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Abstract: The existing charts for monitoring the variance are designed under the assumption that all
production data must consist of exact, precise, and determined observations. This paper presents the
design of a new neutrosophic exponentially weighted moving average (NEWMA) combining with
a neutrosophic logarithmic transformation chart for monitoring the variance having neutrosophic
numbers. The computation of the neutrosophic control chart parameters is done through the
neutrosophic Monte Carlo simulation (NMCS). The performance of the proposed chart is discussed
with the existing charts.
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1. Introduction

The product manufactured according to the specified limits is known as the high-quality product.
The manufacturing and service companies adopt the statistical process control (SPC) techniques to
achieve a high-quality product. The process at or beyond these limits indicates the shift in the process
and cause the non-conforming items. The more non-conforming items directly affect the profit and the
reputation of the company. Therefore, the control charts, which are the essential part of the SPC, have
been applied for controlling the non-conforming items. The control charts are used to monitor the
average and variation in the normal distribution parameters. The control chart in the industry works
as the indicator and guides the experimenters to solve the issue in the process. A timely shift in the
process minimizes the non-conforming items. Due to several advantages of the control chart, a variety
of charts have been designed for the monitoring of the process. The details about the application of the
control charts can be seen in [1–5].

To make the Shewhart control chart more sensitive to detect a small shift in the process, Roberts [6]
introduced the exponentially weighted moving average (EWMA) statistic in the control chart. The
control charts using the EWMA statistic utilizes the current and previous subgroup information about
the state of the process. Reference [7] presented an EWMA chart for monitoring the variation in the
process. The application of EWMA-based control chart can be seen in References [8–17].

Fuzzy based control charts are the alternative of the traditional control charts when there is
uncertainty in parameters or in the data. These control charts have the ability to detect the shift in
the process under imprecise and incomplete production data. Cheng [18] presented chart for fuzzy
numbers. Faraz [19] proved the efficiency of the fuzzy-based Shewhart control chart. Faraz et al. [20]
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presented a chart for combining fuzzy and randomness in the process. Teksen and Anagun [21]
proposed variable charts for fuzzy data. Fadaei and Pooya [22] evaluated the performance of fuzzy chart
using the operating characteristic curve. Alakoc and Apaydin [23] worked on Shewhart control charts
using fuzzy approach. Darestani et al. [24] presented the control limits of U-chart under uncertainty.
For a detailed study on a fuzzy-based control chart, the reader may refer to References [25–28] proposed
EWMA chart for monitoring fuzzy data.

Classical statistics (CS) works only when all observations in the data are determined and precise.
In practice, it may not be possible that the data have determined values, especially in complex situations.
When the data is interval, as in weather or in the stock exchange market, CS cannot be effectively
applied. The neutrosophic logic, introduced by Reference [29] in 1998, is a generalization of fuzzy
logic and of intuitionistic fuzzy logic, where the measure of indeterminacy plays an important role,
see [30–32]. The neutrosophic statistics (NS), introduced by Smarandache [29] and developed in 2014
is the generalization of CS which has the ability to analyze the imprecise data, see References [33,34].
Aslam [35] introduced the NS in the area of quality control. A variety of control chart using the NS can
be seen in References [36–40].

Abbas et al. [41] proposed the cumulative sum EWMA chart for monitoring process variance.
Although a rich literature is available on the control chart for monitoring variation under CS, the
existing charts can be only applied when the assumption of certain observations is met. By exploring
the literature, we did not see work on the EWMA variance chart under NS. In this paper, we will first
introduce the neutrosophic EWMA based on variance. We will also introduce the neutrosophic Monte
Carlo (NMS) simulation originally in the paper. The methodology of the proposed chart is different
than that in Reference [41]. The performance of the proposed chart will be compared with the control
chart proposed by References [7] and [38].

2. Preliminaries and the Proposed S2
N −NEWMA Statistic

Suppose nNε[nL, nU] be a neutrosophic random sample from the neutrosophic normal distribution
with mean µN =

∑NN
i=1 XN/NN; µNε[µL,µU] and σ2

N =
[{∑nN

i=1(XN − µN)
2/NN − 1

}
/nN

]
; σ2

Nε
[
σ2

L, σ2
U

]
having XiNε[XL, XU], i =1,2,3, . . . ,nN observations. Suppose XN =

∑nN
i=1 XN/nN; XN ε

[
XL, XU

]
and

S2
N =

∑nN
i=1

(
XN −XN

)2
/nN − 1; S2

N ε
[
S2

L, S2
U

]
be neutrosophic sample mean and variance, respectively.

