g., regression, decision tree, Artificial Neural Network (ANN), support
vector machine, and genetic algorithms). Machine-learning techniques are used to acquire the
knowledge needed to make future decisions from historical training examples [9]. It is known that they
enhance the validity of machine-specific models by using real and historical data even in dynamic and
complex manufacturing environments. Machine-learning determine cause-and-effect relationships
from the training datasets that have been collected from previous manufacturing operations. As
cause-and-effect relationships are derived into mathematical representation under certain conditions
and constraints, machine-learned models can faithfully work as predictive models by anticipating an
effect from an input of cause values.

However, traditional machine learning has a drawback. It does not work unless training datasets
exist. Manufacturing environments cannot always create or keep training datasets due to difficult data
collection, data loss, data becoming outdated, or even data missing from manufacturing operations
that have not been run. Collecting new datasets by performing additional manufacturing operations is
desirable; however, it is time-consuming and is sometimes impossible. Nevertheless, the self-learning
ability should be obtained and maximized even in such data-absent environments, and transfer
learning can be a complementary means of achieving the machine’s self-learning. Transfer learning
is a technique to extract knowledge from source tasks and apply the knowledge to a target task to
reduce the effort required to collect training datasets [10]. As transfer learning involves knowledge
extraction from existing models, it allows machines to create knowledge-transferred models in the
data-absent environment. Eventually, the adaptive convergence of machine learning and transfer
learning enables machines to implement their self-learning ability in both data-existent and even
data-absent environments.

In the metal cutting industry, energy consumption becomes a major metric for improving
energy-efficiency and environmental performance. According to a survey [11], the manufacturing
sub-sectors of fabricated metal products and machinery where the metal cutting industry involves

Processes 2019, 7, 739 3 of 28

as a part consume 41,869 and 23,424 million kWh of net electricity in the United States of America,
respectively. As these values respectively occupy 5.5% and 3.1% of the entire manufacturing sector,
reducing energy consumption in the metal-cutting industry is important for improving environmental
performance. In this context, machining in a machine tool affects energy consumption and varies the
energy difference in terms of machining power and time by about 66% [12]. Thus, process planning for
energy efficiency works as a useful means for reducing the energy consumed during the execution of
machine tools because machining sequences and process parameters decided during process planning
significantly influence the performance of machine tool operations [13].

Accordingly, much of the literature has elucidated the relational models between process planning
decisions and energy consumption based on theoretical and experimental modeling approaches [14].
A theoretical approach uses the theory of metal-cutting with some coefficient assumptions; however,
it has limits in predicting energy values correctly due to the gap between assumptive and real coefficient
values. An experimental approach can be subdivided into statistical and learning approaches. A
statistical approach generates statistical models based on Design of Experiments, which aims at
generating response surfaces with a small set of experimental data. This approach derives polynomial
equations for energy prediction; however, it only works within the restricted experimental condition.
A learning approach uses real data from machining operations for creating machine-learned energy
models and shows high accuracy of energy prediction; however, it is limited to creating such models
in a data-absent environment, as mentioned above.

In view of the above, a holonic-based approach is necessary to gain the predictive capability
through self-learning for reducing energy in machining processes. As holons result from the application
of object-oriented concept, they can work as decentralized individuals who independently operate for
how-to-create and how-to-use models. These object-oriented holons can adaptively and evolutionarily
create learned models based on their associated data and thus can cope with the variability of data,
which frequently take place in manufacturing systems due to the changes in manufacturing setup,
condition and environment. Furthermore, holons’ mutual cooperation via their message exchanges
pursues performance optimization centralized on a holarchy. A plausible scenario for energy reduction
in machining is that the machines abstracted by holons automatically create energy-predictive models
through learning techniques, and predict their energy values using the models. In succession, the
machines autonomously and cooperatively make an optimal decision for reducing energy consumption
during the process planning phase.

For such purposes, we designed a holonic-based mechanism for self-learning factories based
on a hybrid-learning approach. We also implemented a prototype system to perform predictive
process planning for energy reduction in milling processes. The hybrid-learning approach is proposed
to obtain the ability of self-learned predictive modeling in both data-existent and even data-absent
environments via accommodating traditional machine learning and transfer learning. The holonic-based
mechanism, consisting of a modeling method, system architecture, and operational procedure, is
designed to provide an autonomous and collaborative decision-making environment through the
virtual agentization of machines and their associated objects under the paradigm of HMS. This
mechanism provides interconnections between data/models and virtual agents. Thus, we can create
and apply energy-predictive models automatically on machines with minimal human intervention.
The implementation demonstrates how individual machine tools utilize real data or existing models
for creating their learned models, predict energy based on their own models, and automatically
negotiate between themselves to find the best machine tool that can minimize energy consumption in
milling machining.

Section 2 reviews the relevant literature, and Section 3 introduces the concepts of a self-learning
factory and hybrid learning. Section 4 presents the holonic-based mechanism. Section 5 demonstrates
a prototype system with discussions, and Section 6 summarizes our conclusions.

Processes 2019, 7, 739 4 of 28

2. Related Works

This section reviews the literature relevant to HMS and learning ability. Our mechanism builds
upon the concept of HMS from a systematic perspective and the application of learning-based analytics
from a methodological perspective, respectively.

2.1. Holonic Manufacturing Systems

HMS originated from PROSA, which adopted a holonic organization to achieve stability against
disturbances, flexibility in changes, and efficiency in resource utilization [7]. The PROSA identified
major keywords as defined below [8].

• Holon: An autonomous and cooperative building block for transforming, transporting, storing,
and validating information and physical manufacturing objects. Basic holons consist of product,
resource, and order holons, whereas staff holons assist the basic holons.

• Holarchy: A system of holons that cooperates to achieve a goal. It defines the basic rules for
cooperation of holons, thereby limiting their autonomy.

• Autonomy: The capability of a holon to create and control the execution of its own plans
and strategies.

• Cooperation: A process whereby a set of holons develops and executes mutually acceptable plans.

Extensive knowledge of HMS can be found in outstanding reviews including [8,15–17]. The
reviews interestingly imply that Multi-Agent Systems (MAS) are a commonly-used and efficient
technology to implement HMS due to the suitability of implementing the modularity, decentralization,
and complexity of holons and their holarchy [17]. Here, an agent is a computational system situated
in a dynamic environment with the capability of exhibiting autonomous and intelligent behavior,
while MAS operate the community of interacting agents as a whole [16]. Thus, it makes sense that the
conceptual frame of HMS needs to be transformed to programmable outcomes using MAS technology.
Note that the present work also adopts this view due to the reasons given above.

Previous literature has attempted to develop and apply holonic-based systems to enhance target
Key Performance Indicators (KPI) in broad applications. The following describes the purposes of HMS
implementations in individual applications [15].

• Automation: The low- and (or) high-level control architecture to synchronize physical and
software control units for flexibility at the machine or shop floor levels.

• Task allocation: Task assignment involving the distribution of tasks to available resources with
the use of Contract Net Protocol (CNP), a negotiation procedure between a manager and a set of
candidate contractors about the assignment of a task [18]. Task allocation can be a part of planning
and scheduling in some sense.

• Fault-tolerance: Detection of failure, diagnosis of failure, and determination of reasonable
recovery actions.

• Real-time control: The system control that reacts within precise time constraints, being classified
into hard (missing deadline results in catastrophic consequences) or soft (meeting deadline is
desirable but missing a deadline will not cause serious damage).

• Planning and scheduling (the application of the present work): Optimal planning and scheduling
of available resources in the production or process level.

Table 1 lists the studies that have endeavored to develop holonic-based systems for enhancing the
target KPI (e.g., productivity, flexibility, reconfigurability and fault-free operation). Staff holons are
designed to efficiently carry out evaluation, mediation, management, and coordination to assist the
basic holons, which concentrate on achieving goals. However, the previous studies did not much focus
on data-driven modeling methodologies where the process of acquiring data and creating models
becomes critical in structuring holons’ functionalities and behaviors. As presented in Table 1, the

Processes 2019, 7, 739 5 of 28

previous studies are limited in identifying pivotal mediators that can interconnect historical data and
create data-driven models with basic holons for predictive process planning. These studies are also
limited in specifying operational and negotiating procedures between holons based on their recognition
of model-based prediction.

MAS-driven studies have recently contributed to improve energy efficiency in manufacturing
in accordance with the increase of energy reduction requirements. Alotaibi et al. developed a
MAS prototype to optimize bi-objective functions (energy and tardiness) in a flexible job shop [19].
Marchiori et al. presented a dynamical approach for energy trades in steel production with the use of
autonomous software agents [20]. Giret et al. proposed a software engineering approach for designing
sustainable intelligent control systems based on multi-agent and holonic principles [21]. However, their
studies depend on a deterministic or discrete event method and do not deal with energy-predictive
models based on a data-driven method, which can deliver better predictability and adaptability of
models at the machine level.

Processes 2019, 7, 739 6 of 28

Table 1. A summary of previous literature on Holonic Manufacturing Systems (HMS).

Application Citation Objective Holon Characteristics (Basic/Staff Holon)

Automation

[22]
A logic control system that supports
autonomous and cooperative actions on
Automated Guided Vehicles (AGV)

- Resource (B) 1: the set of devices consisting of robots, workpiece suppliers, and
conveyors
- Order (B): contains the data relevant to top-level holon orders
- Product (B): represents the abstraction of constituent parts
- Scheduling (S) 1: provides scheduling data to other holons
- Traffic controller (S): surveys AGV traffic and advises AGV holons to sort out
conflicts and avoid congestion

[23]

An adaptive control system that operates
using a role-based mechanism to
maintain performance even when faced
with perturbations

- Holon agent (B): a resource or an intelligent product, which can inform,
communicate, decide and act independently
- Optimization mechanism (S): a societal or environmental optimization mechanism to
ensure global performance

[24]

A high-level architecture with
integration of both behavioral and
structural self-organization for adaptive
production control

- Product (B): represents products and the knowledge for production
- Task (B): manages real-time execution of orders
- Operational (B): represents resources (e.g., robots and operators)
- Supervisor (S): introduces optimization into the system

Task allocation

[25]

A machine allocation algorithm that
employs the genetic algorithm control
for schedule generation and the shortest
processing time-based Contract Net
Protocol (CNP) for schedule negotiation

- Job (B): represents single jobs
- Machine (B): represents machines
- Job management (S): manages job holons and informs decomposition into
decomposition holons
- Decomposition (S): allows for cluster generation and scheduling assignment
- Cluster (S): groups a number of machine holons
- Genetic Algorithm (S): determines job process sequences in a meta-heuristic method

[26]
A software design methodology that
formulates workflow adaptation
problems based on the CNP

- Task (B): represents tasks to be processed
- Actor (B): represents workers or customers in the system

Fault-tolerance

[27]
A distributed architecture that performs
disturbance handling and predicts mean
time between failures

- Resource (B): monitors the device’s status for predictive maintenance
- Quality control (S): performs detection through quality verification
- Task (S): monitors production orders
- Supervisor (S): performs meta-monitoring by aggregating the information under
holon clusters

[28]

A service-oriented architecture that
operates mechanisms for fault treatment
with reconfiguration of dispersed
manufacturing

- Product (B): manages requests of products, searches for corresponding holons, and
creates a work order
- Task (B): manages recipes
- Operation (B): represents equipment and humans
- Supervisor (S): coordinates the services of all holons

Processes 2019, 7, 739 7 of 28

Table 1. Cont.

Application Citation Objective Holon Characteristics (Basic/Staff Holon)

Real-time control

[29]
An adaptive control and distributed
approach using IEC 61499 function
blocks in machining groups

- Product (B): requests manufacturing to planning holons
- Planning (B): assigns product operations into machines
- Main Control (B): sequences operations and calculates the processing time of
production
- Operation (B): consists of: control layers to encapsulate agent and function blocks,
interface layers to contain virtual simulation and a logical adapter, and machine
layers to encapsulate a real machine and its virtual model

[30]
A holonic hybrid control system that
interacts discrete planning and
continuous processes

- Product (B): stores and communicates recipes of products
- Order (B): determines future planning and holarchy of the system
- Resource (B): performs device online control

Planning/scheduling

[31]
An integrated planning and scheduling
algorithm that dynamically generates
optimal process plans and schedules

- Job (B): represents jobs to be manufactured
- Machine tool (B): represents machine tools
- Machining process (B): represents machining processes by machine tools
- Production engineering (S): initializes the basic holons and modifies job
specifications for disturbance handling
- Job order (S): represents manufacturing tasks
- Coordination (S): determines suitable assignment of job holons using
mathematical models

[32]
A Petri-net based methodology that
computes sequential flexibility for
dead-lock free planning and scheduling

- Product (B): possesses product’s process information
- Resource (B): provides manufacturing capability
- Order (B): coordinates the execution of production plans
- Directory facilitator (S): provides static information on the system as an
information server

[33]
A hybrid metaheuristic-based holonic
multi-agent model for flexible job shop
scheduling and robot routing

- Robot-system (B): represents robots used for operation
- Order-system (B): executes orders within each job
- Machine-system (B): represents machine system tools
- Scheduler (B): prepares the best promising reasons of the search space
- Cluster (B): guides the search to the global optimum solution of the problem

[34]
A rescheduling mechanism for
unpredicted orders and unavailable
resource appearance

- Product/Order (B): issues goals according to orders to be solved as managers
- Resource (B): represents machines to carry out operations
- Contractor (S): performs negotiations among resource holons within the CNP

1 (B): Basic holon, (S): Staff holon.

