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Abstract: This paper handles a hybrid multiple optimization technique to concurrently enhance
hydraulic efficiency and decrease unsteady radial forces resulting from fluid-induced vibration
of a single-channel pump for wastewater treatment. A single-channel impeller and volute was
optimized systematically by using a hybrid particle swarm optimization and genetic algorithm
coupled with surrogate modeling. Steady and unsteady Reynolds-averaged Navier–Stokes analyses
were conducted to optimize the internal flow path in the single-channel pump. Design variables
for controlling the internal flow cross-sectional area of the single-channel impeller and volute in
the single-channel pump were chosen to concurrently optimize objective functions with hydraulic
efficiency and the unsteady radial forces resulting from impeller–volute interaction. The optimization
results clearly showed that the arbitrary cluster optimum design considerably enhanced hydraulic
efficiency and decreased the unsteady radial forces concurrently, compared to the reference design.
Finally, the hydraulic performance of the optimized prototype model was verified experimentally.
Then, it was proved that the proposed technique is a practical tool for designing a single-channel pump.

Keywords: single-channel impeller; computational fluid dynamics (CFD); unsteady RANS; optimization;
hybrid PSO-GA; radial force

1. Introduction

Recently, the water industry has been receiving global attention as an industry with potential
growth in the future. Current trends indicate that the wastewater treatment industry is a rapidly
growing industry globally. Thus, the demand for special pumps for transferring sewage containing
solid wastes is increasing rapidly. However, grinder and vortex pumps that are mostly used for
wastewater treatment are inefficient and cannot transfer sewage with solid wastes because of low
efficiency and the need for frequent maintenance, among other factors. To overcome these problems,
many research studies have been conducted on treating sewage containing solid wastes [1–4]. One such
study proposed a single-channel impeller with a single free annulus passage, which can smoothly
transfer sewage containing solid wastes. Moreover, it has a high efficiency and wide flow range
compared with those of grinder and vortex pumps. However, the single-channel impeller has an
unsymmetrical flow passage, and there is a limit to stabilizing unstable vibrations with the generated
radial forces due to unsteady features between the stationary volute and rotating impeller. Moreover,
a single-channel pump impeller produces unstable radial force sources at a general frequency specified
by the impeller rotating speed [4].
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Researches on the interaction between the impeller and stator have been conducted over the
past several years. Qin and Tsukamoto [5] analyzed the unsteady flow characteristics caused by
impeller–diffuser interaction in a diffuser pump using a singularity method. The pressure fluctuation
characteristics generated by rotor–stator interaction in a diffuser pump were investigated numerically
by Shi and Tsukamoto [6]. As the result, it was confirmed that the flow characteristics generated by
the impeller–diffuser interaction can be analyzed through an unsteady flow analysis. The unsteady
flow characteristics between the radial impeller and diffuser in a radial pump were investigated by
Feng et al. [7]. The flow between the impeller and diffuser was analyzed effectively by using the
unsteady Reynold-averaged Navier–Stokes (RANS) analysis and laser Doppler velocimetry (LDV),
and it was reported that there are two types of interaction effects between a rotor and stator. One was
the downstream effect induced by the impeller, which has an unsteady flow characteristic because
of the highly distorted flow field and the wake of the impeller. The other was the upstream effect
induced by the stator, which induces unsteady pressure fluctuations. Experimental and computational
numerical studies for investigating unsteady hydrodynamic forces on the diffuser pump impeller
were performed by Zhang and Tsukamoto [8]. The hydrodynamic unsteady forces acting on the
pump impeller were analyzed by varying the number of impeller blades. It was found that the
hydrodynamic force was smaller when the blade number of impellers was equal to the diffuser vane
number. However, pressure fluctuation was the largest compared with that in other cases. Benra [9]
measured the hydrodynamic forces acting on the blade of a single-channel pump. Fluid-structure
interaction (FSI) was used for numerical analysis of hydrodynamic forces, and the deflection of the
blade was measured using proximity sensors. The vibration induced by the blade was transmitted to
the volute and pipes. This phenomenon occurred periodically according to the rotation of the blade,
and it was confirmed that the hydrodynamic force increases as the flow rate of the pump increases.
Nishi et al. [10] proposed a single-channel pump design to increase the amount of solid waste passing
through the impeller and to improve the pump performance. The results of the study showed that
the pump efficiency exceeded 62%. Pei et al. [11] analyzed the flow characteristics of a single-blade
centrifugal pump through numerical analysis and confirmed that unsteady flow characteristics are
distributed according to the position of the blade. In addition, it has been reported that the stability of
a single-channel pump can be improved by optimizing the flow characteristic or flow path between the
blade and volute. These unsteady radial force sources were generally induced by the impeller–volute
interaction, and consequentially, these sources adversely affected the entire hydraulic and mechanical
performances (durability, life expectancy, etc.) of a single-channel pump. Therefore, an advanced
design technique that can concurrently enhance hydraulic efficiency and decrease these unsteady
sources is required.