Let EWMAN = ZkN be the NEWMA. The modified form, say S2
N −NEWMA, of EWMA statistic under

CS suggested by [42,43] is given by

ZkN = (1− λN)Zk−1,N + λNTkN; ZkNε [ZkL, ZkU], λNε [λL,λU] (1)

where λNε{λL,λU}; [0, 0] ≤ λN ≤ [1, 1] is neutrosophic smoothing constant and ranges from [0.05,0.05]
to [0.25,0.25], see [14]. Note that TkN = ln S2

N; TkNε [TkL, TkU] shows logarithmic of successive values

of S2
N ε

[
S2

L, S2
U

]
and defined as follows

TkN = aN + bN. ln
(
S2

kN + cN
)
; aNε [aL, aU], bNε [bL, bU], cNε [cL, cU] > [0, 0] (2)

Johnsson et al. [44] argued that TkNε [TkL, TkU] that is modelled by log–gamma distribution tends
to more neutrosophic normally distributed as compared to S2

N ε
[
S2

L, S2
U

]
. According to Reference [7]

“the main expectation of this approach is that if aNε [aL, aU], bNε [bL, bU], and cNε [cL, cU] are judiciously
selected, then this transformation may result in approximate normality to TkNε [TkL, TkU]”. The
neutrosophic control limits (NCLs) with starting values of Z0N = 0 are given by

LCLN = E(TkN) − kN

√
λN

2− λN
σ(TkN); LCLNε [LCLL, LCLU] (3)
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UCLN = E(TkN) + kN

√
λN

2− λN
σ(TkN); UCLNε [UCLL, UCLU] (4)

where kNε [kL, kU] be a neutrosophic control limits coefficient.
Note here that NCLs given in Equations (3) and (4) are approximate but widely used by the

industrial practitioner, see [7]. The exact NCLs for S2
N −NEWMA are given as

LCLN = E(TkN) − kN

√
λN

{
1− (1− λN)

2k
}

2− λN
σ(TkN); LCLNε [LCLL, LCLU] (5)

UCLN = E(TkN) + kN

√
λN

{
1− (1− λN)

2k
}

2− λN
σ(TkN); UCLNε [UCLL, UCLU] (6)

The NCLs given in Equations (3) and (4) are easy to apply, and therefore we will use them in the
rest of the paper.

3. The Proposed Control Chart

Note here that although the limits of existing S2 chart are not symmetry, the use of transformation
TkN = ln S2

N makes the limits symmetry for the proposed S2
N −NEWMA chart. The steps to apply the

proposed S2
N −NEWMA control chart are stated as follows

Step-1: Select a random sample of size nNε[nL, nU] from the industrial process and compute statistic
ZkNε [ZkL, ZkU].
Step-2: Announce the process is shifted if ZkNε [ZkL, ZkU] ≥ UCLNε[UCLL, UCLU] or ZkNε [ZkL, ZkU] ≤

LCUNε[LCUL, LCUU].

Note here that the proposed S2
N −NEWMA chart is the extension of Reference [7] and the traditional

S2 chart. It reduces to the Reference [7] chart if no uncertain observation is recorded in the production
data. The probability of in-control under neutrosophic statistics is given by

P0
inN = P

(
LCLN ≤ ZkN ≤ UCLN/S2

N0

)
; S2

N0ε
[
S2

L0, S2
U0

]
(7)

where S2
N0 represents the in-control variance of the process. The neutrosophic average run length

(NARL), say ARL0N is given by

ARL0N =
1

1− P
(
LCLN ≤ ZkN ≤ UCLN/S2

N0

) ; ARL0Nε[ARL0L, ARL0U] (8)

The probability of in-control for the shifted process under neutrosophic statistics is given by

P1
inN = P

(
LCLN ≤ ZkN ≤ UCLN/S2

N1

)
; S2

N1ε
[
S2

L1, S2
U1

]
(9)

where S2
N1 represents shifted variance of the process. The neutrosophic average run length (NARL) for

the shifted process, say ARL1N is given by

ARL1N =
1

1− P
(
LCLN ≤ ZkN ≤ UCLN/S2

N1

) (10)

The values of kNε [kL, kU], ARL0Nε[ARL0L, ARL0U], ARL1Nε[ARL1L, ARL1U], and neutrosophic
standard deviation (NSD) will be determined using the following NMS.

1. Generate 10,000 random sample of size nNε[nL, nU] from neutrosophic normal distribution from
the in-control process. Choose values of aNε [aL, aU], bNε [bL, bU], and cNε [cL, cU] from Table 1.
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Compute ZkNε [ZkL, ZkU] and plot them on LCUNε[LCUL, LCUU] and UCLNε[UCLL, UCLU]. Note
first out-of-control and calculate their average.

2. Compute ARL0Nε[ARL0L, ARL0U] and NSD and determine kNε [kL, kU] where
ARL0Nε[ARL0L, ARL0U] ≥ r0N, where r0Nε[r0L, r0U] are specified values of ARL0Nε[ARL0L, ARL0U].

3. Select those kNε [kL, kU] when ARL0Nε[ARL0L, ARL0U] very close to r0N.
4. Generate random sample of size nNε[nL, nU] from the shifted process. Compute ZkNε [ZkL, ZkU]

and plot them on LCUNε[LCUL, LCUU] and UCLNε[UCLL, UCLU]. Note first out-of-control and
calculate their average.