Processes 2019, 7, 739 8 of 28

2.2. Learning-Based Analytics

Learning ability is recognized as an indispensable feature of manufacturing intelligence [35].
As machine learning inherits the ability to learn, the applications of machine learning dramatically
increased in manufacturing domains over the last two decades, and proved suitable in prediction,
optimization, control, maintenance, and troubleshooting. This suitability stems from the advantages
of machine-learning techniques that handle high dimensional problems, increase the usability of
machine-learning practice, discover unknown knowledge, and adapt automatically to dynamic and
complex environments [36].

The learning ability has also been incorporated into agent-based manufacturing systems [37].
Kadar and Monostori presented resource/system-level learning to improve the performance of
distributed systems by expanding the adaptive characteristics of agents [38]. Shen et al. proposed a
learning mechanism for identifying organizational knowledge and selective interaction propagation
from emergent system behavior, and it was used for adjusting distributed schedules and planning
dynamically [6].

The learning ability has been widely applied into energy-efficient machining as well. Previous
works have demonstrated that machine-learning techniques are powerful for predicting and optimizing
energy consumption through utilizing the prior knowledge of a concerned system [39]. For example,
Garg et al. applied a multi-gene genetic programming approach to generate the model structure and
coefficients automatically for energy prediction and optimization in milling machining [40]. Bhinge
et al. presented a data-driven approach for energy prediction in milling machining through the
application of Gaussian process regression [41], and Liu et al. used a tree-based gradient boosting
method, which is a machine learning method to combine weak models into a single strong model in an
iterative fashion, to predict specific cutting energy in milling [39].

Despite such efforts, a common problem remains in that values of certain attributes are not available
or are missing in the dataset [36]. The recent emergence of transfer learning appears to overcome this
problem in manufacturing. Transfer-learning applications are increasing and include fault detection and
condition causality in product quality management, fault diagnosis and condition-based maintenance
in machine maintenance, and tool tip dynamics prediction in machine chatter [42,43].

Consequently, the motivation of the present work is to develop a HMS mechanism for gaining
learning ability, where basic holons can interconnect data, create data-driven models, and determine
their behaviors autonomously and collaboratively for energy-efficient machining through predictive
process planning. The convergence of machine learning and transfer learning provides a basis for
proactive decision-making about the future behaviors of agent-based manufacturing systems, thereby
resulting in learning ability in complex and dynamic environments.

3. Self-Learning Factory and Hybrid Learning

This section introduces the concept of a self-learning factory and a hybrid-learning approach,
respectively. Section 3.1 explains the conceptual structure and process of a self-learning factory.
Section 3.2 describes the theoretical methodology of the hybrid-learning approach.

3.1. Self-Learning Factory

Manufacturing systems operate in dynamic and real-time environments and are frequently
confronted with unexpected events such as machine failure. In this circumstance, MAS have been
applied to facilitate adaptive, flexible and efficient use of manufacturing resources. However,
determining concrete behaviors and activities in MAS a priori is challenging because the following
things should be known: the environmental requirements that will emerge in the future, which agents
are available, and how those agents need to interact in response to these requirements. Such challenges
should be overcome by endowing the agents with the ability to improve the future performance of
manufacturing systems through experience [6]. In the present work, a self-learning factory is the

Processes 2019, 7, 739 9 of 28

manufacturing system that allows manufacturing objects themselves to learn from past experience,
perform predictive simulations and analytics based on the learned-experience, and thus proactively
determine their behaviors and activities for improving, sustaining or recovering their target KPI.

Figure 1 presents the concept of a self-learning factory. It consists of a physical and cyber pairwise
factory, which mirrors the physical factory and uses virtual agents for representing their physical
objects. The cyber factory collects manufacturing data acquired from physical objects. It processes data
to generate training datasets and manufacturing context information. Here, the manufacturing context
means a machining condition that specifies which machine, material, machining feature, operation
and strategy are applied when a certain dataset is generated. The manufacturing context information
can be used a model identifier for categorizing the entire training dataset into individual datasets
because different process conditions create disparate models. For example, models for a machine need
to be different from those of another machine because both machines have different capabilities and
performances. It then creates models from training datasets using learning techniques and stores
them in a knowledge database (model repository). Here, it can adaptively choose machine learning or
transfer learning, depending on whether training datasets exist or not (more details in Section 3.2).
The cyber factory makes predictive planning and control decisions based on learned knowledge and
models, and eventually feeds such decisions forward to the physical objects located in the physical
factory. This cycle repeats, and the cyber factory evolutionarily improves the robustness of knowledge
and models, thereby allowing for more accurate planning and control in physical factories.

Processes 2019, 7, x FOR PEER REVIEW 9 of 27

Figure 1. The concept of a self-learning factory. KPI: Key Performance Indicators.

3.2. Hybrid Learning

Manufacturing data are very important because data-driven knowledge creation is the
foundation for the self-learning factory. Figure 2 presents data flow on a computer-aided chain in
machining processes. Machining processes require part geometries, production plans (macro-level
plans for managing a shop floor), process plans (micro-level plans for machining a part), and
Numerical Control (NC) programs. Supplementary information like part libraries and machine and
cutting tool specifications aid in efficient planning and control by providing technical requirements
about products and resources. Here, the data associated with specifications, planning, and control
work as causative data because they characterize commands and instructions by which machines
must operate. While machine tools run the machining, they generate machine-monitoring data to
represent their actions and movements along with timestamps. After or during machining, inspection
equipment records values that are used to check whether machining was satisfactorily completed as
designed or not. Machine monitoring and inspection data can be resultant data because they result
from the machine’s actual operations commanded and instructed by the causative data. Specifically,
process plan and NC program data significantly influence machine-monitoring data because a
machine tool takes the actions designated by the NC programs, which are outcomes of process plans
[44].

Physical factory

Manufacturing objects
(machine, robot, product, etc)

Cyber factory

Data processing

Self-learning

Machine-
learning

Transfer-
learning

Decision making

- Process plan data
- Control data
- Operation data
- Sensor data

- Manufacturing context
- Training dataset

- Predictive model
- Knowledge

- Process plan
- Process control

- KPI prediction
- Decisions

Virtual
agents

Data
repository

Model
repository

Decision
transmission

Data collection

- Raw data

Figure 1. The concept of a self-learning factory. KPI: Key Performance Indicators.

3.2. Hybrid Learning

Manufacturing data are very important because data-driven knowledge creation is the foundation
for the self-learning factory. Figure 2 presents data flow on a computer-aided chain in machining
processes. Machining processes require part geometries, production plans (macro-level plans for
managing a shop floor), process plans (micro-level plans for machining a part), and Numerical
Control (NC) programs. Supplementary information like part libraries and machine and cutting tool
specifications aid in efficient planning and control by providing technical requirements about products
and resources. Here, the data associated with specifications, planning, and control work as causative
data because they characterize commands and instructions by which machines must operate. While
machine tools run the machining, they generate machine-monitoring data to represent their actions

Processes 2019, 7, 739 10 of 28

and movements along with timestamps. After or during machining, inspection equipment records
values that are used to check whether machining was satisfactorily completed as designed or not.
Machine monitoring and inspection data can be resultant data because they result from the machine’s
actual operations commanded and instructed by the causative data. Specifically, process plan and
NC program data significantly influence machine-monitoring data because a machine tool takes the
actions designated by the NC programs, which are outcomes of process plans [44].

Processes 2019, 7, x FOR PEER REVIEW 10 of 27

Figure 2. A computer-aided process chain and its data flow. CAD: Computer-Aided Design; CAPP:
Computer-Aided Process Planning; CAM: Computer-Aided Manufacturing; CNC: Computerized
Numerical Control; CAI: Computer-Aided Inspection.

From a learning perspective, causative data can correspond to input variables (x variables) as
training datasets consist of x–y pairwise data instances; meanwhile, the resultant data are included
as output variables (y variables) [37]. Additionally, certain causative data are involved in identifying
the manufacturing contexts because they specify machining conditions. Hence, process plan and NC
program data configure manufacturing context information or x variable data instances, whereas
machine-monitoring data are related to y variable data instances. Training datasets can be
constructed by integrating machine-monitoring data instances with their corresponding process plan
and NC program data instances. Such training datasets are the primary requirements for machine
learning and are used to compute their causal relationship by learning techniques.

When implementing the self-learning factory, it is necessary to achieve the self-learning ability
through creating predictive models by means of appropriate learning approaches. Predictive models
allow machines to forecast KPI under uncertainties, thereby helping the KPI optimization through
their self-aware abilities [45]. The traditional learning that uses machine-learning techniques shows
excellence at creating predictive models, as reviewed in Section 2.2. However, it does not work unless
training datasets exist. To overcome this limitation of the traditional learning, we apply hybrid
learning. Hybrid learning can be defined as a learning method where traditional machine learning
creates predictive models in a data-existent environment; on the other hand, transfer learning does
in a data-absent environment.

Figure 3 presents the concept of hybrid learning for creating energy prediction models in
machining processes. Note that our problem is supervised learning because the x and y variables are
supervised by humans and desired outputs are supplied during training. When training datasets
exist, traditional learning computes a mathematical function, y = f(X) + ε (ε: error term), based on
learning x–y pairwise training datasets. The upper part of Figure 3 shows how traditional learning is
used to create an energy model using an ANN, which is useful for energy prediction in machining
[46]. This model can calculate an anticipated energy value based on the input of process parameters
(feedrate, spindle speed, and cutting depth) in a certain manufacturing context because ANN makes
the x−y relationship numerically known. Such models can provide reliable prediction capability
because they build on training datasets that come from real data.

Part design
(CAD)

Production planning
(CAPP)

Process planning
(CAPP)

Tool path generation
(CAM)

Machining
(CNC)

Inspection
(CAI) Machine monitoring

Machine tool specification

Cutting tool

Part library

Post processing

Production resource

Machining feature specification

Design requirement
Engineering requirement

Part geometry

Machine tool resource
Machining features & processes

Machining operations
Tool path strategies

Cutting tools

Machined part

NC program

Machine execution

Dimensional measurement Machine-monitoring documents

Part dictionary

Production resource

Machine tool description

Machining feature geometry

Tool type and geometry

NC code scheme

Causative data group

Resultant data group

Figure 2. A computer-aided process chain and its data flow. CAD: Computer-Aided Design; CAPP:
Computer-Aided Process Planning; CAM: Computer-Aided Manufacturing; CNC: Computerized
Numerical Control; CAI: Computer-Aided Inspection.

From a learning perspective, causative data can correspond to input variables (x variables) as
training datasets consist of x–y pairwise data instances; meanwhile, the resultant data are included as
output variables (y variables) [37]. Additionally, certain causative data are involved in identifying
the manufacturing contexts because they specify machining conditions. Hence, process plan and
NC program data configure manufacturing context information or x variable data instances, whereas
machine-monitoring data are related to y variable data instances. Training datasets can be constructed
by integrating machine-monitoring data instances with their corresponding process plan and NC
program data instances. Such training datasets are the primary requirements for machine learning and
are used to compute their causal relationship by learning techniques.

When implementing the self-learning factory, it is necessary to achieve the self-learning ability
through creating predictive models by means of appropriate learning approaches. Predictive models
allow machines to forecast KPI under uncertainties, thereby helping the KPI optimization through
their self-aware abilities [45]. The traditional learning that uses machine-learning techniques shows
excellence at creating predictive models, as reviewed in Section 2.2. However, it does not work
unless training datasets exist. To overcome this limitation of the traditional learning, we apply hybrid
learning. Hybrid learning can be defined as a learning method where traditional machine learning
creates predictive models in a data-existent environment; on the other hand, transfer learning does in a
data-absent environment.

Figure 3 presents the concept of hybrid learning for creating energy prediction models in machining
processes. Note that our problem is supervised learning because the x and y variables are supervised
by humans and desired outputs are supplied during training. When training datasets exist, traditional
learning computes a mathematical function, y = f(X) + ε (ε: error term), based on learning x–y pairwise

Processes 2019, 7, 739 11 of 28

training datasets. The upper part of Figure 3 shows how traditional learning is used to create an
energy model using an ANN, which is useful for energy prediction in machining [46]. This model
can calculate an anticipated energy value based on the input of process parameters (feedrate, spindle
speed, and cutting depth) in a certain manufacturing context because ANN makes the x−y relationship
numerically known. Such models can provide reliable prediction capability because they build on
training datasets that come from real data.

Processes 2019, 7, x FOR PEER REVIEW 11 of 27

Transfer-learning can work when training datasets are unavailable. This transfer learning can
create substituent models by transferring learned knowledge (existing models) as it builds upon the
similarity between models. A target manufacturing context (target task) captures a substituent model
that has the best similarity among existing models (source tasks), as presented in the lower part of
Figure 3. Transfer learning unavoidably requires prior knowledge, where the similarity between
models has been investigated in a certain manufacturing system (domain). The prior knowledge can
be obtained from a preliminary analysis of the target KPI (here, energy). Table 2 shows an example
of the similarity of strategies in 2.5 dimensional pocketing machining. This similarity comes from the
previous work [47], which observes that unidirectional x-axis up/down milling and unidirectional y-
axis strategies have the similar energy pattern in pocket machining due to the dependency of cycle
time; on the other hand, bidirectional x-axis, contour, and spiral strategies do. Model similarities can
be graded in terms of high, middle or low levels, depending on their energy pattern likeness. When
creating a substituent model, one of several models that have a high-level of similarity can be selected
and then be substituted for the model that needs to be created (the selection method explained in
Section 4.1.2). For example, a contour or spiral strategy model can be substituted for the model of
bidirectional strategy due to their high-level of similarity.