To achieve multiple goals simultaneously, optimization methods using numerical analysis are
widely used. Classical methods such as decomposition, Lagrangian techniques and cutting plane
methods were previously applied to find optimal points. However, these classic optimization
methods are ineffective for practical engineering problems. Hence, many studies were focused on
exploratory optimization algorithms, such as a particle swarm optimization (PSO) [12] and genetic
algorithm (GA) [13] to identify global optima, because the classic methods can be trapped in local
optima according to the initially set value. These exploratory optimization methods combined with
three-dimensional (3-D) RANS analysis have been generally used to find the best design solutions
in the last decades—especially for turbomachinery designs [14,15]. Recently, a hybrid optimization
algorithm was developed that combines the advantages of several optimization algorithms to improve
computational efficiency. Robinson et al. [16] sought to combine GA and PSO and introduced an
initial model of hybrid PSO-GA. Shi et al. [17] introduced an improved hybrid PSO-GA algorithm.
The hybrid PSO-GA and GA were used to calculate benchmark test problems, and the performances of
the algorithms were compared. The hybrid PSO-GA algorithm showed an improved performance with
respect to the ability to identify optimal solutions and the speed of the convergence. Gandelli et al. [18]
established another hybrid PSO-GA algorithm by applying a novel combinations strategy and tested
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its performance using various benchmark test problems. The optimization using this hybrid PSO-GA
algorithm led to consistent and effective results for the benchmark problems.

In fact, as shown in the above literatures, even though many computational optimization
methodologies on various pump designs have been proposed, no systematic design works have
been attempted for single-channel pumps. In the present work, the geometric shapes of the volute
and impeller flow paths of a single-channel pump were systematically optimized to concurrently
enhance hydraulic efficiency and decrease the unsteady radial forces by using hybrid PSO-GA based
on a surrogate model. Here, for multi-objective optimization, the hydraulic efficiency and unsteady
radial forces resulting from impeller–volute interaction were used as objective functions. These were
then approximated using a radial-bias neural network (RBNN) model [19]. Furthermore, as one of
the design-of-experiment (DOE) methods, Latin hypercube sampling (LHS) [20] was employed to
efficiently choose the design points within the design space. This work is the follow-up study of the
authors’ previous works [21–23]. In the previous works, the authors verified that the design technique
combined with the numerical analysis and optimization method is a practical tool for realizing the
high-efficiency and low-fluid-induced vibration of the single-channel pump. Based on these results,
the importance for objective functions was understood. Then, two objective functions were selected to
design the high-efficiency and low-fluid-induced vibration single-channel pump. In addition to the
hybrid PSO-GA, the advanced technique is used to improve the prediction accuracy and performance
of the optimal design. The hybrid PSO-GA proved to be superior through some benchmark function
tests, but rarely applied to the engineering problems [16–18]. Therefore, in this study, it was verified
whether the hybrid PSO-GA technique could be practically used in the actual pump design step.

2. Numerical Methods

2.1. Single-Channel Pump Model

In this study, from the Stepanoff theory applied in the authors’ preceding works [21–24], the initial
geometry of the volute and impeller of the single-channel pump was designed, as shown in Figure 1.
The Stepanoff theory is a method of controlling the cross-sectional area to minimize the flow losses
caused by the flow rate differences. The Stepanoff theory is normally used in a volute design, but in this
study it was used for designing both the volute and impeller because they each consist of a single flow
path. Therefore, the initial area distributions of the volute and impeller are continuously increased as
the theta angle between the volute and impeller increases from the inlet to outlet, as shown in Figure 2.
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Figure 1. Geometry of single-channel pump.

As shown in Figure 2, the cross-sectional area of the impeller of the reference model was designed
considering the minimum thickness in the range 0–70◦ of the impeller. The impeller was designed to
have the maximum cross-sectional area at the 360◦. In the case of the volute, as shown in Figure 2,
the cross-sectional area was designed to constantly increase from 0 to 360◦. A more detailed description
can be referred to in the authors’ previous work.
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The head and flow coefficients, defined as below, for the reference pump are 0.074 and
0.019, respectively.

