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Abstract: Chlorine-incorporating ultraviolet (UV) provides a multiple barrier for drinking water
disinfection. Meanwhile, post-UV employment can promote the degradation of micropollutants
by radical production from chlorine residual photolysis. This work studied the degradation of one
such chemical, tonalide (AHTN), by low-pressure UV-activated free chlorine (FC) under typical UV
disinfection dosage of <200 mJ·cm−2 and water matrix of filtered tank effluent. AHTN was rapidly
degraded by UV/FC in accordance with pseudo-first-order kinetics. The reaction rate constants
of AHTN with reactive chlorine species and hydroxyl radical (HO•) were estimated. Mechanistic
exploration evidenced that under UV/FC, AHTN degradation was attributable to direct photolysis,
ClO•, and HO•. The carbonyl side chain of AHTN served as an important attack site for radicals.
Water matrices, such as natural organic matter (NOM), HCO−3 , Cu2+, PO3−

4 , and Fe2+, showed
noticeable influence on the UV/FC process with an order of NOM > HCO−3 > Cu2+ > PO3−

4 >
Fe2+. Reaction product analysis showed ignorable formation of chlorinated intermediates and
disinfection byproducts.

Keywords: polycyclic musks; degradation mechanism; UV/chlorine advanced oxidation process;
water treatment

1. Introduction

Polycyclic musks (PCMs), as fragrance ingredients, have been extensively used in cosmetics,
household cleaning products, and personal care products. Typical PCMs include tonalide (AHTN)
and galaxolide (HHCB), which currently compose 85% of the total produced synthetic musk.
These chemicals exist in various media, such as drinking water sources, owing to their hydrophobic
characteristics, poor biodegradability, and frequent use. The adverse environmental effects of AHTN
and HHCB on organisms have been reported [1–3]. Thus, AHTN and HHCB can pose a challenge to
the health of consumers if they cannot be effectively intercepted by drinking water treatment processes
(DWTPs). Such trepidation was confirmed by the survey of Stackelber et al. [4], who reported that
typical DWTP through clarification, granular-activated-carbon filtration, and chlorine disinfection
failed to comprehensively remove AHTN (~71.4%). Other studies have attempted to use chemical
oxidation methods, such as ozonation and ferrate (VI) oxidation, to degrade AHTN; nonetheless,
unsatisfied degradation was observed [5,6]. Similarly, ultrafiltration showed poor rejection of aqueous
AHTN [7]. UV photolysis was proven efficient to remove AHTN and HHCB; however, considerable
degradation intermediates with remarkable similarities to the structure of parent molecules were
generated [8]. Therefore, additional efforts to control PCMs in potable water may be needed.

Processes 2019, 7, 95; doi:10.3390/pr7020095 www.mdpi.com/journal/processes

http://www.mdpi.com/journal/processes
http://www.mdpi.com
http://dx.doi.org/10.3390/pr7020095
http://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/7/2/95?type=check_update&version=3


Processes 2019, 7, 95 2 of 16

Advanced oxidation processes (AOPs) are effective methods for degrading and detoxifying
aqueous contaminants by maximizing highly reactive radicals [9,10]. Combining medium-pressure UV
with H2O2, a kind of AOP, was reported to show desirable degradation efficiency toward PCMs [11].
This hydroxyl radical (HO•)-dominated process showed a rate constant of 1.58 min−1 for HHCB
degradation. The UV irradiation of free chlorine (UV/FC), as a novel AOP, has demonstrated
its effectiveness in the attenuation of specific personal care products, taste and odor compounds,
and antibiotics [9]. This process achieves contaminant degradation by three possible pathways: (1)
direct reaction with FC, (2) direct photolysis, and (3) transformation mediated by radicals, such as HO•
and/or reactive chlorine species (RCS, Cl•, Cl•−2 , and ClO•). Nonetheless, no other studies reported
using UV/FC to degrade PCMs. Moreover, possible factors that may affect the degradation efficiency
(i.e., pH, cations, and natural organic matter (NOM)) have not been investigated thus far.

In the current study, we aimed to (1) investigate the degradation efficiencies of AHTN by UV/FC;
(2) to identify the primary contributor responsible for AHTN degradation and intermediate formation;
(3) to obtain information on the toxicity profile accompanied by AHTN degradation; and (4) to evaluate
the influence of relevant parameters of water-plant treated water, namely, NOM; common anions (Cl−,
NO−3 , SO2−

4 , PO3−
4 , and HCO−3 ); and cations (Ca2+, Fe3+, Fe2+, Mn2+, Zn2+, and Cu2+). Distinguished

from the high UV and chlorine doses delivered (>200 mJ·cm−2 for UV-C dosage; 5–10 mg·L−1 for
chlorine dosage) in previous works [12–14], low chlorine concentration (<4.0 mg·L−1 as FC) and
typical UV doses (product of fluence rate and exposure time, 40–100 mJ·cm−2 [15]) were adopted
herein. AHTN was more retainable in potable water than HHCB, and thus, it was selected as the
model compound to test the degradation characteristics of PCMs by UV/FC.