5. Compute ARL1Nε[ARL1L, ARL1U] and NSD for a various shift c.

Table 1. The values of constants.

n [3,5] [8,10]

A(n) [−0.6627,−0.8969] [−1.1647,−1.3135]

B(n) [1.8136,2.3647] [2.9992,3.3548]

C(n) [0.6777,0.5979] [0.5588,0.5465]

E(Tk) [0.02472,0.00748] [0.00243,0.00141]

E(Tk) [0.9165,0.967] [0.9864,0.9912]

Z0 [0.276,0.211] [0.167,0.149]

Using above-mentioned NMC simulation, we presented Tables 2–7 for various values of nNε[nL, nU]

and c. From Tables 2–7, we note the decreasing trend in ARL1Nε[ARL1L, ARL1U] and NSD for the same
values of nNε[nL, nU] but when λNε{λL,λU} increases. The values of ARL1Nε[ARL1L, ARL1U] and NSD
decrease when c increases.

Table 2. The neutrosophic average run length NARL when nNε [3, 5] and λNε [0.08, 0.12].

c
kNε [2.58,2.65] when ARL0Nε[300,300] kNε [2.66,2.74] when ARL0Nε[370,370]

NARL NSD NARL NSD

1 [309.77,300.59] [314.47,292.06] [367.88,380.1] [362.73,361.76]

1.05 [149.57,128.34] [162.15,126.34] [175.89,155.28] [184.21,153.18]

1.1 [71.82,56.01] [77.12,53.67] [81.69,62.06] [84.91,58.71]

1.15 [42.17,30.16] [44.03,26.33] [45.63,33.13] [46.57,29.59]

1.2 [26.81,19.45] [26.18,15.69] [29.69,21.13] [28.94,16.94]

1.25 [19.33,14.18] [17.52,10.48] [20.88,15.26] [19.43,11.16]

1.3 [14.88,11.22] [13.02,7.64] [16.2,11.84] [14.1,7.95]

1.4 [10.35,7.85] [7.9,4.51] [11.07,8.29] [8.49,4.83]

1.5 [7.92,6.23] [5.51,3.16] [8.49,6.56] [5.92,3.37]

1.6 [6.63,5.27] [4.3,2.38] [6.96,5.49] [4.42,2.49]

1.7 [5.73,4.69] [3.38,1.92] [5.98,4.78] [3.51,1.97]

1.8 [5.12,4.2] [2.85,1.58] [5.37,4.33] [2.95,1.65]

1.8 [5.07,4.18] [2.76,1.6] [5.31,4.32] [2.91,1.63]

1.9 [4.65,3.86] [2.4,1.39] [4.87,4] [2.57,1.44]

2 [4.31,3.61] [2.11,1.22] [4.43,3.74] [2.14,1.26]

2.25 [3.72,3.17] [1.64,0.96] [3.85,3.27] [1.7,1.01]

2.5 [3.33,2.88] [1.36,0.84] [3.44,2.97] [1.37,0.84]

3 [2.86,2.54] [1.01,0.65] [2.97,2.59] [1.05,0.67]

4 [2.48,2.23] [0.72,0.45] [2.54,2.27] [0.75,0.48]



Processes 2019, 7, 742 5 of 16

Table 3. The neutrosophic average run length (NARL) when nNε [3, 5] and λNε [0.18, 0.22].

c
kNε [2.725,2.75] when ARL0Nε[300,300] kNε [2.805,2.82] when

NARL NSD NARL NSD

1 [299.38,301.29] [294.16,294.1] [371,368.43] [354.51,353.79]

1.05 [145.4,135.87] [143.8,133.09] [175.25,157.77] [172.85,157.06]

1.1 [79.22,61.69] [77.84,58.36] [90.3,71.05] [89.21,67.86]

1.15 [47.72,34.23] [45.83,31.21] [53.61,37.7] [51.47,34.38]

1.2 [31.89,22.1] [29.18,18.67] [35.11,23.67] [33.45,20.05]

1.25 [23.1,15.49] [20.83,12.15] [25.04,16.65] [22.3,13.24]

1.3 [17.5,12.02] [14.6,8.8] [19.26,12.55] [16.29,9.27]

1.4 [12.09,8.15] [9.36,5.12] [12.9,8.52] [10.04,5.38]

1.5 [8.97,6.2] [6.32,3.43] [9.5,6.51] [6.78,3.7]

1.6 [7.3,5.21] [4.81,2.56] [7.67,5.37] [5.01,2.69]

1.7 [6.26,4.54] [3.8,2.09] [6.46,4.67] [3.93,2.14]

1.8 [5.46,4.05] [3.12,1.7] [5.69,4.19] [3.3,1.74]

1.8 [5.44,4.05] [3.09,1.66] [5.7,4.19] [3.2,1.74]

1.9 [4.97,3.74] [2.75,1.48] [5.09,3.82] [2.82,1.48]

2 [4.56,3.48] [2.36,1.28] [4.66,3.54] [2.37,1.3]

2.25 [3.83,3.03] [1.79,0.98] [3.97,3.09] [1.84,1.04]

2.5 [3.4,2.76] [1.41,0.83] [3.53,2.82] [1.51,0.85]