ψ =
gH

N2D2 , (1)

φ =
Q

ND3 , (2)

where, N, D, g, H and Q are the rotational speed, impeller diameter, gravity acceleration, total head
and volume flow rate, respectively. The additional design information is listed in Table 1 [23].

Table 1. Design major specifications of the single-channel pump [23].

Flow coefficient (φ) 0.019
Head coefficient (ψ) 0.074

Rotational speed (RPM) 1760
Impeller inlet-outlet diameter ratio 1.9
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2.2. Numerical Analysis

Commercial code ANSYS CFX-15.0 was employed for the hydraulic analysis of the single-channel
pump. For turbulence closure, the k-ω based shear stress transport (SST) model [25] was applied
and three-dimensional steady and unsteady incompressible RANS equations were solved. Generally,
the SST model combines a k-ω model of the near-wall flow and k-ε model of the bulk flow. A blending
function was used to connect these two models. The SST model is well known to predict precisely flow
separations under adverse pressure gradients.

The 3-D model for the volute and impeller was generated by Solidworks 2015 and the computational
grids system for numerical analysis was created by ICEM-CFD. Since the computational domain
includes both stationary and rotating domains, the specific processing technique provided by ANSYS
CFX-15.0 was used at the interface. The stage (or mixing plane) and the transient Rotor-Stator interface
methods were used at the interface between the rotating and stationary domains in the RANS and
unsteady RANS analyses, respectively.

Freshwater was employed for working fluid and the inlet boundary condition of the pump was
set to atmospheric pressure. The surfaces of the volute and impeller are considered as adiabatic and
no-slip conditions. The outlet boundary condition was set to the mass flow rate, and the numerical
analysis was performed while changing the mass flow rate.

The grid system consists of a tetrahedral grid in the volute and impeller domains. In this study,
y+ was kept below 2 to use the low Reynolds SST model, so that the flow near the wall was accurately
analyzed. To eliminate the grid dependency of the numerical solutions, grid dependency test was
performed at the design mass flow rate for the hydraulic performance of the pump. Based on the
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results in the previous work [23], the optimal grids system (a total of 2,500,000 nodes; 1,300,000 nodes
in the impeller domain and 1,200,000 nodes in the volute domain) was selected, as shown in Figure 3.
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To determine the convergence of the numerical calculations, the root-mean-square (RMS) values
of the residuals of the governing equations were set to be less than 10−5. The calculation for the steady
RANS analysis were performed using an Intel Xeon CPU (2.70 GHz) processor and the CPU running
time for each analysis was about 4 h.

Steady RANS results were employed as initial values for unsteady RANS analysis, and coefficient
loop with time scale control and time step were set to three times and 0.000947 s, respectively. Unsteady
RANS analysis results were obtained after five revolutions (180 iterations with a total time of 0.01704775
s), and the CPU running time for each analysis was approximately 8 h. Through unsteady RANS
analysis, characteristics of radial force sources due to flow interaction at the interface between the
rotating and stationary domains were obtained and analyzed.

3. Optimization Techniques

The flowchart for the multi-objective optimization process using surrogate modeling is shown
in Figure 4. First, the objective functions and constraints are defined according to the design goal.
Subsequently, the design variables considering constraints are chosen. The LHS [20] is used as DOE to
select the design points and the objective functions are evaluated by (U)RANS analysis at these design
points. The next step is the construction of surrogate model to approximate the objective functions and a
searching algorithm, that is, hybrid PSO-GA, is used to combine and formulate these surrogate models.
Finally, Pareto-optimal solutions—that is, a collection of non-dominated solutions—are derived and
the multi-objective optimization procedure is terminated [26].
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3.1. Optimization Goal

The design goals of the current multiple optimization were to concurrently reduce the radial force
sources and improve the hydraulic efficiency. The hydraulic efficiency, one of the objective functions,
is defined as follows:

Fη = −
ρgHQ

P
, (3)

where, H, Q, ρ, g, and P represent total head, volume flow rate, the density, gravity acceleration, and
power, respectively.