2. Materials and Methods

2.1. Materials

High purity AHTN, nitrobenzene (NB), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and benzoate
(BA) with high purity were obtained from J&K Scientific (Beijing, China). XAD-4 and XAD-8 Amberlite
resins were purchased from Sigma-Aldrich (San Francisco, CA, USA) and used to extract NOM in water
plant-treated water. A total of 13 halogenated organic standards (chloroform, 1,1,1-trichloroethane,
1,1,2-trichloroethane, 1,1-dichloro-2-propanone, 1,1,1-trichloro-2-propanone, 1,2,3-trichloropropane,
carbon tetrachloride, trichloroethylene, tetrachloroethylene, chloralhydrate, monochloroacetic acid,
dichloroacetic acid, and trichloroacetic acid) were ordered from Center of National Standard Reference
Material of China (Shanghai, China). High-performance liquid chromatography (HPLC)-grade
acetonitrile and methyl tertiary-butyl ether (MTBE) were obtained from Merck (Darmstadt, Germany).
H3BO3, Na2B4O7, NaNO2, NaCl, CaCl2, MnCl2, ZnCl2, FeCl3, CuCl2, NaHCO3, Na3PO4, and Na2SO4

were all analytical-reagent grade and traceable to Sinopharm Chemical Reagent Co., Ltd. (Shanghai,
China). Sodium hypochlorite (NaOCl, 5%) was obtained from Aladdin (Shanghai, China) and
calibrated by N,N-diethyl-p-phenylenediamine method. Ultrapure water (18.2 MΩ·cm) was used to
prepare solutions. Three water plant-treated water samples were collected from drinking water plants
of Hang Zhou (Zhejiang Province, China). The water samples were allowed to stand overnight to
remove residual chlorine and stored at 4 ◦C before use.

NOM was extracted from the filtered tank effluent of Hangzhou Jiuxi drinking water plant.
Amberlite resins were employed in NOM isolation, and NOM fractionation was achieved in accordance
with previous works [16,17]. Hydrophobic fraction was collected by XAD-8 resin and XAD-4 resin.
These two fractions were mixed for subsequent experiments.

2.2. Experimental Procedures

The experiment was performed at 25 ◦C in a 1.5-L glass reactor, which was wrapped with
aluminum foil to block light. Figure S1 presents the set-up and construction of photoreactor.
AHTN (1 mg·L−1) was initially prepared with ultrapure or real water, and pH was adjusted using
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10 mM borate buffer. HCl and NaOH were used to adjust the pH for investigating the effects of
cations. NaOCl stock solution (200 mg·L−1) was then added to generate an initial concentration of
3.28 mg·L−1. The mixture was vigorously stirred with a magnetic stirrer during the whole reaction
process. The temperature of the reaction slurry was maintained at the set point with water bath.
The UV lamp was lit for 5 min to obtain a stable UV output (Figure S2). Timing was started as soon
as the UV light baffle was opened. Residual chlorine in samples was quenched by NaNO2 before
HPLC analysis. Each degradation experiment was performed in triplicate under identical conditions,
and results were presented as the averages. Error bars represented the standard deviation of means
(n = 3).

2.3. Determination of UV Fluence Rate and UV Dosage

The fluence rate in the photoreactor was determined using atrazine as actinometer [18]; a photon
flux of 6.3 × 10−8 Einstein·s−1 was obtained. Average UV fluence rate (mW·L−1) was calculated
afterward. The photoreactor was non-standard collimated beam reactor. The UV light was casted
to a cylindrical surface and not the horizontal one. The area of light projection varied with distance
from light source. Thus, transforming the volume-averaged UV fluence rate into area-averaged UV
fluence rate (mW·cm−2), which was frequently used, presented difficulty. For comparisons with other
UV-based processes, we assumed that the UV light projected on the cylindrical surface at a position
of the effective light path length (L, cm), and a value of 0.067 mW·cm−2 was obtained. This value
approximated the area-averaged UV fluence rate rather than the exact UV light distribution. UV fluence
rates in presence of acetone, isopropanol, and NOM were calibrated in the same manner.

The effective path length of UV light (L = 7.03 cm) in the reactor was determined on the basis of
H2O2 photolysis at a low concentration (0.1 mM, Figure S3). A detailed description is shown in Section
S1 of the Supporting Information.

2.4. Analysis

AHTN was quantified by an Agilent 1200 HPLC (Agilent, Palo Alto, CA, USA). Separation was
performed with an Agilent Eclipse XDB-C18 column (5 µm, 4.6 mm × 150 mm) at 30 ◦C. The mobile
phase consisted of 90% acetonitrile and 10% H2O, and had a flow rate of 1 mL·min−1. Detection
wavelength was set at 253 nm. A total of 10 µL of sample injection was employed.

To detect the possible presence of organic chlorinated products, we drew samples from the reactor
(1 mg·L−1 AHTN initially in pH 7 borate buffer) after treatment by UV/FC (FC = 3.28 mg·L−1) at
different time points. We then added a dechlorination agent, i.e., sodium thiosulfate, to consume
residual FC. Chlorinated products were analyzed by a Thermo Scientific TRACE 1300 gas
chromatography (Thermo Fisher, Waltham, MA, USA). A total of 13 chlorinated byproducts (CBPs)
were analyzed. The nonpolar chlorinated products were directly extracted with MTBE (50 mL samples
with the addition of 2 mL MTBE). The polar chlorinated products were initially derivatized with
methanol. A HP-5MS capillary column (30 m × 250 mm × 0.25 mm) was used for separating
CBPs. The linearity (by R2) of calibration data (0.1–40 µg·L−1) was higher than 0.999. Table S1
provides the method detection limits (MDLs). Qualitative analysis was performed by matching
retention times of samples with those of commercial standards. For comprehensive detection of
degradation intermediates, samples were also concentrated on a Gilson GX-271 ASPEC apparatus
(Gilson, Middleton, WI, USA) and qualified with an Agilent 6460 triple-quad HPLC-MS (Agilent,
Palo Alto, CA, USA). The HPLC-mass spectrometer was equipped with an Agilent EclipseXDB-C18
column (5 µm, 4.6 mm × 150 mm), and column temperature was set at 40 ◦C. Parameter settings
for the mass spectrometry (MS) were negative ion mode with a gas flow rate of 5 L·min−1 at 325 ◦C,
a nebulizer pressure of 45 psi, sheath gas flow at 11 L·min−1 at 350 ◦C, a nozzle voltage of 0 or 500 V(+),
a capillary voltage of 3000 V(+)/3500 V(−), and a fragmentor voltage of 135 V. The mobile phase for
the HPLC-MS analysis was a 70/30 (v/v) mixture of 10 mM ammonium acetate with acetonitrile.
The equipment was run at 1.0 mL·min−1.
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Inorganic chlorine species (Cl−, ClO−2 , ClO−3 , and ClO−4 ), NO−3 , and SO2−
4 were monitored