The adaptive convergence of machine learning and transfer learning enables self-learning ability
regardless of the degrees of freedom in the data. While models are continuously created by hybrid
learning, enormous knowledge can be accumulated to ensure predictive capability in a huge number
of manufacturing contexts.

Figure 3. The concept of hybrid learning. ANN: Artificial Neural Network.

Table 2. A similarity matrix of energy patterns in 2.5 dimensional pocketing strategies.

Strategy.
Unidirectional x-

axis down milling
Unidirectional x-axis

up milling
Bidirectional

x-axis
Unidirectional

y-axis Contour Spiral

Unidirectional x-axis
down milling

 High Low High Low Low

Unidirectional x-axis
up milling

High Low High Low Low

Bidirectional x-axis Low Low Low High High

Unidirectional y-axis High High Low Low Low

Contour Low Low High Low High
Spiral Low Low High Low High

4. Mechanism

Transfer-
Learning

Machine-
Learning

Manufacturing Context n

Machine: NVD1500DCG
Material: Steel alloy
Feature: Closed pocket
Operation: Pocketing
Strategy: Bidirectional

Learning

x1 x2 … x4 y
x1,1

n x2,1
n x4,1

n y1
n

… … …
x1,r

n x2,r
n x4,r

n yr
n

Training dataset ANN-based Energy Prediction Model n

Manufacturing Context n+1

Machine: NVD1500DCG
Material: Steel alloy
Feature: Closed pocket
Operation: Pocketing
Strategy: Unidirectional

Model
Repository

Similarity Analysis

Energy Prediction Model n+1

Energy Prediction Model n

Knowledge Accumulation

Knowledge Transfer

Feedrate

Spindle Speed

Cutting Depth

x1
fh1,1

fh1,2
fo Energyx2

x3

y

wji

wkj

fh1,3

fh1,N

Feedrate

Spindle Speed

Cutting Depth

x1
fh1,1

fh1,2
fo Energyx2

x3

y

wji

wkj

fh1,3

fh1,N

Substitution

Figure 3. The concept of hybrid learning. ANN: Artificial Neural Network.

Transfer-learning can work when training datasets are unavailable. This transfer learning can
create substituent models by transferring learned knowledge (existing models) as it builds upon the
similarity between models. A target manufacturing context (target task) captures a substituent model
that has the best similarity among existing models (source tasks), as presented in the lower part of
Figure 3. Transfer learning unavoidably requires prior knowledge, where the similarity between
models has been investigated in a certain manufacturing system (domain). The prior knowledge can
be obtained from a preliminary analysis of the target KPI (here, energy). Table 2 shows an example of
the similarity of strategies in 2.5 dimensional pocketing machining. This similarity comes from the
previous work [47], which observes that unidirectional x-axis up/down milling and unidirectional
y-axis strategies have the similar energy pattern in pocket machining due to the dependency of cycle
time; on the other hand, bidirectional x-axis, contour, and spiral strategies do. Model similarities can
be graded in terms of high, middle or low levels, depending on their energy pattern likeness. When
creating a substituent model, one of several models that have a high-level of similarity can be selected
and then be substituted for the model that needs to be created (the selection method explained in
Section 4.1.2). For example, a contour or spiral strategy model can be substituted for the model of
bidirectional strategy due to their high-level of similarity.

The adaptive convergence of machine learning and transfer learning enables self-learning ability
regardless of the degrees of freedom in the data. While models are continuously created by hybrid
learning, enormous knowledge can be accumulated to ensure predictive capability in a huge number
of manufacturing contexts.

Processes 2019, 7, 739 12 of 28

Table 2. A similarity matrix of energy patterns in 2.5 dimensional pocketing strategies.

Strategy.
Unidirectional

x-axis down
Milling

Unidirectional
x-axis up Milling

Bidirectional
x-axis

Unidirectional
y-axis Contour Spiral

Unidirectional
x-axis down

milling
High Low High Low Low

Unidirectional
x-axis up milling High Low High Low Low

Bidirectional
x-axis Low Low Low High High

Unidirectional
y-axis High High Low Low Low

Contour Low Low High Low High

Spiral Low Low High Low High

4. Mechanism

This section presents the mechanism for implementing the self-learning factory based on the
hybrid-learning approach. The mechanism includes a modeling method, system architecture and
operational procedure, and it focuses on predictive process planning for energy reduction in the cyber
part of the self-learning factory.

4.1. Modeling Method

Predictive process planning requires models so that machines make proactive and autonomous
decisions through model-based anticipation. The hybrid-learning approach needs to be fully specified
because it should be implemented to compile the knowledge needed for automatic creation and use of
models. Figure 4 shows high-level methods of the hybrid-learning approach. Sections 4.1.1 and 4.1.2
explain the methods of machine learning and transfer learning, respectively.

Processes 2019, 7, x FOR PEER REVIEW 12 of 27

This section presents the mechanism for implementing the self-learning factory based on the
hybrid-learning approach. The mechanism includes a modeling method, system architecture and
operational procedure, and it focuses on predictive process planning for energy reduction in the
cyber part of the self-learning factory.

4.1. Modeling Method

Predictive process planning requires models so that machines make proactive and autonomous
decisions through model-based anticipation. The hybrid-learning approach needs to be fully
specified because it should be implemented to compile the knowledge needed for automatic creation
and use of models. Figure 4 shows high-level methods of the hybrid-learning approach. Sections 4.1.1
and 4.1.2 explain the methods of machine learning and transfer learning, respectively.

Figure 4. The modeling method of a hybrid-learning approach

4.1.1. Machine-Learning Method

The machine-learning method handles manufacturing data and data-driven models with the use
of machine-learning techniques. It consists of: (1) raw data retrieval, (2) data pre-processing, (3)
training dataset preparation, (4) model creation, (5) model validation, and (6) model storage and
retrieval.

(1) Raw data retrieval involves the search and retrieval of raw data stored in a data repository
for collecting data instances in training datasets. As explained in Section 3.2, the process plan, NC
program and machine-monitoring data need to be searched and retrieved through a certain search
method. A metadata-based search is useful as the metadata indicate the data about the data and serve
as a map for locating data instances [48]. Once data instances are tagged with metadata attributes as
header information, they can be effectively detected through mapping metadata-tagged data
instances with the data queries utilizing the metadata attributes. We design the attributes of the
metadata by considering generality and accessibility. Generality assures that basic information about
data instances will be represented across various data formats and dispersed data sources.
Accessibility increases the availability of data searches even when some attributes are null. The
attributes of the metadata of data can be identified as follows.

Metadata of data = {UUID, Group ID, Creator, Source, Duration, Means, Purpose, Creation}.
• UUID: Universally Unique Identifier.
• Group ID: an identifier for grouping instances.
• Creator: an identifier indicating who creates instances.
• Source: an identifier indicating where instances are stored.
• Duration: a period of time for gathering instances.
• Means: an identifier indicating how instances are obtained.
• Purpose: data attributes to be requested.
• Creation: a timestamp of data creation.

Transfer-
Learning

Machine-
Learning

Raw data
retrieval

Data
pre-processing

Training dataset
preparation

Model
creation

Model
validation

Model storage
& retrieval

Model
substitution

Model
validation

Raw dataset Processed dataset Training dataset Raw model

Validated model

Substituted model

Data-existent environment

Data-absent environment
Model

similarity analysis
Model knowledge

Figure 4. The modeling method of a hybrid-learning approach

4.1.1. Machine-Learning Method

The machine-learning method handles manufacturing data and data-driven models with the use
of machine-learning techniques. It consists of: (1) raw data retrieval, (2) data pre-processing, (3) training
dataset preparation, (4) model creation, (5) model validation, and (6) model storage and retrieval.

(1) Raw data retrieval involves the search and retrieval of raw data stored in a data repository
for collecting data instances in training datasets. As explained in Section 3.2, the process plan, NC
program and machine-monitoring data need to be searched and retrieved through a certain search
method. A metadata-based search is useful as the metadata indicate the data about the data and serve
as a map for locating data instances [48]. Once data instances are tagged with metadata attributes as
header information, they can be effectively detected through mapping metadata-tagged data instances
with the data queries utilizing the metadata attributes. We design the attributes of the metadata by

Processes 2019, 7, 739 13 of 28

considering generality and accessibility. Generality assures that basic information about data instances
will be represented across various data formats and dispersed data sources. Accessibility increases the
availability of data searches even when some attributes are null. The attributes of the metadata of data
can be identified as follows.

Metadata of data = {UUID, Group ID, Creator, Source, Duration, Means, Purpose, Creation}.

• UUID: Universally Unique Identifier.
• Group ID: an identifier for grouping instances.
• Creator: an identifier indicating who creates instances.
• Source: an identifier indicating where instances are stored.
• Duration: a period of time for gathering instances.
• Means: an identifier indicating how instances are obtained.
• Purpose: data attributes to be requested.
• Creation: a timestamp of data creation.

Figure 5 shows an example of the data retrieval using the metadata of data. When a set of raw
data associated with process planning (formalized as ISO14649 [49]), NC programing (conforming
to Fanuc codes), and machine monitoring (represented by MTConnect [50]) needs to be retrieved,
‘O9131’ (the NC program name) can work as ‘group ID’. In Figure 5a, if the metadata contain ‘group
ID’ and ‘purpose’, the relevant data instances can be retrieved because ‘O9131’ (red italic letters) is
encoded at ‘FILE_DESCRIPTION’ in the header section and ‘purpose’ corresponds to the entity of
‘PROJECT’ in the data section. In Figure 5b, ‘purpose’ can request a list of ‘CODE BLOCKS’ in the NC
program named ‘O9131’. Figure 5c illustrates the data retrieval from an MTConnect document when
data instances regarding ‘position’ and ‘wattage’ attributes during a period of time are necessary.

(2) Data pre-processing re-produces high-quality data from raw data and handles them as
designated for preparing training datasets. The data pre-processing basically includes data cleaning,
integration, transformation, and reduction [51].

Data cleaning resolves missing, noisy, outlying, duplicate, or incorrect data. Raw data unavoidably
include sparse, imprecise, faulty, missing, or null data due to the dynamics of manufacturing systems
and the limited capability of measurement devices [52]. These uncleaned data cause an increase
in data uncertainty and result in negative impact on data-driven learning. Data cleaning produces
so-called good data by keeping the data uncertainty under control, thereby increasing the reliability of
data-sensitive learning.

Data integration combines heterogeneous data sources or separate formats into a single dataset for
the desired learning analysis. For example, data instances retrieved from three different data formats
in Figure 5 should be integrated into a tabular training dataset to connect the x and y variables. Data
integration can be achieved by the backward tracing that scans from an MTConnect document and
an NC program to an ISO14649 program. Here, a key attribute should be identified as the linking
point for backward tracing, for which ‘position’ can be chosen as this key. Since ‘position’ indicates the
coordinates of a cutting tool, a value of ‘power’ matched with a certain position can be obtained. A NC
code block associated with the given position can be traced because the block obviously commands
cutting tool movement involving the position. In turn, a machining operation associated with the NC
block can be found because the former creates a group of NC blocks where the latter gets involved.

Data transformation converts data instances into the desired format, scale or unit that is more
useful for the learning analysis. For example, real data values about feedrate, spindle speed, cutting
depth, and power (blue and underlined letters in Figure 5a) need to be adjusted to a 0–1 scale through
minimum–maximum normalization due to their different scales. In addition, it is necessary to convert
a power unit to an energy unit. This is because a power meter typically measures power values, as
shown in Figure 5c, while the y variable in our model uses energy units, which are scalar quantities.
We adopt the delta-energy unit, which can be calculated by multiplying power with a sampling rate of

Processes 2019, 7, 739 14 of 28

measured power [41]. For example, the sampling rate is given by 0.365 s (the average sampling time of
the power meter used in our case study).

Processes 2019, 7, x FOR PEER REVIEW 13 of 27

Figure 5 shows an example of the data retrieval using the metadata of data. When a set of raw
data associated with process planning (formalized as ISO14649 [49]), NC programing (conforming to
Fanuc codes), and machine monitoring (represented by MTConnect [50]) needs to be retrieved,
‘O9131’ (the NC program name) can work as ‘group ID’. In Figure 5a, if the metadata contain ‘group
ID’ and ‘purpose’, the relevant data instances can be retrieved because ‘O9131’ (red italic letters) is
encoded at ‘FILE_DESCRIPTION’ in the header section and ‘purpose’ corresponds to the entity of
‘PROJECT’ in the data section. In Figure 5b, ‘purpose’ can request a list of ‘CODE BLOCKS’ in the
NC program named ‘O9131’. Figure 5c illustrates the data retrieval from an MTConnect document
when data instances regarding ‘position’ and ‘wattage’ attributes during a period of time are
necessary.