Other objective functions for the radial force sources are the distance of the mass center of the
sweep area from the origin and the sweep area of the radial force during one revolution, as follows:

As =
1
2

n−1∑
i=0

(xiyi+1 − xi+1yi), (4)

where, As represents the signed area of the polygon, considered as the sweep area of the radial force
during one revolution. The centroid of a non-self-intersecting closed polygon defined by n vertices (x0,
y0), (x1, y1), . . . , (x(n-1), y(n-1)) is defined as the point (Cx, Cy), as follows:

Cx =
1

6As

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi), (5)

Cy =
1

6As

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi). (6)

The vertices in these equations are defined as being numbered in sequence along the perimeter of
the polygon. Hence, the distance of the mass center of the sweep area from the origin can be finally
defined as follows:

Fradial =
√

C2
x + C2

y. (7)

Thus, in order to fulfil the design goals described above, multi-objective optimization was
performed using Fη and Fradial as objective functions.

In this study, five geometric parameters associated to the internal flow characteristics of the
pump were chosen as design variables to control the cross-sectional area of the volute and impeller.
The distribution of the cross-sectional area of the internal flow of impeller and volute can be controlled
smoothly by adjusting the control points represented by a third and fourth order Bezier-curve,
respectively, as shown in Figure 5. Hence, the variations in the y-axes for two control points (CP1 and
CP2) for the impeller and three control points (CP3, CP4 and CP5) for the volute were selected. Figure 5
shows the defined design variables and ranges are listed in Table 2.

Table 2. Ranges of design variables.

LB Ref. UB

CP 1 0.03 0.32 0.61
CP 2 0.42 0.71 1.00
CP 3 0.00 0.25 0.50
CP 4 0.00 0.50 1.00
CP 5 0.50 0.75 1.00
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3.2. Surrogate Modeling

In the present work, 54 design points were generated for the five design variables by LHS using
the MATLAB function ‘lhsdesign’ [27]. LHS is an effective sampling technique that uses an m × n
simulation matrix where m is the number of levels (sampling points) to be examined and n is the
number of design parameters. Each of the n columns of the matrix containing the levels, 1, 2, . . . ,
m, is randomly paired to form a Latin hypercube. This approach produces random sample points,
ensuring that all portions of the design space are represented. The objective function values at these
design points were calculated by (U)RANS analysis, as shown in Table A1 (Appendix A).

The RBNN model was applied for the surrogate modeling from the objective functions. The RBNN
as a neural network model, presented in Figure 6, consists of a hierarchical structure that starts at the
input stage and ends at the output stage, where each stage is known as a layer. There are intermediate
layers between the input and output stages, known as hidden layers. By controlling the number and
size of these hidden layers, arbitrary complex functions can be learned, and the surrogate models
can be constructed. The RBNN includes a two-layered hidden network containing a layer of radial
neurons and an output of linear neurons. The hidden layer uses a series of radial primitives to
nonlinearly modify the input space to the intermediate space. The output layer then executes a linear
combiner to produce the desired target. In this study, MATLAB built-in code ‘radbas’ and ‘newrb’
were used to perform radial basis function-based machine learning [27]. ‘Newrb’ makes a two-layer
network. As mentioned above, the first layer constructed by ‘radbas’ is radial basis neuron network
and the second layer is linear neuron network. This combination model f (x) for the formulation can be
represented as a linear combination of a set of N radially-symmetric functions as follow:

f (x) =
N∑

j=1

w j∅ j, (8)

where wj is the weight and Φj is radial basis function. Machine learning finds the input vector with the
largest error in the network and adjusts the weight or neurons of this vector to minimize the error in
the network. This process is repeated until the network’s mean squared error falls below the set goal.
The construction process can be accessed through graphical user interface (GUI) environment using
the application ‘neural net fitting’, which is supported within MATLAB [27].

In order to construct the RBNN model, an initial value must be assigned to the spread constant
(SC), that is, a constant for the first hidden layer (nonlinear function) of the neural network. Because
machine learning is based on this initial SC value, it should be chosen carefully.

The network training was implemented by changing the SC values to identify the minimum
cross-validation error. The parameters SC1 and SC2 are constants that are utilized to configure the
surrogate model with respect to the efficiency and radial force, respectively. The SC values were chosen
using a k-fold cross-validation test [28], which is a validation method that estimates how the results of
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statistical analysis are generalized to independent datasets. The process of the k-fold cross-validation
test used in the present work is described as follows:

Step 1 Construct a surrogate model using the 53 experimental points, except for one point of the 54
experimental points.

Step 2 Compare the value of the objective function at the location of the experimental point excluded
from Step 1 (between CFD simulation value and predicted value by the surrogate model).

Step 3 This process is carried out at all experimental points. Then, evaluate the sum of the errors
between predicted and CFD simulation values.