using a Dionex ICS-2000 ion chromatograph (Chameleon 6.8, Sunnyvale, CA, USA) equipped with
a Dionex IonPac AS19 analytical column (250 mm × 4 mm). An EluGen EGC-KOH cartridge and
a continuously regenerated anion trap column (CR-ATC) were used. All analytes were detected by
suppressed conductivity with an ASRS ULTRA II (4 mM) self-regenerating suppressor operating at
130 mA current.

Qualitative analysis of HO• was realized through a Bruker A200 electron paramagnetic resonance
(EPR) 300E instrument (Bruker, Karlsruhe, Germany). The EPR spectrometer settings in the spin
trapping experiments were as follows: center field, 351.194 mT; sweep width, 10.00 mT; modulation
amplitude, 0.1 mT; sweep time, 41 s; microwave frequency, 9.858 GHz; microwave power, 2.25 mW;
and receiver gain, 1.42 × 104.

Typical water-quality indexes were measured for the three collected effluent samples of
waterworks filter. Total organic carbon (TOC) was determined via a Shimadzu TOC analyzer
(Shimadzu, Kyoto, Japan). The concentrations of cations (Ca2+, Mn2+, Cu2+, and total Fe) were
determined using a PerkinElmer NexION 350Q ICP-MS Spectrometer (PerkinElmer, Shelton, CT,
USA). UV absorbance at 254 nm (UV254) was determined with a Shimadzu UV-250 spectrophotometer
(Shimadzu, Kyoto, Japan). The pH was determined using an Orion 3-Star pH meter (Thermo Fisher,
Shanghai, China). Bicarbonate was detected using chemical titration with a standard HCl solution.
Phosphate concentration was determined using the molybdenum blue method.

2.5. Contributions of Different Radicals

Competitive kinetics methods were used to determine the second-order reaction rate constants
of AHTN with HO• (k(HO• + AHTN)) and RCS (k(RCS + AHTN), RCS = Cl•, Cl•−2 , and ClO•).
Table 1 summarizes the primary chemical reactions in the UV/FC system and rate constants. NB was
selected as the probe compound to evaluate k(HO• + AHTN) and the steady-state concentration of
HO• ([HO•]ss). The HO•-dominated system was generated by peroxymonosulfate activation using
KOH while controlling the pH at 11, as most sulfate radicals were converted into HO• at such pH [19].
[Cl•]ss was determined using both BA and NB as the probe compounds. 2,5-Dimethoxybenzoate
(DMBA) was used as a probe compound for k(ClO• + AHTN) evaluation. Detailed information is
provided in Supporting Information (Section S2, Figures S4–S6). k(HO• + AHTN) and k(ClO• + AHTN)
measured 8.3 × 109 and 6.3 × 109 M−1·s−1, respectively. [HO•]ss, [Cl•]ss, and [ClO•]ss reached 2.6 ×
10−14, 2.8 × 10−15, and 7.0 × 10−14 M, respectively. The pseudo first-order rate constants of AHTN
with different reactive species (k′(R + AHTN), R = HO•, Cl•, Cl•−2 , and ClO•) can be calculated using
Equations (1)–(5). Relative contributions of reactive species (GR) can be calculated using Equations (6)
and (7).

k′(HO•+ AHTN) = k(HO•+ AHTN)[HO•]ss (1)

k′(Cl•+ AHTN) = k(Cl•+ AHTN)[Cl•]ss (2)

k′
(
Cl•−2 + AHTN

)
= k

(
Cl•−2 + AHTN

)[
Cl•−2

]
ss (3)

k′(ClO•+ AHTN) = k(ClO•+ AHTN)[ClO•]ss (4)

k′(RCSs + AHTN) = k′(Cl•+ AHTN) + k′
(
Cl•−2 + AHTN

)
+ k′(ClO•+ AHTN) (5)

k′Total = k′(HO•+ AHTN) + k′(RCSs + AHTN) + k′UV + k′FC (6)

GR = k′(R + AHTN)/k′Total (7)
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Table 1. Principal reactions in the ultraviolet irradiation of free chlorine (UV/FC) system.