(a)

(b)

(c)

Figure 5. Data retrieval using a metadata-based search (a) ISO14649 program; (b) Numerical Control
(NC) program; (c) MTConnect document. UUID: Universally Unique Identifier.

(2) Data pre-processing re-produces high-quality data from raw data and handles them as
designated for preparing training datasets. The data pre-processing basically includes data cleaning,
integration, transformation, and reduction [51].

Data cleaning resolves missing, noisy, outlying, duplicate, or incorrect data. Raw data
unavoidably include sparse, imprecise, faulty, missing, or null data due to the dynamics of
manufacturing systems and the limited capability of measurement devices [52]. These uncleaned data
cause an increase in data uncertainty and result in negative impact on data-driven learning. Data

UUID = “TEST VERSION1.stp”
Group ID = “O9131”
Creator = “PROCESS PLANNER A”
Source = null
Duration = null
Means = null
Purpose = [PROJECT]
Creation = “2014-10-15”

HEADER;
FILE_DESCRIPTION(('O9131', 'PROCESS PLANNING FOR 2.5D MILLING'), '1');
FILE_NAME('TEST VERSION1.stp', ‘2014-10-15', ('PROCESS PLANNER A'),

('ORGANIZATION B'), '$', 'ISO 14649', '$');
ENDSEC;
DATA;
#1= PROJECT('EXECUTE EXAMPLE1',#2,(#4),$,$,$);
#2= WORKPLAN('MAIN WORKPLAN',(#30,#36,#34,#32,#38,#40,#42,#44,#46),$,#8,$);
#36=MACHINING_WORKINGSTEP(‘CLOSED_POCKET1',#60,#3400,#500,$);
#500=BOTTOM_AND_SIDE_ROUGH_MILLING($,$,‘CLOSED_POCKET1',

10.0,$,#510,#530,#540,$,#550,#560,#570,2.0,8.0,0.0,0.0);
#510=MILLING_CUTTING_TOOL(‘ENDMILL',#511,(#513),80.0,$,$);
#530=MILLING_TECHNOLOGY(0.007,.TCP.,$,2000,$,.F.,.F.,.F.,$);

Metadata Data Instances

UUID = “O9131.nc”
Group ID = “O9131”
Creator = null
Source = null
Duration = null
Means = null
Purpose = [CODE BLOCKS]
Creation = “2014-10-26”

O9131
(‘2014-10-26’)

G17 G90 G21 G94
G0 G40 G80
G91 G28 Z0 M19G28 X0 Y0

(SOLIDMILL - CONTOURING)
N10 (5/16 IN END MILL, T01 H01 D01)
M5
G91 G28 Z0 M19
M1

Metadata Data Instances

UUID = “MILLING_MACHINE_1”
Group ID = “O9131”
Creator = “NVD1500DCG”
Source = null
Duration = [2014-12-11T22:57:000 ~

2014-12-11T23:58:000]
Means = null
Purpose = [Position; Wattage]
Creation = “2014-12-11T21:33:22.323”

<Header creationTime="2014-12-11T21:33:22.323" … instanceId=“O9131” …
firstSequence="2014-12-11T22:57:000" lastSequence=“2014-12-11T23:58:000"/>

<Streams>
<DeviceStream name=“NVD1500DCG" uuid="MILLING_MACHINE_1">

<ComponentStream name=“X_AXIS” component=“Linear” componentId=“x_axis”>
<Position dataItemId=“X_POSITION” timestamp=“2014-12-11T22:57:58.835”>-6.071</Position>

<ComponentStream name=“Y_AXIS” component=“Linear” componentId=“y_axis”>
<Position dataItemId=“Y_POSITION” timestamp=“2014-12-11T22:57:58.835”>47.808</Position>

<ComponentStream name=“Z_AXIS” component=“Linear” componentId=“z_axis”>
<Position dataItemId=“Z_POSITION” timestamp=“2014-12-11T22:57:58.835”>-1.500</Position>

<ComponentStream name=“Systems” component=“Electric” componentId=“Systems”>
<Wattage dataItemId=“WATTAGE” timestamp=“2014-12-11T22:57:58.835”>2811.500</Wattage>

Metadata Data Instances

Figure 5. Data retrieval using a metadata-based search (a) ISO14649 program; (b) Numerical Control
(NC) program; (c) MTConnect document. UUID: Universally Unique Identifier.

Data reduction may involve the removal of redundant data instances or a reduction in data
dimensions to alleviate computational burdens or obtain straightforward learning results. The present
dataset forms a data tuple of {feedrate, spindle speed, cutting depth}-{delta energy} at every sampling
rate. We need to reduce the data dimension to {feedrate, spindle speed, cutting depth}-{energy} in
terms of a manufacturing context because our models seek to output an energy value using the input
of certain process parameters in a manufacturing context, as described in Section 3.2. For this purpose,
all delta energy values within a manufacturing context are aggregated into a single energy value in the
manufacturing context.

(3) Training dataset preparation decomposes the entire pre-processed dataset into individual
training datasets separated by manufacturing contexts. Different manufacturing contexts require
different models. This comes from the disparate power patterns caused by different cutting force
distributions. For example, the power pattern for unidirectional strategy is different from that for
bidirectional strategy due to their different tool movements and their different cutting forces. Table 3
presents an example of training datasets in two different manufacturing contexts (bidirectional and

Processes 2019, 7, 739 15 of 28

contour machining strategies) within the same pocketing operation. These two datasets are used to
create two different models. For example, when the feedrate is set to 0.333, spindle speed to 0.5, and
cutting depth to 1, its corresponding energy value equals to 0.188, which is an aggregated value of
individual delta energy values consumed by operating the bidirectional strategy for the pocketing.
Note that the numerical values are normalized to a 0–1 scale based on original values.

Table 3. An example of training datasets.

Manufacturing Context x Variables y
Variable

Machine Material Feature Operation Strategy Feedrate Spindle
speed

Cutting
depth Energy

NVD1500DCG
Steel
alloy

Closed
pocket

Pocketing

Bi-directional

0.333 0.5 1 0.188

0.667 0 0 0.546

0.667 1 0 0.227

0.667 1 1 0.000

Contour

0.333 0.5 0 0.796

1 0.5 0 0.256

0.333 0.5 1 0.269

0.667 0 0 0.386

(4) Model creation involves the generation of predictive models through learning training datasets
by machine-learning techniques. As noted in Section 3.2, our model is supervised learning and
thus machine-learning techniques can be used to derive mathematical functions that determine the
relationship between the x and y variables. Equation (1) expresses an ANN-based function for energy
prediction [53]. Figure 6 shows the structure of an energy prediction model (the graphical structure is
presented in Figure 3) and its example where the attributes of an ANN function are instantiated. The
manufacturing context enrolls model identification, and the numerical function performs the energy
calculation based on the input of the process parameters.

y = fO(
p∑

j=0

wOi fh(
q∑

i=0

w jixi)) + ε (1)

where y: energy, x: process parameter (feedrate, spindle speed, and cutting depth), p and q: the
numbers of neurons at each layer, woi and wji: weight values, fo and fh: activation functions, and ε:
learning error

Processes 2019, 7, x FOR PEER REVIEW 15 of 27

1 0.5 0 0.256
0.333 0.5 1 0.269
0.667 0 0 0.386

(4) Model creation involves the generation of predictive models through learning training
datasets by machine-learning techniques. As noted in Section 3.2, our model is supervised learning
and thus machine-learning techniques can be used to derive mathematical functions that determine
the relationship between the x and y variables. Equation (1) expresses an ANN-based function for
energy prediction [53]. Figure 6 shows the structure of an energy prediction model (the graphical
structure is presented in Figure 3) and its example where the attributes of an ANN function are
instantiated. The manufacturing context enrolls model identification, and the numerical function
performs the energy calculation based on the input of the process parameters.

y = 𝑓ை(𝑤ை𝑓(𝑤𝑥)) + 𝜀
ୀ

ୀ (1)

where y: energy, x: process parameter (feedrate, spindle speed, and cutting depth), p and q: the
numbers of neurons at each layer, woi and wji: weight values, fo and fh: activation functions, and ε:
learning error

Figure 6. Structure of an energy prediction model.

(5) Model validation involves the quantification of model significance and reliability to validate
model conformance. This process checks whether model performance satisfactorily meets a threshold
by measuring learning error (the deviation between training data and a numerical function) and
prediction error (the deviation between the numerical function and real values to be predicted). Root
mean square error (RMSE) is widely used as a performance metric for measuring the learning error
[54]. Cross validation is useful for measuring the prediction error. It splits the full dataset into training
and test data folds, measures the trained model’s performance using the test data fold, and then
repeats this procedure by changing the roles of the data folds [54].

(6) Model storage and retrieval involves the storage of validated models in a model repository
with their structural forms, and retrieval of the models when requested. Such numerical functions
expressed in Equation (1) are quite hard to store in and retrieve from the database. The tabular model
representation illustrated in Figure 6 makes this model storage and retrieval efficient. As common
relational database systems store and retrieve data records in tabular form, the attributes of ANN
functions can be identified as columns and their instances can be recorded as rows in tables. A
metadata-based search is also useful as the metadata act as model navigators, as explained in Section
4.1.1 (1). The metadata of a model also need to consider accessibility (as with the metadata of the
data) because accessibility is the common sense of storage and retrieval in a database. However, the
metadata of the model need to be designed in accordance with specificity because manufacturing
contexts depend on and vary with characters of manufacturing systems (e.g., types and complexity
of production). The models requested need to be accurately retrieved, and thus the metadata of the

Energy Prediction Model n

Manufacturing Context n

Machine: NVD1500DCG
Material: Steel alloy
Feature: Closed pocket
Operation: Pocketing
Strategy: Bidirectional

Structural Numerical Function n

- Technique: Artificial Neural Network
- Learning rule: Momentum Backpropagation
- Activation function: Sigmoid
- Weights and Bias

Hidden layer Output layer
Neuron

Input N1,0 N1,1 N1,2
Neuron

Output N3,0

x1 1.912 1.219 -2.065 N1,0 -2.473
x2 0.764 -0.202 -0.707 N1,1 -0.839
x3 1.103 0.223 -1.471 N1,2 3.427

Bias -1.300 -0.115 1.477 Bias 0.242
(where, the number of layers = 2,
the number of neurons at hidden layer = 3)

Figure 6. Structure of an energy prediction model.

Processes 2019, 7, 739 16 of 28

(5) Model validation involves the quantification of model significance and reliability to validate
model conformance. This process checks whether model performance satisfactorily meets a threshold
by measuring learning error (the deviation between training data and a numerical function) and
prediction error (the deviation between the numerical function and real values to be predicted). Root
mean square error (RMSE) is widely used as a performance metric for measuring the learning error [54].
Cross validation is useful for measuring the prediction error. It splits the full dataset into training and
test data folds, measures the trained model’s performance using the test data fold, and then repeats
this procedure by changing the roles of the data folds [54].

(6) Model storage and retrieval involves the storage of validated models in a model repository
with their structural forms, and retrieval of the models when requested. Such numerical functions
expressed in Equation (1) are quite hard to store in and retrieve from the database. The tabular
model representation illustrated in Figure 6 makes this model storage and retrieval efficient. As
common relational database systems store and retrieve data records in tabular form, the attributes
of ANN functions can be identified as columns and their instances can be recorded as rows in tables.
A metadata-based search is also useful as the metadata act as model navigators, as explained in
Section 4.1.1 (1). The metadata of a model also need to consider accessibility (as with the metadata of
the data) because accessibility is the common sense of storage and retrieval in a database. However,
the metadata of the model need to be designed in accordance with specificity because manufacturing
contexts depend on and vary with characters of manufacturing systems (e.g., types and complexity of
production). The models requested need to be accurately retrieved, and thus the metadata of the model
should be able to represent the manufacturing context in a straightforward manner. The metadata of a
model for machining processes can be identified as follows.

Metadata of model = {UUID, Group ID, Creator, Source, Means, Creation, Machine, Material,
Feature, Operation, Strategy}.

• Machine: an identifier for the machine tool that creates a model.
• Material: an identifier for a workpiece material.
• Feature: an identifier for a machining feature.
• Operation: an identifier related to a machining operation.
• Strategy: an identifier related to a machining strategy that identifies the tool path pattern.

4.1.2. Transfer Learning Method

Transfer learning enables indirect model acquisition through knowledge transfer from existing
models when data do not exist, as addressed in Section 3.2. Our method is inductive transfer learning in
that the source and target domain (machining process) is the same, but the target task (manufacturing
context) is different from the source tasks. On the assumption that the similarity analysis has been
investigated, the transfer-learning method consists of: (1) model substitution, (2) model validation, and
(3) model storage and retrieval. We skip (3) because it is the same as in Section 4.1.1 (6). We will further
discuss the assumption in Section 5.3 (3). It is worth mentioning that traditional machine learning
needs to be prior to transfer learning because the former builds on real data, whereas the latter is based
on transferred knowledge. When training datasets are available and can be learned, transfer-learned
models need to be replaced by machine-learned models to ensure data-driven predictive capability.