As shown in Figure 7, the error was minimized when the values of SC1 and SC2 were 0.2 and
1.0, respectively. Neural networks with various numbers of neurons were trained 10 times and the
averaged adjusted R2 values are compared (Figure 8). The same quantity of neurons was used in each
layer; when using 12 neurons, the statistically most accurate models with adjusted R2 equals to 1.00
and 0.78 could be achieved.
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3.3. Searching Algorithm

Once the surrogate model is constructed, it is necessary to find the optimal point on the fitness
assignment, which is the output in the form of a function of the surrogate model. In the present
work, a hybrid PSO-GA algorithm that was most recently developed [18] was used as searching
algorithm to identify a global optimal solution within the fitness assignment. It is known to have a
high reliability. Hybrid strategies combine two or more algorithms to maximize the benefits of each
algorithm. One benefit of the PSO algorithm is its simplicity and another one is that the PSO algorithm
controls the convergence criteria to identify the optimal solution in a short time. The GA, on the
other hand, has the advantage of finding the global optimal solution by controlling the genetic search
operators—that is, the crossover and mutation rates—which affect the convergence. The locations of
the global best particles are updated by the genetic search operators to prevent premature convergence.
By using the genetic search operators, the locations of the particles can be exchanged among the
particles and thus have the ability to escape the local optima.

The procedure of the hybrid PSO-GA algorithm is represented in Figure 9 [15]. This algorithm
shares the initial number of particles of the PSO with the number of populations of the GA. The first step
of this procedure is to identify an initial optimal solution using the particles of the PSO. The next step
is to modify the locations of the particles using the genetic search operators and identify the improved
optimal solution. The procedure is competed when the termination criteria are met by referring to
the updated location; otherwise, it is repeated. In the present work, the following parameters and
termination criteria were used: population size (i.e., number of particles) = 400, crossover fraction
= 0.35, mutation fraction = 0.70, generations = 1000, function tolerance = 10−6, and initial velocity
of particles = 2.5. The pseudo-code of the hybrid PSO-GA used in this study is shown in Table A2
(Appendix B).

3.4. Optimization Results

For the optimization, hybrid PSO-GA with RBNN was used to search the Pareto-optimal front in a
feasible solution space bounded by the lower and upper bounds of the design variables. Pareto-optimal
solutions with the optimum trade-off between the two conflicting objective functions are plotted in
Figure 10.

The arbitrary optimum design (AOD) was obtained as the final design near the center of the
Pareto-optimal front, to improve the prediction of both the objective functions compared to the
reference. The values of the design variables and objective functions of the AOD, along with those for
the reference design, are listed in Table 3. The AOD showed an improvement of 3.07% and 44.80% for
the hydraulic efficiency and radial force, respectively, compared with the reference design. In contrast,
the relative errors between (U)RANS and the predicted values for these objective functions were 0.16%
and 8.77%, respectively.
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4. Results and Discussion

4.1. Unsteady Analyses of Internal Flow Field

In a previous work of the authors [29], the accuracy of the numerical analysis used in this work
was proved in comparison with the experimental result and then the results of the numerical analysis
were consequentially considered valid.

To quantitatively verify the improvement in hydraulic performance of the AOD owing to the
optimization, the internal flow paths for the reference model and AOD were compared systematically
with their cross-sectional area distributions, as shown in Figures 11–17. Figure 11 shows the
cross-sectional area distributions in the single-channel impeller and volute for the reference model
and AOD. The cross-sectional area distribution of the flow path of the impeller in AOD most closely
resembles a concave shape, as shown in Figure 11a. This implies that the flow path in the impeller of
AOD was narrowed slightly compared with the reference model. The cross-sectional area distribution
in the region of the volute upstream (from 0 to 240◦) in AOD also decreased considerably, while the
cross-sectional area distribution in the downstream region after 240◦ increased slightly compared with
the reference model, as shown in Figure 11b. The concave flow path in the region of the impeller
downstream and volute upstream was found to be considerably sensitive for the high efficiency and low
radial force design of the single-channel pump. As a result, it can be concluded that the single-channel
impeller and volute shapes should be optimized concurrently to design a single-channel pump with
high hydraulic efficiency and low radial forces.
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Figure 11. Cross-sectional area distributions of the flow path.
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Figure 12. Time-averaged iso-surfaced contours at a low velocity of 1.5 m/s.

Figure 12 shows time-averaged iso-surfaced contours having a low velocity component (1.5 m/s),
which is the flow separation zone, for the reference model and AOD. For the reference impeller,
the large flow separation zone formed along with the internal annulus wall in the single-channel
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impeller, as shown in Figure 12a. On the contrary, the flow separation zone was reduced remarkably in
the downstream region of the optimized impeller, as shown in Figure 12b.