Equations Reaction Rate Constant Reference

(I) HOCl 
 OCl− + H+ pKa1 = 7.5 [20]
(II) HOCl + hv→ HO• + Cl• ΦHO• = 1.45 [21]
(III) OCl− + hv→ O•− + Cl• ΦOCl− = 0.97 [20]
(IV) OCl− + hv→ O(1D) + Cl− ΦO(1D) = 0.133 [10]
(V) OCl− + hv→ O(3P) + Cl− ΦO(3P)• = 0.074 [10]
(VI) HO• → O•− + H+ pKa1 = 11.9 [20]
(VII) HO• + HOCl→ ClO• + H2O k7 = 2.0 × 109 M−1·s−1 [20]
(VIII) HO• + OCl− → ClO• + OH− k8 = 8.8 × 109 M−1·s−1 [20]
(IX) HO• + Cl− → ClOH•− k9 = 4.3 × 109 M−1·s−1 [10]
(X) HO• + OH− → O•− + H2O k10 = 1.3 × 1010 M−1·s−1 [20]
(XI) Cl• + HOCl→ ClO• + H+ + Cl− k11 = 3.0 × 109 M−1·s−1 [20]
(XII) Cl• + OCl− → ClO• + Cl− k12 = 8.2 × 109 M−1·s−1 [22]
(XIII) Cl• + Cl− → Cl•2

− k13 = 6.5 × 109 M−1·s−1 [23]
(XIV) Cl• + H2O→ ClOH•− + H+ k14 = 4.5 × 103 M−1·s−1 [24]
(XV) O•− + H2O→ HO• + OH− k15 = 1.8 × 106 M−1·s−1 [25]
(XVI) O(1D) + H2O→ 2 HO• k16 = 1.2 × 1011 M−1·s−1 [26]
(XVII) O(3P) + O2 →O3 k17 = 4.0 × 109 M−1·s−1 [27]
(XVIII) O(3P) + OCl− → ClO−2 k18 = 9.4 × 109 M−1·s−1 [27]
(XIX) Cl•2

− → Cl• + Cl− K19 = 1.1 × 105 M−1·s−1 [28]
(XX) ClOH•− → HO• + Cl− k20 = 6.1 × 109 M−1·s−1 [23]
(XXI) ClOH•− + Cl− → Cl•2

− + OH− k21 = 1.0 × 105 M−1·s−1 [29]
(XXII) ClOH•− + H+ → Cl• + H2O K22 = 2.1 × 1010 M−1·s−1 [23]
(XXIII) 2ClO• + H2O→HOCl + H+ + ClO−2 k23 = 2.5 × 109· s−1 [23]
(XXIV) HO• + CO2−

3 → CO•−3 + OH− k24 = 3.9 × 108 M−1·s−1 [30]
(XXV) HO• + HCO−3 → CO•−3 + H2O k25 = 8.6 × 106 M−1·s−1 [25]
(XXVI) HO• + ClO−2 → ClO•−2 + OH− k26 = 6.3 × 109 M−1·s−1 [31]
(XXVII) HO• + ClO•−2 →ClO−3 + H+ k27 = 4.0 × 109 M−1·s−1 [31]

2.6. Toxicity Evaluation of Samples

Toxicity was evaluated using 1 L of samples of the reaction solutions. A Microtox Model 500
toxicity analyzer coupled with luminescent bacteria Vibrio fisheri was used. Samples were examined
in quartz tube containing 2% sodium chloride in three dilutions. A toxic-free control experiment
was conducted in three repeats using 2% sodium chloride, 3.5 mg·L−1 FC, 0.022 mM sodium
thiosulfate, and 10 mM borate buffer. Luminescence was recorded after 15 min of incubation
at 15 ◦C. The percentage of luminescence inhibition was recorded. Samples were concentrated
by the freeze-drying method. Recovery for freeze-dried samples totaled from 95% to ~110%.
The detoxification rate is defined in Equation (8).

Detoxification rate (%) = (Lt − L0)/L0 (8)

where L0 refers to the initial loss rate of light emission and Lt denotes the loss rate of light emission at
reaction time t (min).

2.7. Principal Factor Analysis

We used CANOCO for Windows package (version 4.5, Ter Braak & Smilauer, Wageningen,
the Netherlands) to execute the principal component analysis. We initially performed detrended
correspondence analysis (DCA) on the efficiency variance to determine the length of the ordination
gradient. The length of the gradient along the first axis was 0.545 (<3.0); therefore, redundancy analysis
(RDA) was performed. The degradation efficiency in UV/FC was expressed as response variables.
Water quality parameters were set as environmental variables. The data were log (x + 1) transformed.
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3. Results and Discussion

3.1. AHTN Degradation under UV/FC Conditions

AHTN decomposition in ultrapure water by UV, FC, and UV/FC were compared (Figure 1).
The UV/FC rapidly degraded AHTN by 60–90% for 60 mJ·cm−2 at a FC dosage of 0.21–3.28 mg·L−1.
Direct UV photolysis showed a moderate degradation rate of 49.3% at 60 mJ·cm−2. AHTN was
resistant to FC alone. The measured molar absorbance of AHTN and quantum yield reached ε = 7911.7
M−1·cm−1 and Φ = 1.3 mol·Einstein−1, respectively (Section S3 and Figures S8 and S9 in the Supporting
Information). This finding illustrates the moderate degradation performance of UV photolysis.
The reaction of AHTN with FC has been reported to initiate with a substitution reaction occurring
at the acetyl side chain of AHTN (H substitution of α-carbon), successively followed by haloform
reaction, decarboxylation, and methylation [32]. In the current study, the weak electron-withdrawing
capability of carbonyl caused a slow reaction kinetics of FC with the methyl group of acetyl side
chain. This result well explains the FC resistance of AHTN. The excellent degradation performance of
UV/FC may be attributed to the formation of reactive species, such as HO•, Cl•, and Cl•−2 , which were
generated from the UV photolysis of FC (Equations (I)–(XXII)).
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= 1.0 mg·L−1, pH = 7.0, 25 ± 1 ◦C, and UV dose 60 mJ·cm−2).