3 [2.95,2.46] [1.08,0.63] [3.02,2.48] [1.13,0.64]

4 [2.52,2.18] [0.75,0.41] [2.55,2.19] [0.76,0.42]

Table 4. The neutrosophic average run length (NARL) when nNε [3, 5] and λNε [0.28, 0.32].

c
kNε [2.805,2.77] when ARL0Nε[300,300] kNε [2.9,2.845] when ARL0Nε[370,370]

NARL NSD NARL NSD

1 [307.39,301.71] [300.94,295.29] [383.23,373.86] [366.27,355.75]

1.05 [150.37,135.85] [148.76,131.81] [180.89,160.78] [180.39,158.2]

1.1 [83.18,65.68] [83.13,62.62] [98.76,74.46] [97.61,70.81]

1.15 [51.57,36.48] [49.63,33.12] [58.37,41.21] [56.78,38.13]

1.2 [34.13,23.17] [31.98,20.3] [39.31,25.28] [36.69,22.61]

1.25 [24.59,16.32] [22.26,13.21] [27.65,17.67] [24.76,14.84]

1.3 [18.92,12.21] [16.56,9.42] [21.24,13.37] [18.58,10.39]

1.4 [12.47,8.13] [10.04,5.5] [13.53,8.63] [11.01,5.94]

1.5 [9.47,6.19] [7.06,3.64] [9.88,6.5] [7.22,3.94]

1.6 [7.52,5.11] [5.21,2.77] [8.01,5.28] [5.6,2.84]

1.7 [6.37,4.42] [4.1,2.12] [6.71,4.58] [4.25,2.26]

1.8 [5.52,3.95] [3.3,1.77] [5.78,4.07] [3.51,1.82]

1.8 [5.58,3.97] [3.35,1.78] [5.79,4.06] [3.53,1.85]

1.9 [4.94,3.59] [2.83,1.48] [5.16,3.68] [2.95,1.56]

2 [4.54,3.31] [2.49,1.26] [4.71,3.41] [2.56,1.35]

2.25 [3.83,2.91] [1.84,0.98] [3.9,2.98] [1.88,1.02]

2.5 [3.39,2.66] [1.49,0.81] [3.49,2.71] [1.56,0.85]

3 [2.88,2.38] [1.07,0.6] [2.97,2.39] [1.14,0.61]

4 [2.48,2.14] [0.73,0.37] [2.51,2.16] [0.76,0.39]
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Table 5. The neutrosophic average run length (NARL) when nNε [8, 10] and λNε [0.08, 0.12].

c
kNε [2.56,2.67] when ARL0Nε[300,300] kNε [2.65,2.755] when ARL0Nε[370,370]

NARL NSD NARL NSD

1 [301.1,309.72] [291.7,298.17] [375.97,384.4] [352.21,365.97]

1.05 [95.92,92.42] [93.82,89.13] [109.14,107.67] [104.73,102.66]

1.1 [35.32,33.28] [30.58,27.98] [38.37,35.39] [32.73,29.6]

1.15 [19.04,17.75] [14.04,12.83] [20.62,18.75] [15.19,13.51]

1.2 [12.97,11.78] [8.19,7.09] [13.68,12.32] [8.67,7.63]

1.25 [9.8,8.92] [5.4,4.74] [10.38,9.3] [5.76,4.91]

1.3 [8.08,7.2] [4.13,3.4] [8.5,7.5] [4.3,3.52]

1.4 [6.05,5.42] [2.55,2.12] [6.3,5.63] [2.63,2.2]

1.5 [4.98,4.51] [1.82,1.53] [5.16,4.65] [1.87,1.58]

1.6 [4.36,3.94] [1.43,1.16] [4.49,4.05] [1.45,1.21]

1.7 [3.91,3.57] [1.17,0.96] [4.02,3.68] [1.19,0.99]

1.8 [3.61,3.29] [0.97,0.82] [3.7,3.38] [1,0.85]

1.8 [3.61,3.3] [0.99,0.83] [3.7,3.4] [0.99,0.84]

1.9 [3.37,3.09] [0.86,0.73] [3.47,3.15] [0.89,0.74]

2 [3.19,2.92] [0.77,0.67] [3.28,2.99] [0.79,0.67]

2.25 [2.85,2.63] [0.66,0.61] [2.93,2.67] [0.67,0.59]

2.5 [2.63,2.41] [0.6,0.52] [2.7,2.47] [0.6,0.55]

3 [2.33,2.18] [0.49,0.39] [2.38,2.2] [0.51,0.41]

4 [2.09,2.03] [0.29,0.17] [2.11,2.04] [0.32,0.19]

Table 6. The neutrosophic average run length (NARL) when nNε [8, 10] and λNε [0.18, 0.22].

c
kNε [2.735,2.77] when ARL0Nε[300,300] kNε [2.82,2.85] when ARL0Nε[370,370]

NARL NSD NARL NSD

1 [301.08,299.1] [291.71,288.2] [376.19,370.34] [353.72,348.41]

1.05 [114.19,105.22] [109.93,100.31] [137.38,127.57] [132.66,123.51]