Figure 13 shows the time-averaged streamline distributions in the impeller surface wall of the
reference and optimized models. Extreme flow separation was occurred in the hub wall by abruptly
changing the flow path for both models. However, the limited streamline in the AOD was moved
from the impeller outside wall to the inside wall by the optimized flow path. It can be seen that these
changing flows contributed to the decrease in flow separation and increase in the hydraulic efficiency
owing to optimization. Thus, the decrease in the flow separation from the impeller can be made by the
smooth pressure increase by matching with the optimized volute shape, as shown in the time-averaged
pressure contours on the mid-span in Figure 14. These results illustrate the improvement in the entire
hydraulic efficiency of the pump.
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The sweep area distributions generated by the unsteady radial force components during the
impeller one rotation for the reference model and AOD are plotted in Figure 15; they are averaged
at the cylindrical surface near exit of the single-channel impeller. Here, all Fx and Fy values of the
radial force were normalized based on the maximum radial force of the reference design. As shown in
Figure 15, the sweep area distribution in the reference design leaned a little toward the fourth quadrant,
whereas it was closer to the origin for AOD. Moreover, the sweep area in AOD reduced significantly
compared with the reference model. As discussed previously in Section 3.4, the radial force in AOD
decreased by 14.73, compared with the reference design.

Figure 16 shows the unsteady fluctuation distributions in the net radial forces during the impeller
one rotation in the reference model and AOD. Here, the net radial force values were normalized
using the maximum net radial force value of the reference design. The fluctuation amplitude in AOD
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generally decreased during one revolution of the impeller, especially for flat formed angles from 0 to
240◦. In addition, the net radial force distribution in AOD was lower and mostly flat compared with
the normalized values of the reference model. The remarkable reduction in the radial force sources can
be explained clearly by the optimization of this work.
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Figure 15. Sweep area distributions during one revolution of impeller.
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Figure 16. Unsteady net radial force fluctuations during one rotation of impeller.

The instantaneous change in the unsteady pressure values on the cylindrical surface near the exit
of the impeller for the reference model and AOD are shown in Figure 17. Here, the impeller one rotation
is divided into five steps to clearly explain the variation in the flow phenomenon with time during
impeller one rotation. In the reference model, the pressure variation caused by the impeller–volute
interaction is prominent and then increases gradually, especially in Figure 17b. As discussed previously
in Figure 15, the high-pressure zone is the fourth quadrant where the sweep area distribution leans
slightly. Owing to this repetitive rotation, fluid-induced vibration caused by unsteady radial forces are
observed. These unbalancing phenomena have an adverse effect on pump performance. In contrast,
unsteady pressure distribution is generally uniform during the impeller one rotation; especially, at the
same time of the reference model. With these trends, the high-pressure variation induced by the
impeller–volute interaction clearly disappeared in Figure 17. Therefore, the AOD resulted in mostly
stable flows in the pump with high efficiency and low radial forces. There is a remarkable decrement
in the fluid-induced vibration induced by the impeller–volute interaction from the current multiple
optimization result.
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Figure 18 shows the spectra of the normalized amplitude values based on the wall pressure
fluctuations measured at the observation point on the casing wall near the tongue of the volute located
in the fourth quadrant in Figure 15. In Figure 18, the first blade passing frequency (BPF) is measured
at approximate 30 Hz, and this is represented by the fluid-induced vibration characteristics from the
impeller–volute interaction. These peak amplitude values are clarified at every harmonic BPF in 30 Hz
steps due to the periodic motion of impeller rotation. In the AOD, a remarkable decrement in the
amplitude values at the first BPF was occurred, and the decrement in fluid-induced vibration induced
by the impeller–volute interaction was confirmed.
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4.2. Performance Verification of the Optimized Prototype Model

To confirm the hydraulic performance of the optimized model obtained through the numerical
optimization technique, the prototype model was manufactured in Figure 19. Figure 20 shows the
schematic of the experimental apparatus constructed in Korea Institute of Industrial Technology to
measure the hydraulic head and efficiency of the prototype model. The experimental apparatus was
constructed based on the standards of KS B 6301 and 6321. In addition, the measuring devices for the
pressure sensor, temperature sensor, magnetic flow meter, and digital power meter were calibrated
from the qualified office of Korea. Figure 21 shows the experimental results for the head and efficiency
of the prototype model, with the numerical analysis results. As shown in Figure 21, the head coefficient
curves of the experimental and numerical results are similar in the entire range, the head value,
in particular, is almost the same at the design flow coefficient. In contrast, the efficiency curves of the
numerical analysis including the motor efficiency are relatively higher than those of the experimental
results, because the numerical results do not include the mechanical losses. However, the general curve
trend matched well. From these results, the required single-channel pump could be designed through
the proposed numerical optimization technique; hence, the technique was demonstrated to be feasible.
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5. Conclusions