3.2. Identification of Reactive Species for AHTN Degradation by UV/FC

FC photolysis under irradiation at 253.7 nm mainly yielded HO•/O•− and Cl• (Equations
(I)–(VI)). O•− was rapidly captured by H2O to generate HO• under neutral pH condition (Equation
(XV)) and exhibited low reactivity toward organic pollutants. Therefore, O•− was usually considered
to be less vital than HO• and Cl•. FC was added as NaOCl solution containing a small amount of
Cl−. Production of Cl•−2 and ClOH•− was expected via the reaction between Cl• or HO• with Cl−

(Equations (IX) and (XIII)). At neutral condition, ClOH•− was unstable and rapidly decomposed into
HO• (Equation (XX)). Both Cl• (2.4 V) and Cl•−2 (2.0 V) are strong oxidants [20]. In the current study,
another secondary radical, ClO•, was derived from the reaction of FC with HO•/Cl• (Equations (VII),
(VIII), (XI), and (XII)). Sun et al. [24] observed that ClO• featured the same importance as HO• and
Cl• in degrading caffeine by UV/FC. Therefore, the four radicals HO•, Cl•, Cl•−2 , and ClO• were
suspected to contribute to AHTN degradation, in addition to direct photolysis and FC chlorination.

On the basis of the determined k(HO• + AHTN) and [HO•]ss, k′(HO• + AHTN) was 2.1 ×
10−4 s−1. Given k′Total (1.6 × 10−3 s−1), k′UV (7.0 × 10−4 s−1), and k′FC (1.0 × 10−4 s−1) were known
(Figure 2a), the relative contributions of HO• (GHO•) and RCSs (GRCSs) could be initially determined.
HO• and RCS, respectively, accounted for 13.1% and 36.9% of AHTN degradation compared with
a GUV value of 43.8% produced by direct UV photolysis. To ascertain the RCSs that played a major role,
we calculated GClO• (30%) from the obtained k(ClO• + AHTN) (6.3× 109 M−1·s−1) and [ClO•]ss (7.0×



Processes 2019, 7, 95 7 of 16

10−14 M). Cl• and Cl•−2 accounted for 6.9% of AHTN degradation. Figure 2b presents the contributions
of relevant contributors.
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Figure 2. Degradation of AHTN by UV/FC—(a) first-order kinetic fitting and (b) contribution analysis
of relevant contributors ([AHTN]0 = 1.0 mg·L−1; pH = 7.0; 25 ± 1 ◦C; [FC]0 = 3.28 mg·L−1; [Cl−]0 =
0.02 mM; and UV fluence rate 0.067 mW·cm−2).

The results indicated that HO• and ClO• were the primary contributors among the four radicals,
whereas Cl• and Cl•−2 played minor roles. A direct support from EPR testing results confirmed the
formation of HO• (Figure 3). When Cl• was generated from the photolysis of HOCl, Cl• was initially
captured by H2O molecules to form ClOH•− at a rate of 2.5× 105 s−1 (k(Cl• + H2O)× [H2O], Equation
(XIV)). The initial concentration of Cl− approximated 0.02 mM in the reaction system, corresponding to
a Cl• scavenging rate of 1.3× 105 s−1 (k(Cl• + Cl−)× [Cl−], Equation (XIII)). Furthermore, 3.28 mg·L−1

FC led to a Cl• scavenging rate of 2.0 × 105 s−1 (k(Cl•+ ClO−) × [ClO−] + k(Cl• + HClO) × [HClO],
Equations (XI) and (XII)). Even if k(Cl• + AHTN) reached a level of ~1010 M−1·s−1, AHTN only led
to a Cl• scavenging rate of ~104 s−1 (k(Cl• + AHTN) × [AHTN]). Therefore, under the conditions
of the present work, Cl• was primarily captured by H2O molecule, Cl−, and FC, thereby leading
to a low [Cl•]ss concentration (2.8 × 10−15 M). Thus, Cl•−2 may have contributed to 6.9% of AHTN
degradation. An insignificant formation of organic chlorinated compounds in the investigation of
chlorine balance (Figure 4) confirms the above speculation. In summary, the radical-induced AHTN
elimination is primarily attributed to the attacking of HO• and ClO•. An identical conclusion was
obtained in studies where caffeine was treated by UV/FC [24].
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concern due to the possible formation of intermediates with similar or even higher toxicity than 
their parent compounds [33,34]. Therefore, toxicity variation related to AHTN degradation by FC, 
UV, and UV/FC was examined, allowing the evaluation of the detoxification efficiency of UV/FC. 
As shown in Figure 5, almost no toxicity change was observed for AHTN solution when treated by 
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Such phenomena indicate the generation of products with higher toxicity than AHTN. 
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3.3. Toxicity Change, Intermediate Formation, and Degradation Pathway

The toxicity change of treated water during target pollutant degradation must also be a concern
due to the possible formation of intermediates with similar or even higher toxicity than their parent
compounds [33,34]. Therefore, toxicity variation related to AHTN degradation by FC, UV, and UV/FC
was examined, allowing the evaluation of the detoxification efficiency of UV/FC. As shown in Figure 5,
almost no toxicity change was observed for AHTN solution when treated by FC and UV. By contrast,
a weak increase in toxicity was detected for the solution treated by UV/FC. Such phenomena indicate
the generation of products with higher toxicity than AHTN.Processes 2019, 7, 95 9 of 17 
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To elucidate the observed toxicity elevation, we identified degradation intermediates. An intuitive
image of intermediate formation was initially obtained from HPLC chromatogram (Figure S10).
Three new peaks were detected with considerable abundance in the UV/FC system (Figure S10a).
By contrast, a few intermediates were generated in UV (Figure S10b) and FC systems (Figure S10c).
We performed LC-MS analysis to further qualify these intermediates. Figure 6 shows the mass
spectrum and possible chemical structures of intermediates. Products (a), (c), (d), and (e) completely
differed from those reported in AHTN chlorination [8,32] and UV photolysis [8]. The products were
characterized by notable similarities to parent molecules. Such distinction in products confirms
the difference in the major species that induced AHTN degradation. By combining the structural
information of the products and the identification of contributors to AHTN degradation, a possible
degradation pathway was proposed (Figure 6).