1.1 [43.75,38.87] [38.66,35] [49.56,43.8] [45.41,39.46]

1.15 [22.72,19.95] [18.5,15.97] [24.7,21.58] [20,17.27]

1.2 [14.52,12.71] [10.55,8.8] [15.49,13.31] [11.4,9.38]

1.25 [10.55,9.08] [6.79,5.42] [11.11,9.62] [7.15,6.03]

1.3 [8.29,7.22] [4.71,3.92] [8.71,7.56] [4.94,4.17]

1.4 [5.98,5.25] [2.86,2.33] [6.22,5.45] [2.99,2.47]

1.5 [4.83,4.3] [1.96,1.6] [5.02,4.42] [2.08,1.66]

1.6 [4.15,3.73] [1.48,1.23] [4.29,3.81] [1.57,1.25]

1.7 [3.7,3.33] [1.19,1] [3.79,3.42] [1.22,1.02]

1.8 [3.42,3.09] [1.04,0.87] [3.48,3.13] [1.05,0.88]

1.8 [3.43,3.05] [1.06,0.86] [3.49,3.14] [1.05,0.89]

1.9 [3.16,2.88] [0.9,0.76] [3.24,2.9] [0.92,0.77]

2 [2.98,2.7] [0.81,0.69] [3.06,2.77] [0.83,0.71]

2.25 [2.66,2.43] [0.67,0.56] [2.72,2.47] [0.69,0.58]

2.5 [2.45,2.26] [0.56,0.46] [2.5,2.29] [0.59,0.48]

3 [2.21,2.1] [0.42,0.3] [2.23,2.11] [0.44,0.32]

4 [2.05,2.02] [0.22,0.12] [2.06,2.02] [0.24,0.13]
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Table 7. The neutrosophic average run length (NARL) when nNε [8,10] and λNε [0.28, 0.32].

c
kNε [2.785,2.81] when ARL0Nε[300,300] kNε [2.865,2.88] when ARL0Nε[370,370]

NARL NSD NARL NSD

1 [298.47,303.26] [287.32,292.35] [373.5,371.54] [355.62,349.8]

1.05 [120.75,116.33] [117.13,113.52] [144.7,135.14] [141.47,133.07]

1.1 [49.1,44.65] [45.51,41.06] [56.51,49.88] [53.44,46.62]

1.15 [25.29,22.35] [21.97,18.88] [28.22,24.21] [24.64,20.57]

1.2 [15.78,13.36] [12.37,10.09] [16.99,14.43] [13.46,11.01]

1.25 [11.13,9.48] [7.92,6.37] [11.7,10.08] [8.34,6.9]

1.3 [8.57,7.38] [5.46,4.41] [9.02,7.7] [5.77,4.72]

1.4 [5.99,5.2] [3.22,2.57] [6.22,5.33] [3.31,2.63]

1.5 [4.7,4.17] [2.11,1.7] [4.86,4.25] [2.21,1.74]

1.6 [4,3.57] [1.6,1.32] [4.1,3.65] [1.65,1.33]

1.7 [3.53,3.18] [1.25,1.03] [3.63,3.26] [1.31,1.06]

1.8 [3.23,2.91] [1.07,0.88] [3.32,2.98] [1.09,0.9]

1.8 [3.22,2.91] [1.06,0.88] [3.3,2.96] [1.09,0.89]

1.9 [2.99,2.73] [0.91,0.76] [3.06,2.77] [0.95,0.79]

2 [2.82,2.57] [0.82,0.68] [2.86,2.62] [0.84,0.7]

2.25 [2.52,2.34] [0.64,0.54] [2.56,2.36] [0.66,0.55]

2.5 [2.33,2.2] [0.53,0.42] [2.37,2.21] [0.55,0.42]

3 [2.15,2.07] [0.36,0.25] [2.16,2.08] [0.38,0.27]

4 [2.03,2.01] [0.17,0.1] [2.04,2.01] [0.19,0.11]

4. Comparative Study

We will discuss the advantages of the proposed control chart over the existing charts in terms
of NARL and NSD. Note here that the proposed chart reduces to the control chart proposed by
Reference [7] when kL = kU = k and λL = λU = λ. The proposed chart reduces to the traditional
Shewhart variance control chart proposed by Reference [38] when λNε [1,1]. To show the efficiency of
the proposed chart, we will present the comparison in NARL and NSD in Section 4.1 and the simulation
study in Section 4.2.

4.1. Advantage of the Proposed Chart in Neutrosophic Average Run Length (NARL) and Neutrosophic
Standard Deviation (NSD)

The NARL and NSD are important measures to show the efficiency of the control charts. The
smaller the values of NARL and NSD, the better the performance of the control chart to detect the
shift in the process. To show the efficiency of the proposed chart over the existing charts proposed
by References [7] and [38], we set the same values of nNε[nL, nU], ARL0Nε[ARL0L, ARL0U], and c.
We present the values ARL1Nε[ARL1L, ARL1U] and NSD of the three control charts when nNε[3, 5],
nNε[8, 10], λNε[0.08, 0.12] and ARL0Nε[370, 370] are shown in Table 8. Similar tables can be present for
any other values of nNε[nL, nU] and ARL0Nε[ARL0L, ARL0U].
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Table 8. The neutrosophic average run length (NARL) for the proposed and existing charts when λNε [0.08, 0.12].

