Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Filter Simulation Device
2.2. Experimental Water Quality
3. Results and Discussion
3.1. Analysis of the Pollution Characteristics of the Filter Medium
3.2. The Micromorphology of the Polymers in the Filtration Process
3.2.1. Polymer Concentration Analysis
3.2.2. Morphology and Distribution of Residual Polymers Before and After Filtration
3.2.3. Microcosmic Characteristics of Intercepted Polymers in the Filter Layer
3.3. Analysis on the Causes of Substandard Filtered Water Quality
3.3.1. Analysis on the Causes of Substandard Suspended Solids in the Filtered Water
3.3.2. Analysis on the Causes of Substandard Oil Content in the Filtered Water
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.X. Polymer Flooding Ground Engineering Technology; Petroleum Industry Press: Beijing, China, 2008; pp. 1–25. [Google Scholar]
- Gao, B.; Jia, Y.; Zhang, Y.; Li, Q.; Yue, Q. Performance of dithiocarbamate-type flocculant in treating simulated polymer flooding produced water. J. Environ. Sci. 2011, 23, 37–43. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, S.; Shi, W.; Tian, J.; Zhang, Z. Optimization of membrane cleaning strategy for advanced treatment of polymer flooding produced water by nanofiltration. RSC Adv. 2016, 6, 28844–28853. [Google Scholar] [CrossRef]
- Wang, Z.H.; Lin, X.Y.; Yu, T.Y.; Zhou, N.; Zhong, H.Y.; Zhu, J.J. Formation and rupture mechanisms of visco-elastic interfacial films in polymer-stabilized emulsions. J. Dispers. Sci. Technol. 2019, 40, 612–626. [Google Scholar] [CrossRef]
- Nie, C.; Xu, L.; Gu, D.; Cao, G.; Yuan, R.; Wang, B. Toward efficient demulsification of produced water in oilfields: Solar step directional degradation of polymer on interfacial film of emulsions. Energy Fuels 2016, 30, 9686–9692. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, B.; Tan, G.; Zhai, L.; Fang, S.; Ma, Y. Comparison of performances of different type of clarifiers for the treatment of oily wastewater produced from polymer flooding. Can. J. Chem. Eng. 2015, 93, 1288–1294. [Google Scholar] [CrossRef]
- Xia, Q.; Guo, H.; Ye, Y.; Yu, S.; Zhang, R. Study on the fouling mechanism and cleaning method in the treatment of polymer flooding produced water with ion exchange membranes. RSC Adv. 2018, 8, 29947–29957. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Bai, Y.; Zhang, H.Q.; Liu, Y. Investigation on gelation nucleation kinetics of waxy crude oil emulsions by their thermal behavior. J. Pet. Sci. Eng. 2019, 181, 106230. [Google Scholar] [CrossRef]
- Chen, H.X.; Tang, H.M.; Duan, M.; Liu, Y.G.; Liu, M.; Zhao, F. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China. Environ. Technol. 2015, 36, 1373–1380. [Google Scholar] [CrossRef]
- Ren, G.M.; Sun, D.Z.; Chunk, J.S. Advanced treatment of oil recovery wastewater from polymer flooding by UV/H_2O_2/O_3 and fine filtration. J. Environ. Sci. 2006, 18, 29–32. [Google Scholar]
- Liu, A.; Liu, S.Y. Study on performance of three backwashing modes of filtration media for oilfield wastewater filter. Desalin. Water Treat. 2016, 57, 10498–10505. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kovacs, Z.; Schneider, M.; Mund, P.; Bolduan, P.; Czermak, P. Multistage filtration process for efficient treatment of oil-field produced water using ceramic membranes. Desalin. Water Treat. 2012, 42, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Makhmudov, Z.M.; Saidullaev, U.Z.; Khuzhayorov, B.K. Mathematical model of deep-bed filtration of a two-component suspension through a porous medium. Fluid Dyn. 2017, 52, 299–308. [Google Scholar] [CrossRef]
- Bai, B.; Wang, J.Q.; Zhai, Z.Q.; Xu, T. The penetration processes of red mud filtrate in a porous medium by seepage. Transp. Porous Media 2017, 117, 207–227. [Google Scholar] [CrossRef]