ClO• was reported as a powerful one-electron oxidant and non-reactive radical in hydrogen
abstraction or addition reactions [35]. HO• can react with organic compounds in several different
ways, such as C=C and C=N double bonds, H-atom abstraction, and electron transfer [36]. In the
current study, the H-atom abstraction of AHTN resulted in the generation of carbon-centered
radicals (Radical (I) and (II)). These carbon-centered species (Radical (I)) can react with dissolved
oxygen to form peroxyl radicals, which can generate aldehydes (product (a)) through self-reaction
and succeeding decomposition [37]. Another intermediate, with the same m/z value (244) as
product (b), was observed during the UV photolysis of AHTN; this intermediate was proposed
to be 6-ethyl-1,1,2,4,4,7-hexamethyltetralin [8]. The aldehyde functional group of product (a) was
oxidized, whereas that of product (c) was subsequently decarboxylated. Radical (II) can undergo
self-polymerization to form product (d). The appearance of product (e) would have been due to
molecular branch trimming of product (b).Processes 2019, 7, 95 10 of 17 
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To further confirm the formation of chlorinated intermediates, 13 CBPs were screened. The MDLs
of the 13 CBPs ranged from 0.01 to 0.06 µg·L−1 (Table S1). Results revealed no targeted CBP at
detectable concentrations in any of the samples. Notably, the decreased FC amount showed a linear
correlation with an increased Cl− level (k = 1.02, Figure 7). Thus, the final product of HOCl/OCl−

was harmless Cl−.
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Figure 7. ∆[Cl−] + ∆[ClO−2 ] + ∆[ClO−3 ] versus ∆[FC] during AHTN degradation by UV/FC ([AHTN]0

= 1.0 mg·L−1; [FC]0 = 3.28 mg·L−1; pH = 7.0; and 25 ± 1 ◦C).

3.4. Effect of Water Background on AHTN Degradation

The destruction of AHTN under actual water background may be more striking than the
degradation performance in ultrapure water. Thus, AHTN degradation by UV/FC, conducted in FWs
collected from local drinking water treatment plants, was investigated. Table 2 provides the water
quality parameters of the three FWs. Figure 8 displays the degradation curves. From the obtained
results, we can conclude that AHTN degradation in actual waters slowed down compared with the
case of ultrapure water to a certain extent (~12%). Background components may have induced the
degradation differentiation. To screen out water quality parameters that substantially influenced
AHTN degradation, we individually studied the effects of common water quality parameters in
ultrapure water, such as Ca2+, Fe3+, Fe2+, Mn2+, Zn2+, Cu2+, Cl− NO−3 , SO2−

4 , PO3−
4 , HCO−3 ,

and NOM. The degradation of AHTN followed pseudo-first-order kinetics (Figure S11). Table 3
summarizes the rate constants.

Table 2. Water quality of the waters collected from filtered water (FW).

Water Matrices Units FW1# FW2# FW3#

pH – 7.15 6.68 7.47
TOC mg·L−1 1.93 4.00 8.77

HCO−3 mg·L−1 7.89 5.89 12.83
PO3−

4 mg·L−1 ND ND ND
Cl− mg·L−1 15.71 8.91 34.69

NO−3 mg·L−1 9.39 8.49 3.90
UV254 cm−1·(mg·L−1)−1 0.015 0.003 0.029
SO2−

4 mg·L−1 18.33 11.35 22.41
Ca2+ mg·L−1 7.22 9.52 10.36
Mn2+ mg·L−1 0.012 0.007 0.006
Cu2+ mg·L−1 0.076 0.001 ND
Zn2+ mg·L−1 1.23 0.034 0.022

Total Fe mg·L−1 0.16 0.14 0.061
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Figure 8. Degradation of AHTN by UV/FC under conditions relevant to tap water ([AHTN]0 = 1.0
mg·L−1; pH = 7.0; 25 ± 1 ◦C; and [FC]0 = 3.28 mg·L−1).

Table 3. Pseudo-first-order rate constants for AHTN degradation by UV/FC under various conditions.