(1) Model substitution involves the generation of an alternative energy model by selecting the
model that is most similar to the target manufacturing context. Figure 7 shows two methods of model
creation: cloning and competing. When there is only one model with a high-level of similarity, the
cloning just copies and pastes the original model to a new model, as shown in Figure 7a. When the
number of such models is greater than one, the competing is required to choose the best model based
on the criteria including default, preference and likeness, as illustrated in Figure 7b. For example, if a
new model for a contour strategy is requested and two bidirectional and spiral strategies indicate a
high-level of similarity with the former strategy, one of the latter models needs to be chosen. The spiral

Processes 2019, 7, 739 17 of 28

strategy model can be chosen if it turns out to be more like a contour strategy model with regard to
their machining power distributions.

Processes 2019, 7, x FOR PEER REVIEW 16 of 27

model should be able to represent the manufacturing context in a straightforward manner. The
metadata of a model for machining processes can be identified as follows.

Metadata of model = {UUID, Group ID, Creator, Source, Means, Creation, Machine, Material,
Feature, Operation, Strategy}.

• Machine: an identifier for the machine tool that creates a model.
• Material: an identifier for a workpiece material.
• Feature: an identifier for a machining feature.
• Operation: an identifier related to a machining operation.
• Strategy: an identifier related to a machining strategy that identifies the tool path pattern.

4.1.2. Transfer Learning Method

Transfer learning enables indirect model acquisition through knowledge transfer from existing
models when data do not exist, as addressed in Section 3.2. Our method is inductive transfer learning
in that the source and target domain (machining process) is the same, but the target task
(manufacturing context) is different from the source tasks. On the assumption that the similarity
analysis has been investigated, the transfer-learning method consists of: (1) model substitution, (2)
model validation, and (3) model storage and retrieval. We skip (3) because it is the same as in Section
4.1.1 (6). We will further discuss the assumption in Section 5.3 (3). It is worth mentioning that
traditional machine learning needs to be prior to transfer learning because the former builds on real
data, whereas the latter is based on transferred knowledge. When training datasets are available and
can be learned, transfer-learned models need to be replaced by machine-learned models to ensure
data-driven predictive capability.

(1) Model substitution involves the generation of an alternative energy model by selecting the
model that is most similar to the target manufacturing context. Figure 7 shows two methods of model
creation: cloning and competing. When there is only one model with a high-level of similarity, the
cloning just copies and pastes the original model to a new model, as shown in Figure 7a. When the
number of such models is greater than one, the competing is required to choose the best model based
on the criteria including default, preference and likeness, as illustrated in Figure 7b. For example, if
a new model for a contour strategy is requested and two bidirectional and spiral strategies indicate a
high-level of similarity with the former strategy, one of the latter models needs to be chosen. The
spiral strategy model can be chosen if it turns out to be more like a contour strategy model with
regard to their machining power distributions.

(a)

(b)

Figure 7. Two methods of transfer learning; (a) cloning, (b) competing.

(2) Model validation involves quantification of model significance and reliability to validate
model conformance. However, validating transfer-learned models is harder because the conformance
of a transfer-learned model may not be assured in the target task, although the original model proved
to be significant and reliable in the source task. The most obvious method of validation is to measure

Model 1

Model 2

Model n

Model 1'

Model 2'

Model n'

Existing Models Alternative Models

Cloning

Model 1

Model 2

Model 3

Model 1'

Model 2'

Model n'

Existing Models Alternative Models

Model n

Default

Preference

Likeness

Competing

Figure 7. Two methods of transfer learning; (a) cloning, (b) competing.

(2) Model validation involves quantification of model significance and reliability to validate model
conformance. However, validating transfer-learned models is harder because the conformance of a
transfer-learned model may not be assured in the target task, although the original model proved to
be significant and reliable in the source task. The most obvious method of validation is to measure
prediction error by gathering real test data in the target manufacturing context. Reverse validation is
recommended when a few of datasets exist for the target manufacturing context [55]. It approximates
the difference between the estimated and true conditional distributions in the context of data limitation,
although it still requires a minimum dataset at the target task. In reverse validation, a transfer-learned
model is re-learned by combining {Xs, Ys,pred} (output dataset of the original model) and {Xt, Yt}
(real dataset gathered in the target task). In turn, the difference between Yt,pred (output of the new
model) and Yt (real output) is measured to quantify the model approximation for the true conditional
distribution (s: dataset in the source tasks, t: dataset in the target task, pred: predicted value).

4.2. System Architecture

Section 4.1 explained the modeling methods and described how to create and use models. It is
necessary to identify objects and their functions to allocate such methods from a software architecture
perspective. We designed a holonic-based system architecture, as shown in Figure 8. The PROSA
architecture underlies this architectural design and can be used to pursue goal-oriented systemization
through virtualizing object agents that have autonomous and collaborative capabilities.

Processes 2019, 7, x FOR PEER REVIEW 17 of 27

prediction error by gathering real test data in the target manufacturing context. Reverse validation is
recommended when a few of datasets exist for the target manufacturing context [55]. It approximates
the difference between the estimated and true conditional distributions in the context of data
limitation, although it still requires a minimum dataset at the target task. In reverse validation, a
transfer-learned model is re-learned by combining {Xs, Ys,pred} (output dataset of the original model)
and {Xt, Yt} (real dataset gathered in the target task). In turn, the difference between Yt,pred (output of
the new model) and Yt (real output) is measured to quantify the model approximation for the true
conditional distribution (s: dataset in the source tasks, t: dataset in the target task, pred: predicted
value).

4.2. System Architecture

Section 4.1 explained the modeling methods and described how to create and use models. It is
necessary to identify objects and their functions to allocate such methods from a software architecture
perspective. We designed a holonic-based system architecture, as shown in Figure 8. The PROSA
architecture underlies this architectural design and can be used to pursue goal-oriented systemization
through virtualizing object agents that have autonomous and collaborative capabilities.

In the PROSA architecture, basic agents consisting of product, order and resource agents
mutually exchange production knowledge, process knowledge and process execution knowledge. A
product agent performs the functions of request, allocation, confirmation, and supervision of tasks.
An order agent is an orchestrator that takes charge of Calls-For-Proposals (CFP), bid evaluation and
selection, task allocation, and task progress supervision. Meanwhile, a resource agent receives
proposals, checks availability, creates bids, accepts allocations and executes tasks.

In our architecture, data and models should be interconnected within the HMS architecture for
integrating the modeling method described in Section 4.1. The proposed architecture thereby gains
the capabilities of predictive model-based bid submission for resource agents and predictive value-
based bid evaluation for order agents. For this purpose, a data broker agent and a model broker agent
are added as staff agents.

The data broker agent acts as a mediator connecting basic agents and a data repository. The data
broker thus helps basic agents acquire manufacturing context information, training data and task
details. It receives the metadata of data from basic agents when these agents need to gather data to
create models or check availability. It returns the resulting data instances to the basic agents through
the metadata-based search in the data repository. Meanwhile, the model broker agent is a mediator
to connect basic agents and a model repository. It stores models in the model repository once basic
agents create models using the acquired data. It searches and returns the models requested by the
basic agents when the latter need to use the former. Likewise, the metadata of model is applied to
enable the metadata-based search in model requests, searches, and returns.

Figure 8. A system architecture for a self-learning factory.

Model Repository

Data Repository

Product
Agent

Order
Agent

Resource
Agent

Data Broker
Agent

Model Broker
Agent

Data
Warehouse

Model
Warehouse

Basic Agents

Staff Agents Production knowledge

Process execution knowledge
Process knowledge

Data Storage
Data Search
Data Retrieval
Data Management

Model Search
Model Retrieval
Model Registration
Model Management

Self-learning
Factory
System

Data

Model
Knowledge

Figure 8. A system architecture for a self-learning factory.

Processes 2019, 7, 739 18 of 28

In the PROSA architecture, basic agents consisting of product, order and resource agents mutually
exchange production knowledge, process knowledge and process execution knowledge. A product
agent performs the functions of request, allocation, confirmation, and supervision of tasks. An order
agent is an orchestrator that takes charge of Calls-For-Proposals (CFP), bid evaluation and selection,
task allocation, and task progress supervision. Meanwhile, a resource agent receives proposals, checks
availability, creates bids, accepts allocations and executes tasks.

In our architecture, data and models should be interconnected within the HMS architecture for
integrating the modeling method described in Section 4.1. The proposed architecture thereby gains the
capabilities of predictive model-based bid submission for resource agents and predictive value-based
bid evaluation for order agents. For this purpose, a data broker agent and a model broker agent are
added as staff agents.

The data broker agent acts as a mediator connecting basic agents and a data repository. The data
broker thus helps basic agents acquire manufacturing context information, training data and task
details. It receives the metadata of data from basic agents when these agents need to gather data to
create models or check availability. It returns the resulting data instances to the basic agents through
the metadata-based search in the data repository. Meanwhile, the model broker agent is a mediator
to connect basic agents and a model repository. It stores models in the model repository once basic
agents create models using the acquired data. It searches and returns the models requested by the
basic agents when the latter need to use the former. Likewise, the metadata of model is applied to
enable the metadata-based search in model requests, searches, and returns.

4.3. Operational Procedure

This sub-section describes the operational procedure to specify agents’ activities and interactions
in a sequential order based on the architecture proposed above. Figure 9 shows the operational
procedure represented by a sequence diagram in Unified Modeling Language. This figure is focused
on model creation and usage of resource agents.

Figure 9a illustrates the procedure for model creation, substitution and registration to prepare
the self-learning ability. If the target model already exists in the model repository (5), this procedure
is terminated (7). If not (8.1), the procedure is invoked and starts with a training data request (10).
If training datasets are available (13.1), models are created using the machine-learning method (16).
If training datasets are not available (13.2), models are substituted from existing models using the
transfer-learning method (24). The models created by the two different methods are requested to
register (26) and are then registered in the model repository (28).

Figure 9b shows the procedure for model usage to apply the self-learning ability. This procedure
builds upon CNP but extends to accommodate the activities and interactions associated with
model-based bidding and evaluation. An order agent requests the task taken for fabricating a
product (1), and a product agent provides task metadata to the order agent (3). The order agent issues
CFP to resource agents (4). The resource agents check their availability with respect to their capability
(whether they can fabricate or not) and idleness (whether they are occupied or not) (5). Available
resource agents receive the task details (technical specification of the task) using the task metadata
(8), and receive models using the metadata of the model extracted from the task metadata (11). They
automatically determine process parameters within their allowable ranges and capacities (12). In turn,
they anticipate energy values for the task using the models received (13), and then submit their bids
where predictive energy values are recorded (14). The order agent evaluates the resources’ bids based
on energy values (15), and then chooses and notifies the resource agent who submits the minimum
energy value (16). The remainder follows the traditional CNP. While agents communicate, they comply
with the Foundation for Intelligent Physical Agents–Agent Communication Language (FIPA-ACL),
which defines a set of interaction protocols and their individual communicative acts to coordinate
multi-message actions [56].

Processes 2019, 7, 739 19 of 28

Processes 2019, 7, x FOR PEER REVIEW 18 of 27

4.3. Operational Procedure

This sub-section describes the operational procedure to specify agents’ activities and interactions
in a sequential order based on the architecture proposed above. Figure 9 shows the operational
procedure represented by a sequence diagram in Unified Modeling Language. This figure is focused
on model creation and usage of resource agents.

Figure 9a illustrates the procedure for model creation, substitution and registration to prepare
the self-learning ability. If the target model already exists in the model repository (5), this procedure
is terminated (7). If not (8.1), the procedure is invoked and starts with a training data request (10). If
training datasets are available (13.1), models are created using the machine-learning method (16). If
training datasets are not available (13.2), models are substituted from existing models using the
transfer-learning method (24). The models created by the two different methods are requested to
register (26) and are then registered in the model repository (28).

Figure 9b shows the procedure for model usage to apply the self-learning ability. This procedure
builds upon CNP but extends to accommodate the activities and interactions associated with model-
based bidding and evaluation. An order agent requests the task taken for fabricating a product (1),
and a product agent provides task metadata to the order agent (3). The order agent issues CFP to
resource agents (4). The resource agents check their availability with respect to their capability
(whether they can fabricate or not) and idleness (whether they are occupied or not) (5). Available
resource agents receive the task details (technical specification of the task) using the task metadata
(8), and receive models using the metadata of the model extracted from the task metadata (11). They
automatically determine process parameters within their allowable ranges and capacities (12). In
turn, they anticipate energy values for the task using the models received (13), and then submit their
bids where predictive energy values are recorded (14). The order agent evaluates the resources’ bids
based on energy values (15), and then chooses and notifies the resource agent who submits the
minimum energy value (16). The remainder follows the traditional CNP. While agents communicate,
they comply with the Foundation for Intelligent Physical Agents–Agent Communication Language
(FIPA-ACL), which defines a set of interaction protocols and their individual communicative acts to
coordinate multi-message actions [56].

(a)

Processes 2019, 7, x FOR PEER REVIEW 19 of 27

(b)

Figure 9. An operational procedure for a self-learning factory (a) Model creation, substitution, and
registration; (b) Contract Net Protocol and model usage. FIPA-SL: Foundation for Intelligent Physical
Agents – Semantic Language.

5. Implementation

We implement a prototype system to show the feasibility of the self-learning factory. The
prototype demonstrates automatic predictive modeling and autonomous process planning for
energy reduction in milling machining. Section 5.1 describes implementation scenarios, and Section
5.2 explains prototype implementation. Section 5.3 discusses implementation results.