- Sharafutdinov, R.F.; Bochkov, A.S.; Sharipov, A.M.; Sadretdinov, A.A. Filtration of live oil in the presence of phase transitions in a porous medium with inhomogeneous permeability. J. Appl. Mech. Tech. Phys. 2017, 58, 271–274. [Google Scholar] [CrossRef]
- Nasre-Dine, A.; Ahmed, H.; Abdellah, A.; Wang, H.Q.; Gilbert, L.B.; Tariq, O. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J. Environ. Sci. 2017, 53, 161–172. [Google Scholar]
- Le, T.V.; Imai, T.; Higuchi, T.; Yamamoto, K.; Sekine, M.; Doi, R.; Vo, H.T.; Wei, J. Performance of tiny microbubbles enhanced with “normal cyclone bubbles” in separation of fine oil-in-water emulsions. Chem. Eng. Sci. 2013, 94, 1–6. [Google Scholar] [CrossRef]
- Xu, H.X.; Liu, J.T.; Wang, Y.T.; Cheng, G.; Deng, X.W.; Li, X.B. Oil removing efficiency in oil–water separation flotation column. Desalin. Water Treat. 2015, 53, 2456–2463. [Google Scholar] [CrossRef]
- Li, R.Y. Application of gas-assisted solvent flotation technique on oil-field polymer-bearing produced water. Appl. Mech. Mater. 2013, 316–317, 902–905. [Google Scholar] [CrossRef]
- Chiavonefilho, O. Oil removal of oilfield-produced water by induced air flotation using nonionic surfactants. Desalin. Water Treat. 2015, 56, 1802–1808. [Google Scholar]
- Bhaskar, K.U.; Murthy, Y.R.; Raju, M.R.; Tiwari, S.; Srivastava, J.K.; Ramakrishnan, N. CFD simulation and experimental validation studies on hydrocyclone. Miner. Eng. 2007, 20, 60–71. [Google Scholar] [CrossRef]
- Bai, Z.S.; Wang, H.L.; Tu, S.T. Experimental study of flow patterns in deoiling hydrocyclone. Miner. Eng. 2009, 22, 319–323. [Google Scholar] [CrossRef]
- Bergström, J.; Vomhoff, H. Experimental hydrocyclone flow field studies. Sep. Purif. Technol. 2007, 53, 8–20. [Google Scholar] [CrossRef]
- Lim, E.W.C.; Chen, Y.R.; Wang, C.H.; Wu, R.M. Experimental and computational studies of multiphase hydrodynamics in a hydrocyclone separator system. Chem. Eng. Sci. 2010, 65, 6415–6424. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, B.; Lu, L.; Yue, Q.; Wang, Q.; Jia, Y. Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor–coagulation process. J. Pet. Sci. Eng. 2010, 74, 14–19. [Google Scholar] [CrossRef]
- Filtration & Separation Group. New filtration technology reduces backwash wastewater. Filtr. Sep. 2010, 47, 8. [Google Scholar]
- Slavik, I.; Jehmlich, A.; Uhl, W. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment. Water Res. 2013, 47, 6348–6357. [Google Scholar] [CrossRef]
- Henderson, A. Backwashing filtration systems. Prod. Finish. 2002, 55, 23. [Google Scholar]
- Loderer, C.; Pawelka, D.; Vatier, W.; Hasal, P.; Fuchs, W. Dynamic filtration-Ultrasonic cleaning in a continuous operated filtration process under submerged conditions. Sep. Purif. Technol. 2013, 119, 72–81. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Dai, Y.; Luo, Y.; Chen, Y.L. Ultrasonic-intensified chemical cleaning of nano filtration membranes in oilfield sewage purification systems. J. Eng. Fibers Fabr. 2016, 11, 17–25. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.Q.; Guan, B.; Xu, P. Layout optimization of large-scale oil-gas gathering system based on combined optimization strategy. Neurocomputing 2019, 332, 159–183. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, F.; Qu, Y.; Liu, H.; Zhao, L.; Cui, M.; Ou, Y.; Geng, D. Application of PAC and flocculants for improving settling of solid particles in oilfield wastewater with high salinity and Ca2+. Water Sci. Technol. 2017, 76, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. The flocculation mechanism and treatment of oily wastewater by flocculation. Water Sci. Technol. 2017, 76, 2630–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottaviano, J.G.; Cai, J.X.; Murphy, R.S. Assessing the decontamination efficiency of a three-component flocculating system in the treatment of oilfield-produced water. Water Res. 2014, 52, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.L.; Meng, J.; Li, G.P.; Luan, Z.K.; Tang, H.X. Physicochemical interaction and its influence on deep bed filtration process. J. Environ. Sci. 2004, 16, 297–301. [Google Scholar]