Varying Parameters Concentration * Ionic Strength (×10−5 M) ∆pH k (s−1) R2

Ca2+ (mM, as CaCl)
0.2 60 0.01 0.0014 0.997
1.0 300 0.01 0.0013 0.997
2.0 900 0.01 0.0014 0.999

Cl− (mM, as NaCl)
0.5 50 0.01 0.0014 0.999
1.0 100 0.01 0.0013 0.998
4.0 400 0.01 0.0014 0.999

Cu2+ (µM, as CuCl2)
0.6 0.18 0.01 0.0015 0.994
1.8 0.54 0.01 0.0014 0.997
3.0 0.9 0.01 0.0015 0.998

NOM (mg·L−1)

0.5 – 0 0.0012 0.999
1.0 – 0 0.0011 0.998
2.0 – 0 0.0010 0.999
5.0 – 0 0.0007 0.997

Fe2+ (mM, as FeCl2)
0.001 0.3 0.01 0.0015 0.998
0.002 0.6 0.01 0.0014 0.998
0.004 1.2 0.01 0.0014 0.999

Fe3+ (mM, as FeCl3)
0.001 0.6 0.01 0.0015 0.999
0.002 1.2 −0.04 0.0013 0.996
0.004 2.4 0.01 0.0012 0.995

HCO−3 (mM, as NaHCO3)

0.1 10 0.01 0.0013 0.998
0.5 50 0.01 0.0012 0.994
1.0 100 0.01 0.0012 0.993
2.0 200 0.01 0.0013 0.998
4.0 400 0.01 0.0013 0.990

10.0 1000 0.01 0.0009 0.996

Mn2+ (µM, as MnCl2)
0.5 0.15 0.01 0.0015 0.999
1.0 0.3 0.01 0.0014 0.998
2.0 0.6 0.01 0.0014 0.999

NO−3 (mM, as NaNO3)

0.05 5 0.01 0.0015 0.996
0.1 10 0.01 0.0012 0.998

0.15 15 0.01 0.0013 0.999
1.0 100 0.01 0.0013 0.999

PO3−
4 (µM, as Na3PO4)

0.1 0.06 0.01 0.0013 0.999
0.2 0.12 0.01 0.0014 0.998
0.4 0.24 0.01 0.0014 0.997
1.0 0.6 0.01 0.0010 0.996

SO2−
4 (mM, as Na2SO4)

0.2 60 0.01 0.0013 0.996
0.4 120 0.01 0.0014 0.998
0.6 180 0.01 0.0012 0.997
1.0 300 0.01 0.0010 0.994

Zn2+ (µM as ZnCl2)
4.0 1.2 0.01 0.0013 0.998
8.0 2.4 0.01 0.0014 0.998

12.0 3.6 0.01 0.0014 0.999

* Ionic strength of borate buffer (54 mM) is not included.



Processes 2019, 7, 95 12 of 16

As stated above, the direct photolysis and attack of HO• and ClO• caused AHTN degradation.
Co-solutes, namely, Ca2+, Fe3+, Fe2+, Mn2+, Zn2+, Cu2+, Cl−, NO−3 , SO2−

4 , PO3−
4 , HCO−3 , and NOM,

may interfere with AHTN degradation via competition for photons and radicals. Table 4 lists the HO•
quenching rates of these co-solutes. Information on the reactions between ClO• and these co-solutes
is limited. Comparison of the redox potential of ClO• (1.5–1.8 V [35]) with those of co-solutes will
allow speculation of ClO• scavenging by these compounds. Preliminarily, ClO• was assumed to be
inert toward Ca2+, Fe3+, Zn2+, Cu2+, Cl−, NO−3 , SO2−

4 , PO3−
4 , and HCO−3 [38,39]. Reaction kinetics

between ClO• and Fe2+/Mn2+ can be obtained from the rate constants of carbonate radical (CO•−3 )
with Fe2+/Mn2+ (k(CO•−3 + Mn2+) = 1.5 × 107 M−1·s−1 and k(CO•−3 + Fe2+) = 3.6 × 108 M−1·s−1)
due to the close redox potentials of these two one-electron oxidants [35]. Regarding the scavenging of
ClO• by NOM, a second-order rate constant of 4.5 × 104 (mg·L−1 C)−1·s−1 was reported [40]. Thus,
for ClO•, quenching by Fe2+/Mn2+ and NOM needs to be determined.

Table 4. Scavenging rate of hydroxyl radical (HO•) by AHTN and water matrices.

Water Matrices Concentration (C) Reaction Rate Constant with
HO• (k) Scavenging Rate (C × k)

AHTN 1.0 mg·L−1 8.3 × 109 M−1·s−1 (this work) 3.2 × 104 s−1

Cl− 0.4–4 mM 1.4 × 109 M−1·s−1 ([10]) (0.6–5.6) × 106 s−1

PO3−
4 * 0.1–1000 µM 1.5 × 105 M−1·s−1 (HPO4

2−, [25])
(0.007–1.0) s−1

2.0 × 104 M−1·s−1 (H2PO4
−, [25])

NO−3 0.05–1 mM < 1.0 × 105 M−1·s−1 <(0.05–1.0) × 102 s−1

HCO−3 ** 0.1–4 mM
8.6 × 106 M−1·s−1 (HCO−3 , [41])

(0.07–2.9) × 104 s−1
<1.0 × 106 M−1·s−1 (H2CO3, [25])

SO2−
4 0.2–1 mM 6.9 × 105 M−1·s−1 (HSO2−

4 , [25]) ≤ ~102 s−1

NOM 0.5–5 mg·L−1 2.5 × 104 (mg·L−1)−1·s−1 ([42]) (1.3–13) × 104 s−1

Cu2+ 0.6–3 µM 3.5 × 108 M−1·s−1 ([25]) (0.21–1.1) × 103 s−1

Fe2+ 1–3 µM 3.2 × 108 M−1·s−1 ([25]) (3.2–9.6) × 102 s−1

Fe3+ 1–4 µM NA
Mn2+ 0.5–2 µM 2.9 × 107 M−1·s−1 ([25]) (1.5–5.8) × 101 s−1

Zn2+ 4–12 µM <5.0 × 105 M−1·s−1 ([25]) <(2–6) s−1

Ca2+ 0.2–3 mM NA

HOCl *** 46.2 µM 2.0 × 109 M−1·s−1 (HOCl, [20])
1.7 × 105 M−1·s−1

8.8 × 109 M−1·s−1 (OCl−, [20])

* 61.7% HPO2−
4 and 38.3% H2PO−4 at pH = 7; ** 81.7% HCO−3 and 18.3% H2CO3 at pH = 7; and *** 76.0% HOCl and

24.0% OCl− at pH = 7.