5.1. Implementation Scenarios

Figure 10 shows a test part containing 13 machining conditions represented by {machining
feature; machining operation; machining strategy}. Here, a machining condition corresponds to a
manufacturing context. Implementation scenarios consist of: (1) model creation, substitution, and
registration, and (2) CNP and model usage, as explained in Section 4.3.

Figure 11 presents the two scenarios (the simplification of Figure 9a,b). In Figure 11a, a machine
tool generates models using hybrid learning and registers them into the model repository for the next
scenario. When the machine asks the model broker for checking the existence of the models associated
with the machining conditions, the model broker returns the relevant models if they exist. Otherwise,
the machine requests data to the data broker who returns the data requested. If the data exist, the
machine creates energy models using machine learning and then requests model registration to the
model broker who notifies the registration confirmation to the machine. If the data do not exist, the
machine requests similar models to the model broker. The model broker then searches similar models
based on model similarity and returns them to the machine. The machine creates alternative energy
models using transfer learning and registers the models in the same way. Here, a model for the
machining condition {Pocket 1; Pocketing; Spiral}, which is assumedly to be absent in the model
repository, is created.

In Figure 11b, a CFP is initiated by an order if a product needs to be machined and informs the
relevant tasks. Five machine tools compete for a task. Machines 4 and 5 refuse this task due to their
unavailability because Machine 4 is a turning machine and Machine 5 was occupied by another task.
The remaining three machines (Machine 1, Machine 2, and Machine 3) decide their process
parameters within their allowable ranges or preferences. Process parameters are assumedly
determined as follows: Machine 1 (feedrate: 0.0127 mm/tooth, spindle speed: 1750 Revolution per
Minute (RPM), cutting depth: 1.5 mm), Machine 2 (feedrate: 0.0178, spindle speed: 2000, cutting

Figure 9. An operational procedure for a self-learning factory (a) Model creation, substitution, and
registration; (b) Contract Net Protocol and model usage. FIPA-SL: Foundation for Intelligent Physical
Agents – Semantic Language.

5. Implementation

We implement a prototype system to show the feasibility of the self-learning factory. The prototype
demonstrates automatic predictive modeling and autonomous process planning for energy reduction in
milling machining. Section 5.1 describes implementation scenarios, and Section 5.2 explains prototype
implementation. Section 5.3 discusses implementation results.

5.1. Implementation Scenarios

Figure 10 shows a test part containing 13 machining conditions represented by {machining
feature; machining operation; machining strategy}. Here, a machining condition corresponds to a

Processes 2019, 7, 739 20 of 28

manufacturing context. Implementation scenarios consist of: (1) model creation, substitution, and
registration, and (2) CNP and model usage, as explained in Section 4.3.

Processes 2019, 7, x FOR PEER REVIEW 20 of 27

depth: 1.0), and Machine 3 (feedrate: 0.0127, spindle speed: 2000, cutting depth: 1.5). They use their
energy models to anticipate the energy values consumed during the execution of the given machining
conditions. Once their energy values are estimated, the machines send their bids including their
predictive energy values to the order. The order evaluates the energy values submitted by the three
machines. The order accepts one of the machine tools if its proposal is the minimum energy value.

Figure 10. A test part and a set of machining conditions.

(a)

(b)

Figure 11. Implementation scenarios for (a) Model creation, substitution and registration; (b) model
usage and machine selection.

5.2. Prototype Implementation

For energy modeling, we fabricated 12 test parts in a milling machine. Table 4 presents a list of
process parameters for the 12 individual parts. These parameters were randomly determined within
the experimental safety and allowable ranges of the machine and cutting tool used. Figure 12 shows
an implementation architecture. We generated ISO14649 programs manually, while NC programs
were generated using computer-aided manufacturing software, and MTConnect documents were
collected in a physical part to represent the machine-monitoring data heterogeneously sourced from

Figure 10. A test part and a set of machining conditions.

Figure 11 presents the two scenarios (the simplification of Figure 9a,b). In Figure 11a, a machine
tool generates models using hybrid learning and registers them into the model repository for the
next scenario. When the machine asks the model broker for checking the existence of the models
associated with the machining conditions, the model broker returns the relevant models if they exist.
Otherwise, the machine requests data to the data broker who returns the data requested. If the data
exist, the machine creates energy models using machine learning and then requests model registration
to the model broker who notifies the registration confirmation to the machine. If the data do not exist,
the machine requests similar models to the model broker. The model broker then searches similar
models based on model similarity and returns them to the machine. The machine creates alternative
energy models using transfer learning and registers the models in the same way. Here, a model for
the machining condition {Pocket 1; Pocketing; Spiral}, which is assumedly to be absent in the model
repository, is created.

In Figure 11b, a CFP is initiated by an order if a product needs to be machined and informs the
relevant tasks. Five machine tools compete for a task. Machines 4 and 5 refuse this task due to their
unavailability because Machine 4 is a turning machine and Machine 5 was occupied by another task.
The remaining three machines (Machine 1, Machine 2, and Machine 3) decide their process parameters
within their allowable ranges or preferences. Process parameters are assumedly determined as follows:
Machine 1 (feedrate: 0.0127 mm/tooth, spindle speed: 1750 Revolution per Minute (RPM), cutting
depth: 1.5 mm), Machine 2 (feedrate: 0.0178, spindle speed: 2000, cutting depth: 1.0), and Machine 3
(feedrate: 0.0127, spindle speed: 2000, cutting depth: 1.5). They use their energy models to anticipate
the energy values consumed during the execution of the given machining conditions. Once their
energy values are estimated, the machines send their bids including their predictive energy values to
the order. The order evaluates the energy values submitted by the three machines. The order accepts
one of the machine tools if its proposal is the minimum energy value.

Processes 2019, 7, 739 21 of 28

Processes 2019, 7, x FOR PEER REVIEW 20 of 27

depth: 1.0), and Machine 3 (feedrate: 0.0127, spindle speed: 2000, cutting depth: 1.5). They use their
energy models to anticipate the energy values consumed during the execution of the given machining
conditions. Once their energy values are estimated, the machines send their bids including their
predictive energy values to the order. The order evaluates the energy values submitted by the three
machines. The order accepts one of the machine tools if its proposal is the minimum energy value.

Figure 10. A test part and a set of machining conditions.

(a)

(b)

Figure 11. Implementation scenarios for (a) Model creation, substitution and registration; (b) model
usage and machine selection.

5.2. Prototype Implementation

For energy modeling, we fabricated 12 test parts in a milling machine. Table 4 presents a list of
process parameters for the 12 individual parts. These parameters were randomly determined within
the experimental safety and allowable ranges of the machine and cutting tool used. Figure 12 shows
an implementation architecture. We generated ISO14649 programs manually, while NC programs
were generated using computer-aided manufacturing software, and MTConnect documents were
collected in a physical part to represent the machine-monitoring data heterogeneously sourced from

Figure 11. Implementation scenarios for (a) Model creation, substitution and registration; (b) model
usage and machine selection.

5.2. Prototype Implementation

For energy modeling, we fabricated 12 test parts in a milling machine. Table 4 presents a list of
process parameters for the 12 individual parts. These parameters were randomly determined within
the experimental safety and allowable ranges of the machine and cutting tool used. Figure 12 shows
an implementation architecture. We generated ISO14649 programs manually, while NC programs
were generated using computer-aided manufacturing software, and MTConnect documents were
collected in a physical part to represent the machine-monitoring data heterogeneously sourced from
an NC and a power meter. The installations of this experiment included the machine (Mori Seiki
NVD 1500 DCG), NC (Fanuc 0i), workpiece (Steel 1018, 10.16 cm × 10.16 cm × 1.27 cm), cutting tool
(solid carbide flat-end mill, 8-mm diameter, four flutes), and power meter (high-speed power meter
from System insights). Note that only one machine is used due to our experimental limitation. We
implemented a prototype system in a cyber part based on the mechanism of the self-learning factory,
as explained in Section 4. The installations of this implementation included an integrated development
environment (Eclipse Java Oxygen), agent platform (Java Agent Development framework (JADE)),
JADE execution and deployment (EJADE), data and model repositories (MySQL), and a Java-based
ANN framework (Neuroph).

Processes 2019, 7, 739 22 of 28

Table 4. List of process parameters.

Trial Feedrate
(mm/tooth)

Spindle Speed
(RPM)

Cutting Depth
(mm)

1 0.0127 1500 1.5

2 0.0127 2000 1.5

3 0.0127 1750 1

4 0.0229 1750 1

5 0.0127 1750 2

6 0.0178 1500 1

7 0.0178 2000 1

8 0.0178 2000 2

9 0.0178 1750 1.5

10 0.0076 1750 1.5

11 0.0152 1750 1.5

12 0.0127 1750 1.5

Processes 2019, 7, x FOR PEER REVIEW 21 of 27

an NC and a power meter. The installations of this experiment included the machine (Mori Seiki NVD
1500 DCG), NC (Fanuc 0i), workpiece (Steel 1018, 10.16 cm × 10.16 cm × 1.27 cm), cutting tool (solid
carbide flat-end mill, 8-mm diameter, four flutes), and power meter (high-speed power meter from
System insights). Note that only one machine is used due to our experimental limitation. We
implemented a prototype system in a cyber part based on the mechanism of the self-learning factory,
as explained in Section 4. The installations of this implementation included an integrated
development environment (Eclipse Java Oxygen), agent platform (Java Agent Development
framework (JADE)), JADE execution and deployment (EJADE), data and model repositories
(MySQL), and a Java-based ANN framework (Neuroph).

Table 4. List of process parameters.

Trial Feedrate
(mm/tooth)

Spindle speed
(RPM)

Cutting depth
(mm)

1 0.0127 1500 1.5
2 0.0127 2000 1.5
3 0.0127 1750 1
4 0.0229 1750 1
5 0.0127 1750 2
6 0.0178 1500 1
7 0.0178 2000 1
8 0.0178 2000 2
9 0.0178 1750 1.5

10 0.0076 1750 1.5
11 0.0152 1750 1.5
12 0.0127 1750 1.5

Figure 12. Implementation architecture of the prototype system.

Figure 13 illustrates the screen shots for the implementation of model creation, substitution and
registration corresponding to Figure 11a. The screen shots, captured from the JADE sniffer agent,
represent FIPA-ACL message exchanges and interactions across individual agents with respect to
time, while a computer automatically proceeds (we only click the start button). Note that the arrows
only indicate external message exchanges with communicative acts between agents, while internal
works inside agents are hidden. In Figure 13a, the machine learning works to create models

Figure 12. Implementation architecture of the prototype system.

Figure 13 illustrates the screen shots for the implementation of model creation, substitution
and registration corresponding to Figure 11a. The screen shots, captured from the JADE sniffer
agent, represent FIPA-ACL message exchanges and interactions across individual agents with respect
to time, while a computer automatically proceeds (we only click the start button). Note that the
arrows only indicate external message exchanges with communicative acts between agents, while
internal works inside agents are hidden. In Figure 13a, the machine learning works to create models
associated with the 13 machining conditions. The ANN technique is used for this purpose, and
the attributes of the ANN-based energy models include (see example in Figure 6) the learning rule
(momentum backpropagation), activation function (sigmoid), the number of layers (2), the number of
neurons at a hidden layer (3), learning rate (0.3), maximum error (0.01), maximum iteration (1000), and
momentum (0.2). As shown in Figure 13b, the transfer learning is activated because the data broker
cannot find data in the data repository and then refuses data return. An energy model for {Pocket
1; Pocketing; Spiral}, as described in Section 5.1, is alternatively created through cloning the energy

Processes 2019, 7, 739 23 of 28

model for {Pocket 1; Pocketing; Bidirectional} due to their high level of similarity. In these ways, energy
models are created and registered in the model repository for the next use.

Processes 2019, 7, x FOR PEER REVIEW 22 of 27

associated with the 13 machining conditions. The ANN technique is used for this purpose, and the
attributes of the ANN-based energy models include (see example in Figure 6) the learning rule
(momentum backpropagation), activation function (sigmoid), the number of layers (2), the number
of neurons at a hidden layer (3), learning rate (0.3), maximum error (0.01), maximum iteration (1000),
and momentum (0.2). As shown in Figure 13b, the transfer learning is activated because the data
broker cannot find data in the data repository and then refuses data return. An energy model for
{Pocket 1; Pocketing; Spiral}, as described in Section 5.1, is alternatively created through cloning the
energy model for {Pocket 1; Pocketing; Bidirectional} due to their high level of similarity. In these
ways, energy models are created and registered in the model repository for the next use.

(a) (b)

Figure 13. Implementation result: model creation, substitution and registration (a) Machine learning-
based; (b) Transfer learning-based.

Figure 14 shows the screen shot for the implementation of CNP and model usage. The order
agent is an initiator in the frame of CNP, which comprises an initiator and participants for requesting
a task and performing the task, respectively. The order agent communicates with not only the product
agent (a participant) for issuing a task but also the machine agents (participants) for assigning the
task. The order agent processes its operations aligning with the scheduling of one-shot, cyclic or
conditional behaviors for communicating with the participants using FIPA-ACL messages (see
Figure 9b). The order agent sends the messages to the target participants and receives the messages
from them based on the behavioral scheduling because it can write or read the FIPA-ACL messages
that include a sender, receivers, communicative acts (i.e., a tag for communicative acts; e.g., call for
proposal, accept/reject proposal, inform and refuse), contents, conversation ID, and so forth.