[38] Control Chart [38] Control Chart [7] Control Chart [7] Control Chart Proposed Chart Proposed Chart

[8,10] [3,5] n = 3 n = 8 nNε [8,10] nNε [3,5]

NARL NSD NARL NSD ARL SD ARL SD NARL NSD NARL NSD

1 [372.53,376.51] [353.12,362.16] [383.81,374.2] [363.99,358.16] 375.03 366.15 371.14 348.86 [375.97,384.4] [352.21,365.97] [367.88,380.1] [362.73,361.76]

1.05 [174.95,177.11] [173.32,173.32] [227.52,200.34] [229.3,198.5] 175.73 189.55 109.31 106.95 [109.14,107.67] [104.73,102.66] [175.89,155.28] [184.21,153.18]

1.1 [89.85,86.43] [89.3,85.09] [140.93,112.84] [139.96,111.44] 82.72 86.61 38.47 33.1 [38.37,35.39] [32.73,29.6] [81.69,62.06] [84.91,58.71]

1.15 [51.6,47.65] [50.04,46.73] [93.24,67.04] [91.71,65.33] 45.71 46.17 20.48 14.76 [20.62,18.75] [15.19,13.51] [45.63,33.13] [46.57,29.59]

1.2 [31.83,28.12] [30.42,26.62] [65.06,44.77] [63.7,43.53] 29.81 28.95 13.65 8.7 [13.68,12.32] [8.67,7.63] [29.69,21.13] [28.94,16.94]

1.25 [20.96,18.27] [19.21,16.59] [46.58,31.12] [45.27,29.66] 21.01 18.95 10.27 5.87 [10.38,9.3] [5.76,4.91] [20.88,15.26] [19.43,11.16]

1.3 [14.9,12.65] [13.6,11.41] [35.48,22.53] [34.36,21.16] 16.15 13.68 8.38 4.14 [8.5,7.5] [4.3,3.52] [16.2,11.84] [14.1,7.95]

1.4 [8.79,7.38] [7.3,5.89] [22.44,13.55] [20.5,11.77] 11.07 8.56 6.27 2.6 [6.3,5.63] [2.63,2.2] [11.07,8.29] [8.49,4.83]

1.5 [6.03,4.99] [4.44,3.44] [15.14,9.19] [13.67,7.65] 8.52 5.89 5.17 1.88 [5.16,4.65] [1.87,1.58] [8.49,6.56] [5.92,3.37]

1.6 [4.53,3.86] [2.99,2.32] [11.29,6.8] [9.7,5.33] 7.01 4.45 4.51 1.46 [4.49,4.05] [1.45,1.21] [6.96,5.49] [4.42,2.49]

1.7 [3.76,3.2] [2.17,1.63] [9.03,5.41] [7.38,3.92] 6 3.48 4.02 1.18 [4.02,3.68] [1.19,0.99] [5.98,4.78] [3.51,1.97]

1.8 [3.23,2.85] [1.68,1.25] [7.25,4.54] [5.66,3] 5.32 2.87 3.72 1.03 [3.7,3.38] [1,0.85] [5.37,4.33] [2.95,1.65]

1.8 [3.22,2.83] [1.65,1.24] [7.38,4.48] [5.8,2.99] 5.34 2.92 3.71 1 [3.7,3.4] [0.99,0.84] [5.31,4.32] [2.91,1.63]

1.9 [2.87,2.59] [1.27,0.98] [6.19,3.96] [4.62,2.37] 4.87 2.52 3.47 0.88 [3.47,3.15] [0.89,0.74] [4.87,4] [2.57,1.44]

2 [2.66,2.43] [1.06,0.77] [5.42,3.53] [3.83,1.96] 4.49 2.19 3.26 0.79 [3.28,2.99] [0.79,0.67] [4.43,3.74] [2.14,1.26]

2.25 [2.35,2.22] [0.7,0.51] [4.29,2.91] [2.74,1.34] 3.8 1.66 2.93 0.67 [2.93,2.67] [0.67,0.59] [3.85,3.27] [1.7,1.01]

2.5 [2.2,2.11] [0.49,0.35] [3.57,2.6] [2.01,0.96] 3.47 1.39 2.7 0.6 [2.7,2.47] [0.6,0.55] [3.44,2.97] [1.37,0.84]

3 [2.07,2.03] [0.28,0.19] [2.93,2.3] [1.33,0.62] 2.98 1.08 2.38 0.52 [2.38,2.2] [0.51,0.41] [2.97,2.59] [1.05,0.67]