Addition of 0.4–4 mM Cl− caused almost no influence on AHTN degradation (Table 2). Although
Cl− can scavenge HO• (a primary contributor for AHTN degradation) at a rate of (0.6–5.6) × 106

s−1 (Table 3) to form ClOH•− (Equation (IX)), ClOH•− was unstable and rapidly decomposed into
HO• and Cl− (Equation (XX)). HO•-based AOPs were insensitive to low Cl− concentration [43]. Thus,
0.4–4 mM Cl− was not expected to exert considerable effect on AHTN degradation.

Similarly, Cl−, PO3−
4 , SO2−

4 , and NO−3 at an environmental concentration level almost caused no
remarkable influence, as presented in Table 2. Approximately, 16% inhibition was obtained until the
concentration of PO3−

4 increased to as high as 1 mM. The weak scavenging of HO• by PO3−
4 , SO2−

4 ,
and NO−3 (≤~102 s−1, Table 3) compared with that by AHTN (3.2 × 104 s−1, Table 3) can reasonably
explain this phenomenon.

HCO−3 can capture HO• ((0.09–8.6) × 104 s−1 for 0.1–10 mM HCO−3 , Table 3) to yield CO•−3 ,
which is a weak oxidant compared with the former. AHTN captured HO• at a rate of 3.2 × 104

s−1. Thus, a considerable proportion of HO• would transform into CO•−3 , once HCO−3 concentration
increased above a certain threshold. This partial HO• conversion may illustrate the deterioration of
degradation efficiency at a higher concentration of HCO−3 (Table 2).

As an important component of drinking water, the dissolved NOM often exerts noticeable effect
on the chemical oxidation of pollutants. Table 2 shows the results on AHTN degradation in the
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presence of NOM. Overall, the degradation process is sensitive toward NOM. The presence of NOM
at 0.5 mg·L−1 decreased the degradation efficiency by approximately 10%. NOM reacted with HO•
and ClO• at rates of 2.5 × 104 and 4.5 × 104 (mg·L−1 C)−1·s−1, respectively. Thus, 0.5 mg·L−1 NOM
showed a scavenging rate of 1.3 × 104 s−1 to HO• and 2.3 × 104 s−1 to ClO•. The results were
comparable to the scavenging rate of HO• and ClO• by AHTN (Table 3). By analogy, 50% decrease in
reaction rate constant occurred in the presence of 5.0 mg·L−1 NOM.

Regarding the presence of common cations, such as Ca2+, Fe3+, Fe2+, Mn2+, Zn2+, and Cu2+,
at concentrations relevant to environmental levels, a subtle inhibition influence on the degradation
process was observed (k = 0.0012–0.0015 s−1 and kCB = 0.0016 s−1, Table 2). The influence of solution
pH change and ion strength change induced by the introduction of cations was excluded (Table 2).
As shown in Figure 6, numerous carbonyl-containing intermediates were produced during the
degradation process. These carbonyl-containing intermediates can complex with metal ions. Studies
have reported the degradation enhancement of nitrophenolic compounds by HO•-based AOP due to
Fe3+ complexation [44]. Variations in oxidation characteristic of pollutants evoked by complexation
with cations have been proposed [45]. In other words, metal ion complexation with transformation
intermediates may increase the competition with parent molecule toward reactive species, such as
HO•. A similar influencing mechanism was speculated to operate herein.

Finally, RDA was performed to screen out principal factors from the above water quality parameters.
RDA results indicated that 98.1% of the response variables (gray circles in Figure 9) were explained by
the environmental variables. The length of the arrows in the ordination biplot (Figure 9) indicates the
relationship strength of the environmental variable and the response variables. The correlation among
the variables is positively related to the cosine value of the intersection angles between two arrows.
In accordance with these two rules, the five NOM, HCO−3 , Cu2+, PO3−

4 , and Fe2+ considerably influenced
the degradation efficiency in the order of NOM > HCO−3 > Cu2+ > PO3−

4 > Fe2+.
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4. Conclusions

UV/chlorine AOP degraded AHTN efficiently in accordance with pseudo first-order kinetics.
The first-order rate constant in the UV/chlorine AOP were, respectively, 16 and 2.3 times higher
than those in chlorination alone and direct UV photolysis under typical chlorine (3.28 mg·L−1) and
UV (60 mJ·cm−2) dosage at pH 7. Among the common water matrix components, NOM, HCO−3 ,
Cu2+, PO3−

4 , and Fe2+ showed a noticeable influence on AHTN degradation by the UV/chlorine AOP.
However, other co-solutes, namely, Ca2+, Fe3+, Mn2+, Zn2+, Cl−, NO−3 , and SO2−

4 , failed to show the
same result. AHTN degradation in UV/chlorine AOP was induced by UV photolysis and attack of
ClO• and HO•. Formation of chlorinated intermediates was irrelevant under current experimental
conditions. Five chlorine-free intermediates were identified. After treatment with UV/chlorine AOP,
the toxicity of AHTN mixture weakly increased.
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