In this study, a multiple optimization technique using hybrid PSO-GA was introduced to effectively
enhance the efficiency and radial force sources with fluid-induced vibration of the single-channel pump.
3-D steady and unsteady RANS analyses were performed to investigate the hydraulic characteristics
of the single-channel pump using ANSYS CFX-15.0. As the design variables, design parameters for
controlling the internal cross-sectional areas of the single-channel impeller and volute were chosen in
the authors’ previous study. Two performance functions, i.e., hydraulic efficiency and radial force,
were defined as the objective functions. The optimization based on the surrogate model was performed
considering reasonable calculation time. The RBNN method was used as a surrogate model, and it
was repeatedly constructed 10 times with a different number of neurons constituting the layer for
statistical analysis. As a result, when 12 neurons were used, the most accurate surrogate model was
constructed. Through optimization with RBNN consisting of 12 neurons, the hydraulic efficiency of
the optimum design increased by 3.07%, and the radial force caused by impeller–volute interaction
reduced by 44.80%, compared to the reference design.

In the optimum design, the flow path in the impeller was narrow in comparison with the reference
design. The flow path in the volute upstream of the optimum design was narrowed, while that in the
volute downstream was slightly increased, in comparison with the reference design. These structural
changes balanced the pressure distribution along the impeller–volute interface and delayed the flow
separation on the impeller surface. As a result, it was confirmed through (U)RANS analysis that
the fluid-induced vibration of the optimum design reduced in comparison with the reference design.
The optimum design obtained in the present study was used to manufacture a prototype model, and the
hydraulic performances, i.e., efficiency and head, were verified experimentally. Thus, reasonable
results were obtained with the required design specification. However, the precise vibration test was
not conducted, and only the vibration values were measured briefly using the simple vibration meter.
This is because it was very difficult to simultaneously measure detailed vibration with the hydraulic
performances in the experimental apparatus, and there was no submersible three-axis vibration sensor.
Therefore, in a future work, the vibration characteristics of the single-channel pump will be investigated
in more detail using a three-axis vibration meter, and the flow characteristics including solid wastes
will be studied.
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Nomenclature

AOD Arbitrary optimum design
BPF Blade passing frequency
CFD Computational fluid dynamics
CP Control point
D Diameter of impeller
DOE Design of experiments
FSI Fluid-structure interaction
g Gravity acceleration
GA Genetic algorithm
H Total head
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LDV Laser Doppler velocimetry
LHS Latin hypercube sampling
N Rotational speed
P Power
PSO Particle swarm optimization
Q Volume flow rate
RANS Reynolds-averaged Navier-Stokes
RBNN Radial basis neural network
SC Spread constant
SST Shear stress transport
(U)RANS Unsteady Reynolds-averaged Navier-Stokes
ρ Density
φ Flow coefficient
Ψ Head coefficient

Appendix A

Table A1. Design variables and objective functions values at LHS design points.

CP 1 CP 2 CP 3 CP 4 CP 5 Fη/Fη_Ref. Fradial/Fradial_Ref

1 0.000 0.000 1.000 0.000 0.000 −1.021 3.064
2 0.000 0.000 0.000 0.000 1.000 −1.033 1.759
3 0.000 0.000 1.000 1.000 0.000 −1.017 2.144
4 1.000 1.000 0.000 0.000 1.000 −0.982 1.527
5 0.265 0.306 0.429 0.980 0.837 −1.026 1.403
6 1.000 0.469 0.286 0.592 0.571 −0.994 1.133
7 0.551 0.735 0.327 0.490 0.000 −1.012 1.355
8 0.959 0.184 0.857 0.531 0.327 −1.007 2.109
9 0.020 0.857 0.224 0.449 0.265 −1.014 1.161