4 [2.01,2] [0.12,0.06] [2.46,2.1] [0.82,0.33] 2.53 0.76 2.11 0.32 [2.11,2.04] [0.32,0.19] [2.54,2.27] [0.75,0.48]
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Table 8 clearly indicates the smaller values of ARL1Nε[ARL1L, ARL1U] and NSD of the proposed
chart over charts proposed by References [7] and [38] at all values of c. For example, at a very small
shift in the process, c = 1.05, when nNε[3, 5], the values of NARL and NSD from S2

N −NEWMA chart
are ARL1Nε[175.89, 155.28] and NSD ε[184.21, 153.18], respectively. The values of NARL and NSD
from [38] chart are ARL1Nε[227.52, 200.34] and NSD ε[229.3, 198.5], respectively. From these values,
we observe that the proposed S2

N −NEWMA will declare the out-of-control process between 155th
and 175th samples, while Reference [38] indicates the shift in the process between 200th and 227th
samples. By comparing the proposed chart with the chart proposed by Reference [7], it can be noted
that this existing chart provides the values of ARL1Nε[ARL1L, ARL1U] and NSD, which is close to the
upper values of the indeterminacy interval of the proposed chart. For an example, when c = 1.05
and nNε[3, 5], the values of and NSD are ARL1Nε[175.89, 155.28] and NSD ε[184.21, 153.18] from the
proposed control chart. On the other hand, the values of ARL and SD are 175.73 and 189.55 from the
existing chart. By comparing both charts, it can be noted that the proposed chart ability to detect shift
between the 155th sample and 175th sample, while the existing chart detects a shift only at the 175th
sample. From this comparison, we show the efficiency of the proposed chart over Reference [38]’s
chart. In addition, the chart proposed by Reference [7] provides the determined values of ARL and
cannot be applied under an uncertain environment. Therefore, the proposed chart is more effective,
flexible, and adequate to be applied in indeterminacy.

4.2. Simulation Study

Suppose that S2
N0ε[1, 1] shows the variance of the in-control process. The twenty values are

generated from the in-control process and the next 20 from the shifted process when c = 1.25, nNε[3, 5],
and λNε[0.08, 0.12]. The statistic ZkNε [ZkL, ZkU] is computed for the proposed chart and charts
proposed by References [7] and [38]. We plotted the values of ZkNε [ZkL, ZkU] for the proposed chart in
Figure 1, the chart proposed by Reference [38] in Figure 2 and the chart proposed by Reference [7] in
Figure 3.
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We note that the tabulated ARL1Nε[20.88, 15.26] which means that the control chart should detect
a shift in the process between the 15th and 20th sample. From Figure 1, we note that the proposed
chart detects a shift at the 35th sample, as expected. On the other hand, the existing charts proposed
by References [7] and [38] do not detect any shift in the process. From this simulation study, it is
quite clear that the proposed chart has the ability to detect a shift in the process, while existing charts
do not. Therefore, the use of the proposed chart in the industry will be helpful in minimizing the
non-conforming items.

5. Application

For the application of the proposed chart, the data is obtained from the automobile industry. The
inside diameter of engine piston rings is a variable of interest here. This variable is continuous and
obtained from measurement. According to Reference [45], “observations include human judgments,
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and evaluations and decisions, a continuous random variable of a production process should include
the variability caused by human subjectivity or measurement devices, or environmental conditions.
These variability causes create vagueness in the measurement system”. The data having less or more
than the exact values is shown in Table 9. Table 9 clearly shows the measurement data in intervals
where classical statistics cannot apply. Similar data was used by Reference [38]. The calculations
statistic of TkNε [TkL, TkU], ZkNε [ZkL, ZkU] when nNε[5, 5] and λNε[0.12, 0.12] and shown in Table 10.

Table 9. Real example data taken from Reference [38].

Sample Observation

1 [74.03,74.03] [74.002,73.991] [74.019,74.019] [73.992,73.992] [74.008,74.001]

2 [73.995,73.995] [73.992,74.003] [74.001,74.001] [74.011,74.011] [74.004,74.004]

3 [73.988,74.017] [74.024,74.024] [74.021,74.021] [74.005,74.005] [74.002,73.995]

4 [74.002,74.002] [73.996,73.996] [73.993,73.993] [74.015,74.015] [74.009,74.009]

5 [73.992,73.992] [74.007,74.007] [74.015,74.015] [73.989,73.989] [74.014,73.998]

6 [74.009,74.009] [73.994,74.001] [73.997,73.997] [73.985,73.985] [73.993,73.993]

7 [73.995,73.998] [74.006,74.006] [73.994,73.994] [74,74] [74.005,74.005]

8 [73.985,73.985] [74.003,74.01] [73.993,73.993] [74.015,74.015] [73.988,73.988]

9 [74.008,74.005] [73.995,73.995] [74.009,74.009] [74.005,74.005] [74.004,74.004]

10 [73.998,73.998] [74,74] [73.99,73.99] [74.007,74.007] [73.995,73.995]

11 [73.994,73.998] [73.998,73.998] [73.994,73.994] [73.995,73.995] [73.99,74.001]

12 [74.004,74.004] [74,74.002] [74.007,74.005] [74,74.001] [73.996,73.996]

13 [73.983,73.993] [74.002,74.002] [73.998,73.998] [73.997,73.997] [74.012,74.005]