Figure 14. Implementation result: model usage and machine selection.

Figure 13. Implementation result: model creation, substitution and registration (a) Machine
learning-based; (b) Transfer learning-based.

Figure 14 shows the screen shot for the implementation of CNP and model usage. The order agent
is an initiator in the frame of CNP, which comprises an initiator and participants for requesting a task
and performing the task, respectively. The order agent communicates with not only the product agent
(a participant) for issuing a task but also the machine agents (participants) for assigning the task. The
order agent processes its operations aligning with the scheduling of one-shot, cyclic or conditional
behaviors for communicating with the participants using FIPA-ACL messages (see Figure 9b). The
order agent sends the messages to the target participants and receives the messages from them based
on the behavioral scheduling because it can write or read the FIPA-ACL messages that include a sender,
receivers, communicative acts (i.e., a tag for communicative acts; e.g., call for proposal, accept/reject
proposal, inform and refuse), contents, conversation ID, and so forth.

Processes 2019, 7, x FOR PEER REVIEW 22 of 27

associated with the 13 machining conditions. The ANN technique is used for this purpose, and the
attributes of the ANN-based energy models include (see example in Figure 6) the learning rule
(momentum backpropagation), activation function (sigmoid), the number of layers (2), the number
of neurons at a hidden layer (3), learning rate (0.3), maximum error (0.01), maximum iteration (1000),
and momentum (0.2). As shown in Figure 13b, the transfer learning is activated because the data
broker cannot find data in the data repository and then refuses data return. An energy model for
{Pocket 1; Pocketing; Spiral}, as described in Section 5.1, is alternatively created through cloning the
energy model for {Pocket 1; Pocketing; Bidirectional} due to their high level of similarity. In these
ways, energy models are created and registered in the model repository for the next use.

(a) (b)

Figure 13. Implementation result: model creation, substitution and registration (a) Machine learning-
based; (b) Transfer learning-based.

Figure 14 shows the screen shot for the implementation of CNP and model usage. The order
agent is an initiator in the frame of CNP, which comprises an initiator and participants for requesting
a task and performing the task, respectively. The order agent communicates with not only the product
agent (a participant) for issuing a task but also the machine agents (participants) for assigning the
task. The order agent processes its operations aligning with the scheduling of one-shot, cyclic or
conditional behaviors for communicating with the participants using FIPA-ACL messages (see
Figure 9b). The order agent sends the messages to the target participants and receives the messages
from them based on the behavioral scheduling because it can write or read the FIPA-ACL messages
that include a sender, receivers, communicative acts (i.e., a tag for communicative acts; e.g., call for
proposal, accept/reject proposal, inform and refuse), contents, conversation ID, and so forth.

Figure 14. Implementation result: model usage and machine selection. Figure 14. Implementation result: model usage and machine selection.

Order 1 calls for proposals for selecting a machine who can perform the task informed from
Product 1. Machines 4 and 5 refuse this task due to their unavailability as explained in Section 5.1.
The remaining three machines receive the energy models of the 13 machining conditions and input
the determined process parameters. These three machines predict energy values for running the
13 machining conditions and the predictive energy values are, respectively: 11,825 kJ (Machine 1),
11,700 kJ (Machine 2), and 12,957 kJ (Machine 3). These machine agents propose their bids including

Processes 2019, 7, 739 24 of 28

these predictive energy values to the order agent. The order agent evaluates their energy values to seek
the machine agent who submits the minimum energy value in its bid. Because Machine 2 proposes the
minimum energy value, the order agent accepts the proposal from Machine 2, transmits the bidding
result and instructs Machine 2 to take the task. This selection of the minimum energy-using machine
tool (Machine 2) achieves 9.70% energy reduction, compared with the maximum energy-using one
(Machine 3).

We measure real energy values from actual machining to check the accuracy of their corresponding
predicted values derived from the ANN-based energy models. The real measured energy values were
recorded as 11,382 kJ (Machine 1), 11,044 kJ (Machine 2), and 12,580 kJ (Machine 3). These different
values come from the application of different process parameters given in Section 5.1. The total relative
error, which measures the percentage of predicted energy values – real energy values)/real energy
values, were 3.89%, 5.94%, and 3.00%, respectively.

5.3. Discussion

(1) Experimental limitation: our implementation could select the minimum energy-using machine
tool among three machines through predicting and competing their energy values. Using three different
machine tools is desirable because individual machine tools make different machine-specific energy
values due to the differences in their capabilities and performances. However, a single machine had to
be used due to our experimental limitations. It will be more realistic to use different machine tools for
creating machine-specific energy models through instantiating different values in the attribute ‘machine’
of the manufacturing context. Alternatively, transfer learning can be applied to create machine-specific
models by reflecting the difference of capabilities and performances between the target and source
machines (see an example in the below (3)). In addition, virtual simulators can be useful for limited
experimental environments. Some machining simulators can generate machine-specific power values
affected by machine’s capabilities and performances [57,58].

(2) Increase of practicability: our implementation has been made within a single order on a
single process. This may be far from the reality in common manufacturing systems where multiple
processes deal with various products and orders. Thus, gaining practicability remains critical. In other
words, the target application is demanded to extend toward production planning considering multiple
products and orders in a production line. It is expected that the adoption of MAS technology makes
the practicability achievable because MAS use unique identification and take their autonomous and
collaborative actions regardless of the number of product, order and machine agents. The proposed
approach needs to be extended to the production planning by adding more product, order, and machine
agents, although the difficulty and complexity of implementation increase.

(3) Uncertainty of transfer learning: our implementation shows the feasibility of the acquisition of
self-learning ability by machine and transfer learning techniques. Transfer learning creates an energy
model for the target manufacturing context {Pocket 1; Pocketing; Spiral}, which was not machined
in our experiment, by cloning the energy model for the source manufacturing context {Pocket 1;
Pocketing; Bidirectional}. However, we could not quantify significance nor validate conformance of the
transferred model because it was not machined just as stated. The model validation of transfer learning
remains as a future work. Our transfer-learning approach builds upon the similarity between the two
manufacturing contexts and thus the similarity needs to be analyzed and verified in advance. If such
similarity is not verified, transfer learning may not work properly and thus need to consider alternative
means besides the similarity analysis. Reverse validation needs to be applied if a few of datasets
are generated in the target manufacturing context, as described in Section 4.1.2 (3). Otherwise, the
properties that characterize a difference between target and source manufacturing contexts can be added
as variables of transfer learning. For example, an energy model for a machine tool can be transferred
from that for another machine. The former model should be different to the latter one because these
machines have different property values in basic power, rotation torque, and motor efficiency, which
affect power and energy in machining. These properties can be additional input variables in the

Processes 2019, 7, 739 25 of 28

structure of machine-learning models so that transfer learning can derive machine-dependent results
through learning the influence of different values of those properties.

(4) Implementation challenge: energy-efficient machining has become a massive trend in some
countries; however, it is still far from reality in other countries where many small-and-medium sized
manufacturers fabricate products with paying cheap industrial electricity costs. These countries deal
with time and quality as critical performances and are less concerned with energy consumption because
they regard the energy cost as an endurable expense. Nevertheless, researchers need to keep their
efforts on implementing and deploying cost-effective and data-accessible solutions for energy-efficient
machining as the metal-cutting industry affects a large portion of the total energy consumption over
the world. The use of open sources helps increase cost effectiveness for implementing such solutions.
The implementation tools that we used in the prototype system are all open sources, which are
publicly accessible without payment (payment may be required for commercial purposes). This
implementation strategy can reduce solution development expenses to the reasonable cost level and
help the deployment of such solutions toward small-and-medium sized manufacturers. The use of
interoperable and open data interfaces comfortably supports the availability of data collection as data
are critical for implementing manufacturing intelligence. Recent standardized interfaces including
MTConnect and Open Platform Communications–Unified Architecture facilitate data accessibility.
These interfaces provide open source tools as well and thus are quite useful for making a data bridge
between physical and cyber factories.

6. Conclusions

In the present work, we designed and implemented a holonic-based mechanism for a self-learning
factory based on a hybrid-learning approach. The concept of the self-learning factory was proposed
to allow manufacturing objects to learn past experience using their real data, to perform predictive
analytics and to determine their behaviors and activities for improving a target KPI. The holonic-based
mechanism identified a modeling method, system architecture, and operational procedure to
implement an autonomous and collaborative prediction environment through the virtual agentization
of manufacturing objects under the paradigm of HMS. The hybrid-learning approach was designed
to acquire predictive capability independently with the degrees of freedom in the data through the
accommodation of machine learning and transfer learning. This hybrid learning can be used to build
up a massive knowledge base through the accumulation of models, thereby gaining self-learning ability
in manufacturing systems. A prototype demonstrated the feasibility of the proposed mechanism via
predictive process planning for energy reduction in milling machining. Autonomous and collaborative
activities of manufacturing agents are carried out on a computer to select the minimum energy-using
machine tool while minimizing human intervention.

The limitations of the present work are as follows: (1) Our target is limited to process planning
for a single product and process and thus cannot ensure the feasibility of the proposed mechanism in
a more complex production line, (2) our implementation is restricted by the use of a single machine
and thus does not embody more realistic scenarios by multiple machine tools, (3) our experiment
does not show the validity of transferred models due to our experimental limitations, and (4) our
implementation excludes control and feedback of the cyber and physical parts in a real-time manner as
CPPS obviously require mirrored synchronization between the both parts. We plan to overcome these
limitations in future work.

Author Contributions: All authors conceived the research idea and the methods of this study. S.-J.S. designed the
concept and mechanism and implemented the prototype; Y.-M.K. contributed to specifying the mechanism of the
modeling methods; P.M. supported the prototype implementation and analyzed the experiment results.

Funding: This work was supported by the Basic Research Program in Science and Engineering through the Ministry
of Education of the Republic of Korea and the National Research Foundation (NRF-2018R1D1A1B07047100).

Conflicts of Interest: The authors declare no conflict of interest.

Processes 2019, 7, 739 26 of 28

References

1. Davis, J.; Edgar, T.; Porter, J.; Bernaden, J.; Sarli, M. Smart manufacturing, manufacturing intelligence and
demand-dynamic performance. Comput. Chem. Eng. 2012, 47, 145–156. [CrossRef]

2. Zuehlke, D. SmartFactory—Towards a factory-of-things. Annu. Rev. Control 2010, 34, 129–138. [CrossRef]
3. Rajkumar, R.; Lee, I.S.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution.

In Proceedings of the 47th ACM/IEEE Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010;
pp. 731–736.

4. Monostori, L.; Kadar, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.R.T.; Reinhart, G.; Sauer, O.; Schuh, G.;
Sihn, W.; Ueda, K. Cyber-physical systems in manufacturing. CIRP Ann. 2016, 65, 621–641. [CrossRef]

5. Schuh, G.; Anderl, R.; Gausemeier, J.; ten Hompel, M.; Wahlster, W. Industrie 4.0 Maturity Index—Managing
the Digital Transformation of Companies; ACATECH Study; Herbert Utz Verlag: Munich, Germany, 2017.

6. Shen, W.; Maturana, F.; Norrie, D.H. Enhancing the performance of an agent-based manufacturing system
through learning and forecasting. J. Intell. Manuf. 2000, 11, 365–380. [CrossRef]

7. Brussel, H.V.; Wyns, J.; Valckenaers, P.; Bongaerts, L.; Peeters, P. Reference architecture for holonic
manufacturing systems: PROSA. Comput. Ind. 1998, 37, 255–274. [CrossRef]

8. Shen, W.; Hao, Q.; Yoon, H.J.; Norrie, D.H. Applications of agent-based systems in intelligent manufacturing:
An updated review. Adv. Eng. Inform. 2006, 20, 415–431. [CrossRef]

9. Priore, P.; De la Fuente, D.; Puente, J.; Parreno, J. A comparison of machine-learning algorithms for dynamic
scheduling of flexible manufacturing systems. Eng. Appl. Artif. Intell. 2006, 19, 247–255. [CrossRef]

10. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
11. Manufacturing Energy Consumption Survey. Available online: https://www.eia.gov/consumption/

manufacturing/data/2014/index.php (accessed on 24 September 2019).
12. Hu, S.; Liu, F.; He, Y.; Hu, T. An on-line approach for energy efficiency monitoring of machine tools. J. Clean.

Prod. 2012, 27, 133–140. [CrossRef]
13. Kara, S.; Li, W. Unit process energy consumption models for material removal processes. CIRP Ann. 2011,

60, 37–40. [CrossRef]
14. Shin, S.J.; Woo, J.Y.; Rachuri, S.; Meilanitasari, P. Standard data-based predictive modeling for power

consumption in turning machining. Sustainability 2018, 10, 598. [CrossRef]
15. Babiceanu, R.F.; Chen, F.F. Development and applications of Holonic manufacturing systems: A survey.

J. Intell. Manuf. 2006, 17, 111–131. [CrossRef]
16. Monostori, L.; Vancza, J.; Kumara, S.R.T. Agent-based systems for manufacturing. CIRP Ann. 2006, 55,

697–720. [CrossRef]
17. Leitão, P. Agent-based distributed manufacturing control: A state-of-the art survey. Eng. Appl. Artif. Intell.