- Wu, C.Y.; Wang, Y.N.; Zhou, Y.X.; Zhu, C. Pretreatment of petrochemical secondary effluent by micro-flocculation and dynasand filtration, performance and DOM removal characteristics. Water Air Soil Pollut. 2016, 227, 415. [Google Scholar] [CrossRef]
- Si, S.; Yan, Z.; Gong, Z. Pilot study of oilfield wastewater treatment by micro-flocculation filtration process. Water Sci. Technol. 2018, 77, 101–107. [Google Scholar] [CrossRef]
- Zamani, A.; Maini, B. Flow of dispersed particles through porous media-deep bed filtration. J. Pet. Sci. Eng. 2009, 69, 71–88. [Google Scholar] [CrossRef]
- Weschenfelder, S.E.; Mello, A.C.C.; Borges, C.P.; Campos, J.C. Oilfield produced water treatment by ceramic membranes: Preliminary process cost estimation. Desalination 2015, 360, 81–86. [Google Scholar] [CrossRef]
- Jordan, M.M.; Johnston, C.J.; Robb, M. Evaluation methods for suspended solids and produced water as an aid in determining effectiveness of scale control both downhole and topside. SPE Prod. Oper. 2006, 21, 7–18. [Google Scholar] [CrossRef]
- Zhong, H.; Yang, T.; Yin, H.; Lu, J.; Zhang, K.; Fu, C. Role of alkali type in chemical loss and ASP-flooding enhanced oil recovery in sandstone formations. SPE Reserv. Eval. Eng. 2019. [Google Scholar] [CrossRef]
Number of Filter Layer | Filter Medium Type | Particle Diameter | Thickness |
---|---|---|---|
1 | quartz sand | φ0.8 mm | 800 mm |
2 | magnetite | φ0.25–0.5 mm | 50 mm |
3 | magnetite | φ1–2 mm | 50 mm |
4 | magnetite | φ2–4 mm | 100 mm |
5 | magnetite | φ4–8 mm | 100 mm |
6 | magnetite | φ8–16 mm | 100 mm |
7 | pebble cushion | φ16–32 mm | 300 mm (Filtration simulation device) 1300 mm (Oil field filter tank) |
Sample Name | Water Content (%) | Waste Oil (%) | Solid Content (%) | ||
---|---|---|---|---|---|
Oil pollution intercepted by the filter medium | 26.65 | 71.00 | 2.35 | ||
saturated hydrocarbon (%) | arene (%) | asphaltene (%) | colloid (%) | non-hydrocarbon (%) | |
51.28 | 20.39 | 15.93 | 11.83 | 12.4 |
Composition | Content (%) | Composition | Content (%) |
---|---|---|---|
SiO2 | 54.0100 | P2O5 | 0.2578 |
Al2O3 | 15.6774 | Cr2O3 | 0.0316 |
Fe2O3 | 9.0906 | MnO | 0.1694 |
BaCO3 | 5.7192 | Co2O3 | 0.0272 |
CaCO3 | 4.1563 | NiO | 0.0134 |
MgCO3 | 2.1782 | CuO | 0.0198 |
Na2O | 1.2061 | Ga2O3 | 0.002 |
K2O | 0.8665 | Rb2O | 0.0025 |
SrSO4 | 0.2587 | WO3 | 0.1524 |
TiO2 | 0.2475 | PbO | 0.0132 |
ZnO | 0.2394 | Y2O3 | 0.0008 |
Unfiltered Produced Water (mg/L) | Filtered Water (mg/L) | Filter Layer (mg/L) | |||||
---|---|---|---|---|---|---|---|
4 h | 8 h | 12 h | 16 h | 20 h | Average Value | ||
514 | 22 | 96 | 223 | 402 | 453 | 238 | 907 |
Petroleum Industry Standard SY/T 5329-2012 Allowable Median Particle Size | Minimum Pore Interception Capacity of the Filter Medium (According to the 1/3 Bridge Principle) | ||
---|---|---|---|
maximum value | minimum value | triangular stacking | square stacking |
4.0 μm | 2.0 μm | 12.9 μm | 34.5 μm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Xu, X.; Dang, W.; Tang, Z.; Hu, C.; Wei, B. Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process. Processes 2019, 7, 927. https://doi.org/10.3390/pr7120927
Wang X, Xu X, Dang W, Tang Z, Hu C, Wei B. Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process. Processes. 2019; 7(12):927. https://doi.org/10.3390/pr7120927
Chicago/Turabian StyleWang, Xingwang, Xiaoxuan Xu, Wei Dang, Zhiwei Tang, Changchao Hu, and Bei Wei. 2019. "Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process" Processes 7, no. 12: 927. https://doi.org/10.3390/pr7120927
APA StyleWang, X., Xu, X., Dang, W., Tang, Z., Hu, C., & Wei, B. (2019). Interception Characteristics and Pollution Mechanism of the Filter Medium in Polymer-Flooding Produced Water Filtration Process. Processes, 7(12), 927. https://doi.org/10.3390/pr7120927