14 [74.006,74.006] [73.967,73.985] [73.994,73.994] [74,74] [73.984,73.996]

15 [74.012,74.012] [74.014,74.012] [73.998,73.998] [73.999,73.999] [74.007,74.007]

16 [74,74] [73.984,73.984] [74.005,74.005] [73.998,73.998] [73.996,73.996]

17 [73.994,73.994] [74.012,74.012] [73.986,73.986] [74.005,74.005] [74.007,74.007]

18 [74.006,74.006] [74.01,74.011] [74.018,74.018] [74.003,74.003] [74,74.001]

19 [73.984,73.984] [74.002,74.002] [74.003,74.003] [74.005,74.005] [73.997,73.997]

20 [74,74] [74.01,74.01] [74.013,74.009] [74.02,74.015] [74.003,74.003]

21 [73.982,73.982] [74.001,74.001] [74.015,74.015] [74.005,74.005] [73.996,73.996]

22 [74.004,74.004] [73.999,73.999] [73.99,73.99] [74.006,74.006] [74.009,74.002]

23 [74.01,74.01] [73.989,73.989] [73.99,73.99] [74.009,74.005] [74.014,74.011]

24 [74.015,74.011] [74.008,74.008] [73.993,73.993] [74,74] [74.01,74.011]

25 [73.982,73.982] [73.984,73.989] [73.995,73.995] [74.017,74.012] [74.013,74.01]
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Table 10. The values of statistic for the proposed chart.

Sr# S2
N TkN ZkN

1 [0.000218,0.000297] [1.521080,2.581987] [0.211,0.211]

2 [0.000056,0.000033] [−0.544091,−0.856070] [−0.544091,−0.856070]

3 [0.000217,0.000146] [1.515046,1.224781] [1.515046,1.224781]

4 [0.000082,0.000082] [−0.062734,0.273432] [−0.062734,0.273432]

5 [0.000149,0.000115] [0.847492,0.811799] [0.847492,0.811799]

6 [0.000075,0.000079] [−0.176903,0.227342] [−0.176903,0.227342]

7 [0.000030,0.000024] [−1.138271,−1.116612] [−1.138271,−1.116612]

8 [0.000150,0.000181] [0.857712,1.615885] [0.857712,1.615885]

9 [0.000030,0.000026] [−1.133061,−1.051897] [−1.133061,−1.051897]

10 [0.000039,0.000039] [−0.913632,−0.677915] [−0.913632,−0.677915]

11 [0.000008,0.000007] [−1.809110,−1.756588] [−1.809110,−1.756588]

12 [0.000017,0.000012] [−1.496849,−1.566774] [−1.496849,−1.566774]

13 [0.000109,0.000021] [0.345425,−1.227323] [0.345425,−1.227323]

14 [0.000234,0.000060] [1.653410,−0.172225] [1.653410,−0.172225]

15 [0.000053,0.000046] [−0.60183,−0.499771] [−0.601839,−0.499771]

16 [0.000060,0.000060] [−0.454187,−0.159260] [−0.454187,−0.159260]

17 [0.000111,0.000111] [0.37870829,0.7532313] [0.378708,0.753231]

18 [0.000048,0.000046] [−0.701836,−0.489458] [−0.701836,−0.489458]

19 [0.000071,0.000071] [−0.249291,0.068160] [−0.249291,0.068160]

20 [0.000063,0.000035] [−0.397927,−0.795335] [−0.397927,−0.795335]

21 [0.000147,0.000147] [0.829230,1.235694] [0.829230,1.235694]

22 [0.000055,0.000039] [−0.564569,−0.686131] [−0.564569,−0.686131]

23 [0.000142,0.000115] [0.766936,0.808990] [0.766936,0.808990]

24 [0.000075,0.000062] [−0.178422,−0.126542] [−0.178422,−0.126542]

25 [0.000261,0.000171] [1.864733,1.505833] [1.864733,1.505833]

The proposed control chart with neutrosophic control limits is shown in Figure 4. The charts
proposed by References [38] and [7] are shown in Figures 5 and 6, respectively. By comparing these
figures, it can be seen that the proposed control chart indicates some points near the lower neutrosophic
control limits. On the other hand, the existing charts in Figures 5 and 6 show the process is in control.
We conclude here that the proposed chart indicates some issues in the process, while the existing chart
indicates noting in the process. Therefore, the use of the proposed control chart will provide strict
monitoring of the automobile manufacturing process.
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6. Concluding Remarks

We presented a S2
N −NEWMA chart for monitoring the variation in the process. We also presented

a new NMC simulation method. The necessary tables are presented for various values of specified
parameters. The simulation study and a real example are presented. From the simulation study and real
example, it is concluded that the proposed S2

N −NEWMA chart performs better than Reference [38]’s
chart under uncertainty. We recommended applying the proposed control chart in the industry where
the data is obtained from the complex measurement. The proposed control chart using some other
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sampling schemes and big data can be considered as future research. The proposed chart using the
methodology of Reference [41] will be considered as future research.
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