2009, 22, 979–991. [CrossRef]
18. Odell, J.J.; Van Dyke Parunak, H.; Bauer, B. Representing Agent Interaction Protocols in UML. In Agent-Oriented

Software Engineering; Ciancarini, P., Wooldridge, M.J., Eds.; Springer: Berlin, Germany, 2000; pp. 121–140.
19. Alotaibi, A.; Lohse, N.; Vu, T.M. Dynamic Agent-based Bi-objective Robustness for Tardiness and Energy in

a Dynamic Flexible Job Shop. Procedia CIRP 2016, 57, 728–733. [CrossRef]
20. Marchiori, F.; Belloni, A.; Beninie, M.; Cateni, S.; Colla, V.; Ebeld, A.; Lupinelli, M.; Nastasi, G.; Neuer, M.;

Pietrosanti, C.; et al. Integrated dynamic energy management for steel production. Energy Procedia 2017, 105,
2772–2777. [CrossRef]

21. Giret, A.; Trentesaux, D.; Salido, M.A.; Garcia, E.; Adam, E. A holonic multi-agent methodology to design
sustainable intelligent manufacturing control systems. J. Clean. Prod. 2017, 167, 1370–1386. [CrossRef]

22. Lind, M.; Roulet-Dubonnet, O. Holonic shop-floor application for handling, feeding and transportation of
workpieces. Int. J. Prod. Res. 2011, 49, 1441–1454. [CrossRef]

23. Adam, E.; Berger, T.; Sallez, Y.; Trentesaux, D. Role-based manufacturing control in a holonic multi-agent
system. Int. J. Prod. Res. 2011, 49, 1455–1468. [CrossRef]

24. Barbosa, J.; Leitão, P.; Adam, E.; Trentesaux, D. Dynamic self-organization in holonic multi-agent
manufacturing systems: The ADACOR evolution. Comput. Ind. 2015, 66, 99–111. [CrossRef]

25. Wang, K.; Choi, S.H. A holonic approach to flexible flow shop scheduling under stochastic processing times.
Comput. Oper. Res. 2014, 43, 157–168. [CrossRef]

http://dx.doi.org/10.1016/j.compchemeng.2012.06.037
http://dx.doi.org/10.1016/j.arcontrol.2010.02.008
http://dx.doi.org/10.1016/j.cirp.2016.06.005
http://dx.doi.org/10.1023/A:1008926202597
http://dx.doi.org/10.1016/S0166-3615(98)00102-X
http://dx.doi.org/10.1016/j.aei.2006.05.004
http://dx.doi.org/10.1016/j.engappai.2005.09.009
http://dx.doi.org/10.1109/TKDE.2009.191
https://www.eia.gov/consumption/manufacturing/data/2014/index.php
https://www.eia.gov/consumption/manufacturing/data/2014/index.php
http://dx.doi.org/10.1016/j.jclepro.2012.01.013
http://dx.doi.org/10.1016/j.cirp.2011.03.018
http://dx.doi.org/10.3390/su10030598
http://dx.doi.org/10.1007/s10845-005-5516-y
http://dx.doi.org/10.1016/j.cirp.2006.10.004
http://dx.doi.org/10.1016/j.engappai.2008.09.005
http://dx.doi.org/10.1016/j.procir.2016.11.126
http://dx.doi.org/10.1016/j.egypro.2017.03.597
http://dx.doi.org/10.1016/j.jclepro.2017.03.079
http://dx.doi.org/10.1080/00207543.2010.519115
http://dx.doi.org/10.1080/00207543.2010.522086
http://dx.doi.org/10.1016/j.compind.2014.10.011
http://dx.doi.org/10.1016/j.cor.2013.09.013

Processes 2019, 7, 739 27 of 28

26. Hsieh, F.S.; Lin, J.-B. A self-adaptation scheme for workflow management in multi-agent systems. J. Intell.
Manuf. 2016, 27, 131–148. [CrossRef]

27. Leitão, P. A holonic disturbance management architecture for flexible manufacturing systems. Int. J. Prod.
Res. 2011, 49, 1269–1284. [CrossRef]

28. Silva, R.; Blos, M.; Junqueira, F.; Filho, D.S.; Miyagi, P. A service-oriented and holonic control architecture to
the reconfiguration of dispersed manufacturing systems. In Proceedings of the 5th Doctoral Conference on
Computing, Electrical and Industrial Systems (DoCEIS), Costa de Caparica, Portugal, 7–9 April 2014.

29. Jovanovic, M.; Zupan, S.; Prebil, I. Holonic control approach for the “green”-tyre manufacturing system
using IEC 61499 standard. J. Manuf. Syst. 2016, 40, 119–136. [CrossRef]

30. Indriago, C.; Cardin, O.; Rakoto, N.; Castagna, P.; Chacon, E. H2CM: A holonic architecture for flexible
hybrid control systems. Comput. Ind. 2016, 77, 15–28. [CrossRef]

31. Nejad, H.T.N.; Sugimura, N.; Iwamura, K. Agent-based dynamic integrated process planning and scheduling
in flexible manufacturing systems. Int. J. Prod. Res. 2011, 49, 1373–1389. [CrossRef]

32. Quintanilla, F.G.; Cardin, O.; L’Anton, A.; Castagna, P. A Petri net-based methodology to increase flexibility
in service-oriented holonic manufacturing systems. Comput. Ind. 2016, 76, 53–68. [CrossRef]

33. Nouri, H.E.; Driss, O.B.; Ghédira, K. Simultaneous scheduling of machines and transport robots in flexible
job shop environment using hybrid metaheuristics based on clustered holonic multiagent model. Comput.
Ind. Eng. 2016, 102, 488–501. [CrossRef]

34. Pascal, C.; Panescu, D. On rescheduling in holonic manufacturing systems. Comput. Ind. 2019, 104, 34–46.
[CrossRef]

35. Monostori, L.; Brussel, H.V.; Westkampfer, E. Machine learning approaches to manufacturing. CIRP Ann.
1996, 45, 675–712. [CrossRef]

36. Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.D. Machine learning in manufacturing: Advantages, challenges,
and applications. Prod. Manuf. Res. 2016, 4, 23–45. [CrossRef]

37. Monostori, L. AI and machine learning techniques for managing complexity, changes and uncertainties in
manufacturing. Eng. Appl. Artif. Intell. 2003, 16, 277–291. [CrossRef]

38. Kadar, B.; Monostori, L. Approaches to Increase the Performance of Agent-Based Production Systems; Engineering
of Intelligent Systems; Springer: Heidelberg, Germany, 2001; pp. 612–621.

39. Liu, Z.; Guo, Y. A hybrid approach to integrate machine learning and process mechanics for the prediction of
specific cutting energy. CIRP Ann. 2018, 67, 57–60. [CrossRef]

40. Garg, A.; Lam, J.S.L.; Gao, L. Energy conservation in manufacturing operations: Modelling the milling
process by a new complexity-based evolutionary approach. J. Clean. Prod. 2015, 108, 34–45. [CrossRef]

41. Bhinge, R.; Park, J.; Law, K.H.; Dornfeld, D.A.; Helu, M.; Rachuri, S. Toward a Generalized Energy Prediction
Model for Machine Tools. J. Manuf. Sci. Eng. 2017, 139, 041013. [CrossRef]

42. Bang, S.H.; Ak, R.; Narayanan, A.; Lee, Y.T.; Cho, H.B. A survey on knowledge transfer for manufacturing
data analytics. Comput. Ind. 2019, 104, 116–130. [CrossRef]

43. Chen, G.; Li, Y.; Liu, X. Pose-dependent tool tip dynamics prediction using transfer learning. Int. J. Mach.
Tools Manuf. 2019, 137, 30–41. [CrossRef]

44. Shin, S.J.; Woo, J.Y.; Rachuri, S. Energy efficiency of milling machining: Component modeling and online
optimization of cutting parameters. J. Clean. Prod. 2017, 161, 12–29. [CrossRef]

45. Lee, J.; Lapira, E.; Bagheri, B.; Kao, H. Recent advances and trends in predictive manufacturing systems in
big data environment. Manuf. Lett. 2013, 1, 38–41. [CrossRef]

46. Li, L.; Liu, F.; Chen, B.; Li, C.B. Multi-objective optimization of cutting parameters in sculptured parts
machining based on neural network. J. Intell. Manuf. 2015, 26, 891–898. [CrossRef]

47. Aramcharoen, A.; Mativenga, P.T. Critical factors in energy demand modelling for CNC milling and impact
of toolpath strategy. J. Clean. Prod. 2014, 78, 63–74. [CrossRef]

48. Han, S.H.; Choi, Y.; Yoo, S.B.; Park, N.K. Collaborative engineering design based on an intelligent STEP
database. Concurr. Eng. Res. Appl. 2002, 10, 239–249. [CrossRef]

49. Xu, X.W.; Wang, H.; Mao, J.; Newman, S.T.; Kramer, T.R.; Proctor, F.M.; Michaloski, J.L. STEP-compliant NC
research: The search for intelligent CAD/CAPP/CAM/CNC integration. Int. J. Prod. Res. 2005, 43, 3703–3743.
[CrossRef]

50. Vijayaraghavan, A.; Dornfeld, D. Automated energy monitoring of machine tools. CIRP Ann. 2010, 59, 21–24.
[CrossRef]

http://dx.doi.org/10.1007/s10845-013-0818-y
http://dx.doi.org/10.1080/00207543.2010.518735
http://dx.doi.org/10.1016/j.jmsy.2016.06.008
http://dx.doi.org/10.1016/j.compind.2015.12.005
http://dx.doi.org/10.1080/00207543.2010.518741
http://dx.doi.org/10.1016/j.compind.2015.09.002
http://dx.doi.org/10.1016/j.cie.2016.02.024
http://dx.doi.org/10.1016/j.compind.2018.09.010
http://dx.doi.org/10.1016/S0007-8506(18)30216-6
http://dx.doi.org/10.1080/21693277.2016.1192517
http://dx.doi.org/10.1016/S0952-1976(03)00078-2
http://dx.doi.org/10.1016/j.cirp.2018.03.015
http://dx.doi.org/10.1016/j.jclepro.2015.06.043
http://dx.doi.org/10.1115/1.4034933
http://dx.doi.org/10.1016/j.compind.2018.07.001
http://dx.doi.org/10.1016/j.ijmachtools.2018.10.003
http://dx.doi.org/10.1016/j.jclepro.2017.05.013
http://dx.doi.org/10.1016/j.mfglet.2013.09.005
http://dx.doi.org/10.1007/s10845-013-0809-z
http://dx.doi.org/10.1016/j.jclepro.2014.04.065
http://dx.doi.org/10.1177/106329302761689151
http://dx.doi.org/10.1080/00207540500137530
http://dx.doi.org/10.1016/j.cirp.2010.03.042

Processes 2019, 7, 739 28 of 28

51. MIT Critical Data. Secondary Analysis of Electronic Health Records; Springer International Publishing: Cham,
Switzerland, 2016; pp. 115–141.

52. Nannapaneni, S.; Mahadevan, S.; Rachuri, S. Performance evaluation of a manufacturing process under
uncertainty using Bayesian networks. J. Clean. Prod. 2016, 113, 947–959. [CrossRef]

53. Shin, S.J.; Woo, J.; Rachuri, S.; Seo, W. An energy-efficient process planning system using machine-monitoring
data: A data analytics approach. Comput. Aided Des. 2019, 110, 92–109. [CrossRef]

54. Witten, I.H.; Frank, E. Data Mining—Practical Machine Learning Tools and Techniques; Elsevier: San Francisco
CA, USA, 2005.

55. Zhong, E.; Fan, W.; Yang, Q.; Verscheure, O.; Ren, J. Cross validation framework to choose amongst models
and datasets for transfer learning. In Machine Learning and Knowledge Discovery in Databases; Springer:
Heidelberg, Germany, 2010; pp. 547–562.

56. Bellifemine, F.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; John Wiley & Sons, Ltd.:
Chichester, UK, 2007.

57. Larek, R.; Brinksmeier, E.; Meyer, D.; Pawletta, T.; Hagendorf, O. A discrete-event simulation approach to
predict power consumption in machining processes. Prod. Eng. Res. Dev. 2011, 5, 575–579. [CrossRef]

58. Shin, S.J.; Woo, J.; Kim, D.B.; Kumaraguru, S.; Rachuri, S. Developing a virtual machining model to generate
MTConnect machine-monitoring data from STEP-NC. Int. J. Prod. Res. 2016, 54, 4487–4505. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jclepro.2015.12.003
http://dx.doi.org/10.1016/j.cad.2018.12.009
http://dx.doi.org/10.1007/s11740-011-0333-y
http://dx.doi.org/10.1080/00207543.2015.1064182
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Holonic Manufacturing Systems
	Learning-Based Analytics

	Self-Learning Factory and Hybrid Learning
	Self-Learning Factory
	Hybrid Learning

	Mechanism
	Modeling Method
	Machine-Learning Method
	Transfer Learning Method

	System Architecture
	Operational Procedure

	Implementation
	Implementation Scenarios
	Prototype Implementation
	Discussion

	Conclusions
	References