10 0.939 0.653 0.796 0.673 0.878 −0.988 1.344
11 0.449 0.510 0.735 0.000 0.469 −1.016 1.362
12 0.347 0.408 0.776 0.918 0.163 −1.015 1.958
13 0.694 0.041 0.510 0.694 0.694 −1.024 1.441
14 0.633 0.878 0.122 0.735 0.633 −1.003 1.377
15 0.796 0.714 0.592 0.061 0.082 −1.000 1.861
16 0.571 0.265 1.000 0.388 0.714 −1.020 1.778
17 0.857 0.245 0.061 0.184 0.898 −1.013 0.628
18 0.918 0.694 0.449 0.122 0.776 −1.013 0.347
19 0.388 0.959 0.551 0.265 0.408 −1.011 1.429
20 0.245 0.918 0.980 0.755 0.245 −1.014 1.495
21 0.184 0.000 0.184 0.551 0.755 −1.036 0.738
22 0.306 0.020 0.878 0.857 0.551 −1.023 1.630
23 0.837 0.061 0.633 0.143 0.673 −1.013 1.011
24 0.327 0.429 0.020 0.510 0.306 −1.020 0.569
25 0.878 0.980 0.245 0.327 0.367 −0.990 0.122
26 0.469 0.939 0.673 0.837 0.816 −1.003 1.557
27 0.429 0.796 0.000 0.224 0.612 −1.029 0.244
28 0.898 0.571 0.694 0.939 0.347 −0.997 1.591
29 0.816 0.837 0.918 0.306 0.490 −0.989 1.920
30 0.714 0.143 0.367 0.653 0.143 −1.013 1.559
31 0.143 0.082 0.653 0.082 0.592 −1.031 1.271
32 0.735 0.592 0.898 0.612 0.020 −1.008 1.950
33 0.286 0.776 0.959 0.286 0.796 −1.007 1.275
34 0.224 0.327 0.265 0.041 0.102 −1.025 1.103
35 0.061 0.286 0.306 0.878 0.204 −1.022 1.207
36 0.755 0.490 0.041 0.163 0.184 −1.007 0.738
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Table A1. Cont.

CP 1 CP 2 CP 3 CP 4 CP 5 Fη/Fη_Ref. Fradial/Fradial_Ref

37 0.102 0.633 0.143 0.633 0.857 −1.019 0.373
38 0.673 1.000 0.612 0.776 0.286 −0.995 1.152
39 0.980 0.755 0.102 0.816 0.122 −0.989 1.095
40 0.776 0.122 0.490 0.102 0.061 −1.018 1.457
41 0.612 0.347 0.082 0.714 0.918 −1.019 0.821
42 0.000 0.388 0.469 0.429 0.449 −1.022 1.374
43 0.592 0.449 0.163 1.000 0.388 −1.012 1.328
44 0.490 0.367 0.531 0.245 0.939 −1.017 0.387
45 0.367 0.163 0.755 0.408 0.224 −1.019 1.892
46 0.510 0.531 0.571 0.571 0.510 −1.013 1.373
47 0.408 0.898 0.408 0.347 1.000 −1.005 0.605
48 0.204 0.816 0.347 0.959 0.429 −1.005 1.218
49 0.653 0.224 0.939 0.898 0.980 −1.013 1.769
50 0.041 0.551 0.837 0.796 0.653 −1.010 1.476
51 0.122 0.612 0.388 0.020 0.735 −1.017 0.936
52 0.163 0.673 0.714 0.367 0.041 −1.014 1.613
53 0.082 0.204 0.816 0.469 0.959 −1.028 1.234
54 0.531 0.102 0.204 0.204 0.531 −1.030 0.696

Appendix B

Table A2. Pseudo-code of the hybrid PSO-GA.

g = 0 * g: generation number
for i = 1 to M do * M: population (particles) size

Initialize particles of PSO xi to random values
xi

b = xi * xb: initial information of particle
Fi = f (xi) * f : fitness assignment

end for
xg

b = best{xi
b; i = 1, . . . , M} * xg: initial global best particle

Pop = {x1, x2, . . . , xM}
F = {F1, F2, . . . , FM}
<Main Loop>
while do

{Evaluation Loop 1}
for i = 1 to M do
if f (xi) is better than f (xi

b) then
xi

b = xi
end if

if f (xi
b) is better than f (xg

b) then
xg

b = xi
b

end if
end for
{Genetic Operators – Update particles’ position}
Pop← Selection(Pop, F)
Pop← Crossover(Pop, C) * C: crossover rate
Pop←Mutation(Pop, M) * M: mutation rate
{Evaluation Loop 2}
for i = 1 to M do
Fi = f (xi)

end for
F = {F1, F2, . . . , FM}
g = g+1
end while
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